
Study on Licensing and Program Understanding for

Reuse Support

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2015

Yu Kashima

ii

Abstract

For developing reliable software, it is important to reuse existing software
components. Reusable components are not only their developer’s own, but
also Open Source Software. In addition, there are hosting services to support
developing and sharing open source software recently. As a result, it has been
easier to search or distribute reusable components.

When reusing or distributing reusable components, there are a lot of
concerns. In particular, software license, retrieval for reusable components
implementing a feature, extraction of a reusable component are major im-
portant issues addressed in this dissertation.

Software license permits or forbids the usage of the software including
reuse. If a developer violates a license statement of a reused component, the
developer may have to stop developing or receive some legal actions. There-
fore, the selection of the software license seems to affect to reuse activity,
but not surveyed quantitatively. For encouraging active reuse activities, the
impact of a software license should be known to the developers.

A developer needs to retrieve a reusable target using search engines,
because the number of existing open source software is very large. Since
major search engines often uses keyword-based search, a reuse target should
include a keyword representing its feature. The targets of keyword-based
search includes the source code of the software which contains names of
identifiers. Identifier names are also important for understandability of the
source code since a developer generally tries to guess a role of a program
element from identifier names. However, unfortunately, not all developers
are able to give appropriate names to identifiers, since a broader knowledge
and a great deal of experience are necessary to define accurate names.

After a reusable target is found, reuse will complete if a feature of the
target is incorporated into a user’s product. However, it is not easy since a
developer often has to extract a component implementing the reuse target
feature from the found reusable target. For supporting the extraction, pro-
gram slicing based techniques are proposed previously. In addition, there

iii

are several new program slicing techniques which are applicable for Java
program language, e.g. static execute before, and improved slicing. How-
ever, these new techniques were not compared comprehensively, besides the
comparative information is important for selecting a technique which is ap-
propriate for the situation.

We believe that the targets of support for software reuse should include
not only a user of a reuse component, but also a developer of a reusable
component. Issues of licenses should be resolved by supporting a developer
of reusable components, because software license is only decided by the de-
veloper. We resolved the license issue by reporting quantitative information
which is useful for a license selection. Next, we resolved the retrieval issue
from the viewpoint of identifier names since they have an important role in
searching as described above. Identifier names in the component are natu-
rally changed by only the developers. Therefore, this issue should be also
resolved by supporting them. On the other hand, the extraction issue should
be resolved by supporting a user of a reusable component, since reuse can
be realized without burdening a component developer if the component user
can apply an appropriate extraction technique.

First, we studied the impact of software licenses to reuse activity among
open source software. In particular, we focused on copy-and-paste activity
because copy-and-paste is a basic method for source code reuse. This study
has shown frequent occurrence of copy-and-paste within the same license
products. In addition, the study quantitatively has shown that permissive
licensed files tend to be more copied than restrictive licensed ones. The
result of this study gives a quantitative guide for the developer’s license
selection.

Secondly, we proposed an approach for building domain specific verb-
object relationship dictionaries. The dictionary includes tuples consisting of
(Verb, Direct Object, Indirect Object) which are extracted from identifiers
in method signatures. In the experiment, we showed that the tuples in
the dictionaries which are popular in the target domain or common Java
programs. The result of the second study supports the appropriate naming
and resolving the searching issue.

Thirdly, we performed a comparative study of four backward program
slicing techniques for Java. The techniques include static execute before,
context-insensitive slicing, hybrid technique of static execute before and context-
insensitive slicing, and improved slicing. The comparison shows that the hy-
brid technique has the scalability for analyzing a large system, and outputs
a slice whose size is 25 percent smaller than static execute before, which is
the most lightweight technique, on average. On the other hand, improved

iv

slicing has the scalability for analyzing middle size applications, and is 31
percent smaller than compared to the hybrid technique. The results of the
third study help selection of the program slicing techniques and extraction
of a reusable component.

We believe that the results of these studies support developers to deter-
minate a license of reusable components, to search a product implementing
a target feature, and to extract a reusable component from the product.

v

vi

List of Major Publications

Academic Journal

1. Yu Kashima, Yasuhiro Hayase, Yuki Manabe, Katsuro Inoue. Build-
ing Domain Specific Dictionaries of Verb-Object Relation from Source
Code (in Japanese). IPSJ Journal, Vol.54, No.2, pp.857–869. 2013.

2. Yu Kashima, Takashi Ishio, Katsuro Inoue. Comparison of Backward
Slicing Techniques for Java. IEICE Transactions, Vol. E98-D, No. 1,
January, 2015.

International Conference

1. Yu Kashima, Yasuhiro Hayase, Norihiro Yoshida, Yuki Manabe, Kat-
suro Inoue. An investigation into the impact of software licenses on
copy-and-paste reuse among OSS projects. In Proceedings of the 18th
IEEE Working Conference on Reverse Engineering, pp.28-32. Limer-
ick, Ireland, October, 2011.

2. Yu Kashima, Yasuhiro Hayase, Norihiro Yoshida, Yuki Manabe and
Katsuro Inoue. A preliminary Study on Impact of Software Licenses
on Copy-and-Paste Reuse. In Proceedings of the 2nd International
Workshop on Empirical Software Engineering in Practice, pp.47-52.
Nara, Japan, December, 2010.

3. Yasuhiro Hayase, Yu Kashima, Yuki Manabe and Katsuro Inoue. Build-
ing Domain Specific Dictionary of Verb-Object Relation from Source
Code. In Proceedings of the 15th IEEE European Conference on Soft-
ware Maintenance and Reengineering, pp.93-100. Oldenburg, Ger-
many, March, 2011.

vii

viii

Acknowledgement

I am most indebted to my supervisor Professor Katsuro Inoue for his contin-
uous support and supervision over the years. Without his help, experience
and advice, this thesis would never have reached completion.

I am also very grateful to Assistant Professor Takashi Ishio for a lot of
valuable support, supervisions, and helpful criticism of this thesis.

I want to thank Assistant Professor Yasuhiro Hayase in University of
Tsukuba, Associate Professor Norihiro Yoshida in Nagoya University, and
Assistant Professor Yuki Manabe in Kumamoto University. Their com-
ments, criticism and advice have helped guide and shape the development
of this thesis.

I would like to express my gratitude to Associate Professor Makoto Mat-
sushita for his worth supports.

I would also like to express my gratitude to Professor Shinji Kusumoto
and Professor Yasushi Yagi for his valuable comments on this thesis.

I would like to express my gratitude to all members of the Department
of Computer Science for their guidance, especially Professor Toshimitsu Ma-
suzawa.

Thanks are also due to many friends in the Department of Computer
Science, especially students in Inoue Laboratory.

ix

x

Contents

1 Introduction 1

1.1 Software Reuse . 1

1.2 Contributions to Reuse Support 4

1.2.1 Contributions to Software License Issue 4

1.2.2 Contributions to Retrieval Issue 5

1.2.3 Contributions to Extraction Issue 6

1.3 Overview of the Dissertation 7

2 An Investigation into the Impact of Software Licenses on
Copy-and-Paste Reuse among OSS Projects 9

2.1 Introduction . 9

2.2 Background . 11

2.2.1 OSS License . 11

2.2.2 OSS License for Copy-and-Paste Reuse 11

2.3 Experiment . 12

2.3.1 Detecting CnP – Design and Implementation 13

2.3.2 Analyzed Code . 16

2.3.3 Experiment 1: counting clones for each license 18

2.3.4 Experiment 2: statistical examination of licenses . . . 22

2.3.5 Revisiting Research Questions 25

2.4 Threats to Validity . 26

2.5 Summary . 28

3 Building Domain Specific Dictionaries of Verb-Object Rela-
tion from Source Code 29

3.1 Introduction . 29

3.2 Verb-Object Relationships in Object-Oriented Program . . . 30

3.2.1 Naming Convention 30

3.2.2 Verb and Object in a Method Name 31

xi

3.3 Building Verb-Object Relationship Dictionary 32
3.3.1 Step 1: Obtaining the identifiers related to each method 33
3.3.2 Step 2: Extracting V-O relations 34
3.3.3 Step 3: Filtering V-O relations 35

3.4 Evaluation Experiment . 36
3.4.1 Experimental Setup 36
3.4.2 Evaluation Target Dictionaries 37
3.4.3 Evaluation Process . 41
3.4.4 Results of the Evaluation 42
3.4.5 Follow-up clarification of the results 46
3.4.6 Discussion . 47
3.4.7 Threats to Validity . 47

3.5 Related Work . 47
3.6 Summary and Future Work 48

4 Comparison of Backward Slicing Techniques for Java 49
4.1 Introduction . 49
4.2 Slicing Techniques Under Evaluation 52

4.2.1 SEB: Static Execute Before 53
4.2.2 CIS: Context-Insensitive Slicing 54
4.2.3 HYB: Context-Insensitive Slicing with Static Execu-

tion Before . 56
4.2.4 IMP: Improved Slicing 56
4.2.5 Comparison of Graph Construction Process 59

4.3 Implementation . 60
4.3.1 Points-to Analysis and Call Graph Construction . . . 60
4.3.2 Handling Reflection 60
4.3.3 Approximation of Library 60

4.4 Experiment . 61
4.4.1 Design and Analysis Target 61
4.4.2 Result . 62
4.4.3 Scalability Analysis of Improved Slicer 73

4.5 Discussion . 75
4.6 Threats to Validity . 77
4.7 Related Work . 78
4.8 Summary . 79

5 Conclusion and Future Work 81
5.1 Conclusion . 81
5.2 Future Work . 82

xii

List of Figures

2.1 Reusing Source Code in a Different Licensed Product 12
2.2 Overview of the process for detecting licenses and CnPs . . . 13
2.3 Removing including clones 14
2.4 Similarity between CnP reuse and module reuse 15
2.5 Example of the Counting Code Clones in Experiment 1 . . . 18
2.6 Counting extracted clones related to a file in a product . . . 23

3.1 Outline of our Technique . 32
3.2 An example of Creating Method Properties 34
3.3 Method Property, Extraction Pattern, and Pattern Matching 35

4.1 SDG for CIS . 56
4.2 SDG for IMP . 58
4.3 Subgraph of SDG for line 5 58
4.4 Time to Construct SDG in Configuration 1 63
4.5 Scatter Plots of Relative Slice Size (percentage) on Configu-

ration 1 (avrora and batik) 64
4.6 Scatter Plots of Relative Slice Size (percentage) on Configu-

ration 1 (h2 and luindex) . 65
4.7 Scatter Plots of Relative Slice Size (percentage) on Configu-

ration 1 (pmd and sunflow) 66
4.8 Time to Construct SDG in Configuration 2 68
4.9 Scatter Plots of Relative Slice Size (percentage) on Configu-

ration 2 (avrora and batik) 69
4.10 Scatter Plots of Relative Slice Size (percentage) on Configu-

ration 2 (h2 and luindex) . 70
4.11 Scatter Plots of Relative Slice Size (percentage) on Configu-

ration 2 (pmd and sunflow) 71

xiii

xiv

List of Tables

2.1 Representative abbreviations of license names 17

2.2 Top 15 frequent licenses . 17

2.3 #Clones with pivot license in DS1 19

2.4 #Clones with pivot license in DS2 20

2.5 Normalized values for #Clones (deeper colored cells depict
high values) . 21

2.6 Number of clones for one source file distributed under a pivot
license . 23

2.7 The metrics for a file used in Experiment 2 24

2.8 Adjusted coefficient of determination values 25

3.1 List of the Extraction Patterns (V, N, PP mean verb, noun
and prepositional word, respectively) 37

3.2 Applications for Building Dictionaries 38

3.3 The number of Methods and Extracted Tuples 39

3.4 Frequently Distribution of Tuples 39

3.5 The number of Methods Extracted Tuples by Extraction Pat-
tern . 40

3.6 Response to Q1 . 42

3.7 Response to Q2 . 42

3.8 Response to Q3(Numbers in parentheses mean the number of
the same answers) . 43

3.9 Tuples being popular in other domains at responses of Q3 . . 43

3.10 Response to Q4 . 43

3.11 Tuples answered as incorrect at responses of Q4 44

3.12 Response to Q5 . 44

3.13 Response to Q6 . 44

3.14 Tuples evaluated Useful at the Target Domain 44

3.15 Response to Q7 (Numbers in the parentheses mean the num-
ber of the same answers) . 45

xv

3.16 Extraction patterns and responses of tuples (numbers in each
cell correspond to the responses of Q1/Q2/Q5/Q6) 45

4.1 Example of Source Code and its Slicing Results (The criteria
is y at line 5) . 53

4.2 Example of Source Code and its Slicing Results (The criteria
is z at line 6) . 54

4.3 Size of Analysis Targets . 62
4.4 Detail of Time to Construct SDG in Configuration 1 67
4.5 SDG Size in Configuration 1 67
4.6 Detail of Time to Construct SDG in Configuration 2 72
4.7 Size of SDG for CIS in Configuration 2 72
4.8 Sub packages used for scalability analysis 74
4.9 The Distribution of the Analyzable Programs and Time to

Construct SDG . 75
4.10 Rates Compared Other Techniques 76

xvi

Chapter 1

Introduction

1.1 Software Reuse

Software reuse makes valuable contributions in developing reliable software
rapidly. In order to improve the quality of software in the world, it is
desirable that software is actively distributed via reuse.

There are various forms of reuse, including the following examples:

Reuse as an External Tool uses existing software as an external tool,
e.g. combining sort command through a unix shell pipe. The advan-
tages of this method are easiness of avoiding a license issue described
later, and treating the reuse target as a black box. The disadvantage
is the lack of flexibility.

Reuse as a Library links to the existing software dynamically or stati-
cally, and then use a feature of the linked software from their accessi-
ble functions such as API. For example, we can use various container
classes for Java included in Apache Commons Collections [1]. The
advantage of this method is convenient since the library functions can
be accessed by the software. The disadvantage is that this method
requires a large effort of developers for making their software reusable
as a library.

Source Code Reuse embeds source code of a reuse target in the develop-
ing software, e.g. copy-and-paste the reuse target source code. The
advantage of this method is flexibility. Developers can modify the
reused source code as they want. The disadvantage of this method is
that the availability of source code is dependent on the license of the
reuse target.

1

In this dissertation, we would like to support source code reuse since this
method is the most flexible. In addition, recently, places for sharing open
source software (OSS) are increased, e.g. hosting services including Source-
Forge.net [2], GitHub [3], and etc. As a result, it has been easier to search
or distribute components which can be used for source code reuse.

However, there is much of the issues about source code reuse. The fol-
lowings are the major issues addressed in this dissertation.

Software License Software reuse is permitted or forbidden by the soft-
ware license. For example, a typical software license of commercial
software forbids rent, copy, redistribute, and reverse engineering of
the software. On the contrary, software license for open source soft-
ware generally permits those activities. The Open Source Initiative [4]
publishes open source definition, which defines open source software as
the ones distributed under a license which satisfies specific conditions
[5]. The conditions include availability of the source code, allowing of
modifications, derived works, and redistribution of the software.

There are various licenses proposed for OSS [4]. In particular, condi-
tions of source code reuse are different for each license. The followings
are examples:

BSD 3-Clause License [6] Software distributed under this license
can be reused if a derivative work retains copyright notice, dis-
claimer of warranty, and the full text of the license

Apache License [7] Software distributed under this license can be
reused if a derivative work retains notices of copyright, disclaimer
of warranty, patents, trademarks, and modification from the orig-
inal work.

GNU General Public License [8] If software under this license are
distributed as a binary or a source code, source files of the soft-
ware must be available to get. A derivative work using software
under this license, which includes dynamic link, static link, and
source code reuse must be distributed under the same license,
i.e. GNU General Public License. Because of this feature, GNU
General Public License is so called a copyleft license.

If a developer violates the condition of a license, the developer might
have to stop the development or receive some legal actions. In the
past, Epson violated the GNU General Public License of the gettext
library used in a product. Because of this violation, Epson made the

2

source code of the product public [9]. Similarly, the game ICO caused
a license violation because this game used libarc library which was
distributed under the GNU General Public License [10].

Qualitatively, selection of the software license seems to affect to reuse
activity. Therefore, for encouraging active reuse activities, the impact
of a software license should be known to the developers. However, no
quantitative investigation was performed in the past.

Retrieval for Reusable Components implementing a Feature
Nowadays, the number of open source software is very large, e.g.
the number of repositories in GitHub has been overred 10 million in
2013 [11]. Therefore, developers usually use a search engine to find
a reusable target. Although code search techniques, which identify
similar source code to a given source code fragment, were proposed
in academia [12, 13], major search engines which include web search
engines and hosting services’ ones currently use keyword-based search,
Therefore, it is desirable that a reuse target includes a keyword repre-
senting its feature.

The targets of keyword-based search are not only the software names,
the descriptions of the software, but also the source code of the soft-
ware which includes comments and names of identifiers. In particular,
a developer generally tries to guess a role of a program element from
identifier names [14, 15]. Therefore, appropriate naming should im-
prove not only the precision of keyword based search, but also the
understandability of the source code. However, unfortunately, not all
developers are able to give appropriate names to identifiers, since a
broader knowledge and a great deal of experience are necessary to
define accurate names.

Extraction of a Reusable Component After a reusable target is found,
reuse will complete if a feature of the target is incorporated into a
user’s product. This is easy if the reuse target implements the feature
in a modular way. However, naturally, not all of the OSS are modu-
lar about reusable features. In addition, the cost of making software
modular seems very large [16].

Another approach is that developing a new reusable component from
existing software. This process consists of locating a reuse target fea-
ture, extracting components implementing the feature, and restruc-
turing them to a reusable component. Although developers have per-

3

formed this process manually [17], it should be a tool supported to
boost reuse activity.

Program Slicing [18], which is an analysis technique that developers
use to extract statements related to a specific behavior of interest,
has a great potential for supporting this approach. Lanubile et al.
[19] proposed making a new reusable program from existing software
based on program slicing [18]. Similarly, Komondoor [20] and Marx
et al.[21] proposed approaches for component extraction based on pro-
gram slicing technique, respectively.

Recently, there are several new program slicing techniques which are
applicable to Java programming language, e.g. static execute before
[22, 23], and improved slicing [24]. However, these new techniques were
not compared comprehensively, besides the comparative information
is important for selecting a technique which is appropriate for the
situation.

1.2 Contributions to Reuse Support

We believe that support for software reuse should target at not only a user
of reuse component, but also a developer of reusable components. Issues
of licenses should be resolved by supporting a developer of reusable compo-
nents, because software license is only decided by the developer. We resolved
the license issue by reporting quantitative information which is useful for a
license selection. Next, we resolved the searching issue from the viewpoint of
identifier names since they have an important role in searching as described
above. Identifier names in the component are naturally changed by only
the developers. Therefore, this issue should be also resolved by supporting
them. On the other hand, the last issue should be resolved by supporting
a user of reusable component, since reuse can be realized without burden-
ing a component developer if the component user can apply an appropriate
extraction technique.

The following subsections describe our contributions.

1.2.1 Contributions to Software License Issue

For resolving the first issue, we investigated the relationship of software
license and copy-and-paste activity among OSS projects. The investigation
targets of this study were packages including Debian/GNU Linux 5.0.2 [25]
and software hosting in SourceForge.net [2]. Software licenses of the source

4

file were identified by Ninka [26] which identifies a license from a license
statement in a source file. Copy-and-Paste activity was estimated by code
clone analysis with CCFinderX [27] which detects source code fragments
similar to other code fragments.

This study concludes the following two things quantitatively. First, copy-
and-paste activity often occurs in products using the same license, Second, a
product using the GNU Public License is significantly less copy-and-pasted
to a product using other license product. These were known as qualitative,
but not known as quantitative. We believe that the result of this study helps
license selection by developers.

1.2.2 Contributions to Retrieval Issue

As described above, we believe accurate identifier naming helps to resolve
the second issue. In previous research, our research group built a dictionary
which includes the abstract-concrete relationship of a noun used in identifier
names [28]. The dictionary seems to help naming of class names and variable
names which consist of nouns. However, it seems not helpful for naming a
method because a method name includes a noun, a verb, and a combination
of verb and noun.

For showing useful information about a method name, we focused on
verb-object relationship. We proposed an approach for building dictionary
about verb-object relationships for a specific domain. First, source files
are collected from software products which target a certain domain. Verb-
object relationships were collected from method signatures in the set of ex-
isting software by a pattern matching approach using 29 extraction patterns
that we have manually created. The collected verb-object relationships are
filtered by the number of software, including the relationship in order to
remove relations which are specific the software but not the domain. As a
result, the domain specific verb-object relationship dictionary is made.

We evaluated the dictionary via an interpersonal experiment. In the
experiment, six subjects evaluated the verb-object relations in four domain
dictionaries which were made from 38 software. The result of the experiment
shows that the relationships are popular on the target domain or common
Java program, which indicate the effectiveness of our approach. We be-
lieve that the result of this study helps appropriate naming and resolving
searching issue.

5

1.2.3 Contributions to Extraction Issue

As described above, program slicing is effective for extracting a reusable
component. To be technically in detail, program slicing extracts a set of
statements that may affect the value of a variable in a developer-specified
statement. This technique has many applications other than reuse, including
program comprehension [29], debugging [30, 31], and maintenance [32], etc.

Currently, system dependence graph (SDG) -based program slicing tech-
nique [33] is widely used. SDG is a directed graph which represents control
and data dependencies between program statements. There are many kinds
of SDG: e.g. SDG for representing Java program [34] and data-flow via the
fields of objects [35, 36, 24], and representing exception handling in SDG
[37]. On the other hand, as a program slicing technique but not using SDG,
studies [22, 23] proposed static execute before/after analysis. This technique
is less accurate than an SDG-based technique, but lightweight and scalable.

Tailoring program slicing for developers’ and researchers’ needs is an
important issue. Java is the most popular programming language, in both
open source [38] and industrial software development [39]; however, accu-
racy and scalability of Java program slicing techniques have not yet been
investigated. Binkley et al. [40] evaluate program slicing for C/C++. They
compare slices obtained with various configurations of CodeSurfer [41]. Jasz
et al. [22] compare static execute before analysis and program slicing for
C/C++. Beszedes et al. [23] compare static execute after analysis with
forward program slicing in C/C++ and Java. They did not include a simple
backward program slicing technique and static execute before analysis for
Java, in the comparison. Moreover, improved slicing [24], an advanced slic-
ing technique for Java, has not been evaluated with practical applications.

In this study, we compared the following four program slicing techniques:

• Static execute before [22]

• Context-insensitive slicing [40]

• Hybrid technique of static execute before and context-insensitive slic-
ing

• Improved slicing [24]

In the experiment, we executed these slicing techniques to eight programs
in Dacapo Benchmarks with two different configurations. In the first con-
figuration, slicing targets were only application source code without library
source code. The first configuration supposes a situation that a developer

6

wants to save the cost of analyzing libraries, or a situation that libraries are
unavailable. In the second configuration, slicing targets were the whole sys-
tem including libraries. The second configuration supposes a situation that
a developer wants to get a precise result. Furthermore, we performed an
additional experiment that evaluating the scalability of the improved slicing
since this technique could not analyze the target in the second configuration,
although the technique showed the best precision in the first configuration.

The results of the experiments show that the hybrid technique had good
scalability, which was achieved with a small cost increase over context in-
sensitive slicing. A hybrid slice is 25 percent smaller than the slice by static
execute before. Moreover, a hybrid slice is sometimes significantly smaller
than a context insensitive slice, because hybrid technique considers feasible
control-flow paths from static execute before. When developers need to an-
alyze a large program or a program including a library, our results indicate
that hybrid technique is suitable.

On the other hand, our results show that improved slicing is the most
accurate of the four slicing techniques. A slice by improved slicing contains
22 percent of static execute before and 69 percent of hybrid technique. How-
ever, improved slicer does not have the scalability required to analyze a large
program, such as a whole system including a Java development kit library.
When developers need to analyze a middle-size program or a subsystem, our
results indicate that improved slicing is suitable.

We believe that these results help the selection of the program slicing
which is appropriate to a situation for a developer who wants to extract a
component from an existing system.

1.3 Overview of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 reports an
investigation of the impact of software license on copy-and-paste. Chapter3
describes an approach for building dictionary including verb-object relation-
ships. Chapter 4 reports a comparison of backward slicing techniques for
Java. Finally, Chapter 5 concludes our study and shows the future work.

7

8

Chapter 2

An Investigation into the
Impact of Software Licenses
on Copy-and-Paste Reuse
among OSS Projects

2.1 Introduction

The source code of OSS is available to anyone to modify or redistribute.
Considering the growth in OSS development [42], software developers today
have a huge amount of OSS source code available for reuse.

Anyone who obtains or uses a software product must adhere to its license,
which expresses the intent of the copyright holder. Several OSS licenses
require derivative works to apply the same license of the original product,
i.e. copyleft [43]. Since different right holders have different intents, many
different OSS licenses are used. The license of an OSS product is usually
determined at the outset of product development, and is rarely changed
during the development process. To change the license, all copyright holders
of the product must agree to the change.

Software reuse is recognized as a way of reducing development cost and
improving product quality. Reuse can be defined at several levels of granu-
larity; from simple copy-and-paste (CnP) of code snippets, to the inclusion
of entire blocks of code, and even to the inclusion of a whole product. A
developer who reuses a software product must adhere to the license of the
reused product, since software reuse is just another form of use. Addition-
ally, developers must take care not to violate the license of the product under

9

development when reusing other software.

Since different OSS licenses have different restrictions on reuse [44], the
software license may affect the frequency of code reuse. For instance, source
code distributed under a copyleft license may be reused less frequently and
in a smaller range of software products, compared with source code under a
permissive license.

Therefore, previously we performed a preliminary study on CnP reuse
using a small Java source file set from the viewpoint of software licenses
[45]. The results of the investigation indicate that the license of a source file
affects the frequency of reuse.

This study presents the results of a large scale quantitative study on the
relation between software licenses and CnP reuses based on the following
two research questions.

• RQ1 Is source code distributed under a permissive license reused more
frequently than that distributed under a restrictive license?

• RQ2 Which type of licensed source code more frequently is imported
to source code of other OSS products?

We performed two experiments for the RQs. The first experiment corre-
sponds to both of RQ1 and RQ2, and the second experiment corresponds
to RQ1. As the target of the experiments, we used source files of actual
software products. One data set contains C/C++ source files from the
main section of Debian GNU/Linux lenny [25], while the other set contains
C/C++ source files randomly sampled from SourceForge.net [2]. To detect
copy-and-pasted code fragments, CCFinderX [27] is used.

The results of the experiment show that source code distributed under
the permissive licenses, is more frequently reused than restrictive license
code. On the other hand, irrespective of the license type, source code is
frequently reused in source code under GNU General Public License version
2 or later. The second experiment examines the statistical impact of the
license of a reused file for the frequency of CnP. The results show that the
licenses significantly affect the frequency.

The rest of this paper is organized as follows. Section 2.3 discusses the
design and results of the two experiments, with an interpretation thereof.
Section 2.4 discusses the validity of the experiment. Finally, Section 2.5
summarizes our study.

10

2.2 Background

2.2.1 OSS License

Nowadays, many open-source licenses are used; for example, the Open
Source Initiative has officially approved 70 licenses [46]. This section dis-
cusses four of the most commonly used licenses, BSD 3-clause license (BSD3),
MIT License (MIT), Apache License 2.0 (Apachev2) and GNU General Pub-
lic License version 2 (GPLv2) from the perspective of a developer creating a
derivative product. From the point of view of a developer, different licenses
signify different restrictions as follows:

BSD3 When a developer creates a derivative work from a BSD3 product,
the developer should retain the copyright notice and the full text of
the license.

MIT Similar to the case of BSD3, when a developer creates a derivative
work from a MIT product, the developer should retain the copyright
notice and its permission notice.

Apachev2 If a developer creates a derivative work from an Apachev2 prod-
uct, all copyrights, patents, trademarks, and attribution notices should
be retained in the new product. Moreover, changed files should also
have notices of the modifications.

GPLv2 When a developer creates a derivative from a GPLv2 product, the
whole derivation must be distributed under the GPLv2 and, changed
files should have notices of any modifications.

2.2.2 OSS License for Copy-and-Paste Reuse

Software reuse is recognized as a practical method for developing high qual-
ity software with low cost. A developer can reuse the source code of OSS
products since such source code is easily available.

Copy-and-paste (CnP) is one of the most frequently performed methods
of reuse. In CnP reuse, source code is copied, modified if needed, and finally,
used as part of the new product [44, 47].

When reusing existing software, the restrictions of both the license of
the product being reused and that of the developing product must be ad-
hered to. In case the two licenses are incompatible, both cannot be satisfied
simultaneously. For example, Apache license version 2 (Apachev2) products

11

BSD3 GPL

CnP

CnP

Figure 2.1: Reusing Source Code in a Different Licensed Product

cannot be incorporated into GPL version 2 (GPLv2) products, since several
requirements in Apachev2 conflict with a clause in GPLv2 [48].

Furthermore, even if the licenses do not conflict, an OSS product cannot
be reused if the license of the product being developed cannot be changed.
For example, GPLv2 source code cannot be incorporated into a BSD3 prod-
uct. In contrast, BSD3 source code can be incorporated into a GPLv2
product because the restrictions of BSD3 are included in those of GPLv2
(Figure 2.1).

For these reasons, the license of the reused product is a big concern
in software reuse. The reusability of software depends not only on func-
tionality and quality, but also on the license of the product; i.e. source
code distributed under a permissive license is expected to be reused more
frequently than that under a restrictive license, qualitatively.

2.3 Experiment

The goal of this study is to clarify the impact of software licenses on CnP
reuse. In our previous study [45], we performed a preliminary investiga-
tion on the impact on a small Java source file set. To confirm the findings
obtained from the previous study, this paper presents two experiments on
large-scale file set: counting CnPs according to licenses, and statistical ex-
amination of the impact.

The outline of the two experiments is as follows. First, the source files of
OSS products are collected. Then, these source files are analyzed to detect
instances of CnP. Finally, the instances are counted and assessed according
to a certain criterion.

The following subsections describe the design and the procedure of de-
tecting CnPs and the analyzed code. Moreover, the detail and the result of

12

Source Files

Use Ninka Use CCFinderX

Based on RNR

Elimination of
Duplicated

files

License
detection

Code clone
detection

Elimination of
language-

dependent
clones

Elimination of
including

clones

License A License B

Clone Sets

Figure 2.2: Overview of the process for detecting licenses and CnPs

the two experiments are also described.

2.3.1 Detecting CnP – Design and Implementation

To clarify the impact of software licenses on CnP reuse, the license of the
files and CnPs in the files must be detected. We designed the detection
process as Figure 2.2.

A large number of source files are used in the experiment, hence it is
impractical to detect the licenses of all the files by hand. Therefore, we used
Ninka [26] which is the automatic license detection tool for a source file.
Note that Ninka can only detect the license of a source file when a known
license description is included in the file.

If all activities of a developer were observed, all CnP could be extracted
without any error. However, such observation is impossible since OSS de-
velopers are working worldwide. On the other hand, the history of the
development is recorded in the repository used for OSS development. How-
ever, the intention or detailed activity unfortunately does not remain in
the repository. Therefore, we decided to detect CnP instances only from
snapshots of source code.

CCFinderX, a representative code clone detector, is one of publicly avail-
able tools for CnP detection. A code clone is a code fragment that is the
same as or similar to another fragment. A code clone is classified into a
clone set, which is an equivalence class of the clone relation. Code clones

13

File A File B File C

CnP

Copy-and-Paste reuse

File A File B File C

File A File B File C

Result of clone detection

Result of removing including clone

Figure 2.3: Removing including clones

are typically generated by CnP [49, 50, 51]. In previous work, code clones
were also used for CnP detection [52, 53].

Using clones as CnP has two potential problems. One is that clones are
not always suitable for counting CnPs. The other is that the direction of
CnP is lost, since a clone set is a mathematical set. The loss of the direction
is discussed at the end of this subsection.

Code clones which are not suitable for counting CnP as known as language-
dependent code clones or including code clones. Examples of language-
dependent code clones are consecutive if blocks, case entries of switch state-
ments, and consecutive variable declarations. Language-dependent clones
are usually generated not by CnP. The detail of language-dependent code
clone is discussed in [54]. Including code clone is a code clone whose proper
sub-fragment is another code clone. If including code clones are taken into
counting, CnP is overcounted.

Figure 2.3 shows the overcounting and its solution. Suppose that a long
code fragment is copied from file A to file C, and then a short code fragment
in the long fragment is copied from file A to file B. Despite only 2 CnPs were
occurred in the files, CCFinderX detects 5 pairs of code fragments as code
clones. To avoid overcounting, code clones that include other code clones
(including clones) are removed from the clone detection result. As a result
of the removing, number of detected clones matches 1 origin and 2 copied
fragments.

Detail of the five phases in the detection process (Figure 2.2) is described
below.

14

Module
Reuse

CnP
Reuse

CnP CnP

call
call

Fan-in

Export

f();

f();

CnP

CnP

call call

Fan-out

Import

h();

g();

Figure 2.4: Similarity between CnP reuse and module reuse

1. Elimination of Duplicated files: Eliminate identical files in the
target collection of source files except for one of them, because the
experiment focuses on only copy-and-paste reuse of code fragments
rather than reuse of entire files.

2. License detection: Identify the license of each file in the output of
phase 1 using Ninka. The files which do not include license a descrip-
tion are eliminated and never passed to the next phase.

3. Code clone detection: Identify the location of code clones using
CCFinderX from the collection of source files delivered from phase 2.

4. Elimination of language-dependent clones: To eliminate language-
dependent code clones, eliminate code clones which RNR (Ratio of
Non-Repeated tokens) metric [54] is higher than 0.5 in the code clones
detected in phase 3.

5. Elimination of including clones: Eliminate overlapped code clones
which include other clones from the input from phase 4.

Discussion on treating code clones as CnPs

Due to substituting a clone set of the CnP instances, the direction of CnP is
lost since a clone set is a mathematical set. Therefore, we have to consider
the loss of direction may affect the experimental results.

In general, there are two cases that CnP increases clones in an exter-
nal file: importing a code fragment from another file, or exporting a code

15

fragment to another file. Import and export of code fragment respectively
correspond to fan-in and fan-out in case of module-level reuse. (Figure 2.4).
Ichii et al. revealed that the distribution of fan-out is far narrow compared to
the distribution of fan-in, since the maximum value of fan-out is restricted
by the file size [55]. The distributions of export and import are same as
fan-in and fan-out.

This analogy shows that the number of clones which relate to a certain
file is dominated by exporting, because the sum of the two distributions is
basically determined by a broader one. Therefore, substituting a clone for
a CnP should be enough for catching the trend of reusing.

2.3.2 Analyzed Code

Two sets of source files are analyzed in the experiments.

The first dataset (DS1) contains all the C/C++ files in packages of main
section in Debian/GNU Linux 5.0.2 lenny [25]. DS1 contains 776,289 files
(286MLOC) obtained from 6,472 packages. DS1 is composed of common
and widely-used OSS products.

The second data set (DS2) contains C/C++ source files sampled from
SourceForge.net [2]. The sampled files are contained in 1,070 packages se-
lected randomly which are developed in C/C++ and whose subversion repos-
itory has 10 or more commits. Selecting only packages whose repository has
10 or more commit is to exclude packages which have been seldom devel-
oped. As a result, DS2 contains 425,830 files (121MLOC). DS2 is designed
as being representative of all the OSS products in the world.

DS1 and DS2 contain 41 same packages. These same packages do not
spoil independence of the two data sets, since the 41 packages are only 0.6%
of DS1 and 4% of DS2.

From the obtained source files, the clones and licenses are detected. A
brief summary of detection is shown in the Table 2.2. The product license
is explained using abbreviations of the license name for simplicity. Table
2.1 shows the basic abbreviations of the main licenses. “v” and the number
immediately after a basic abbreviation denotes the license version. Addi-
tionally, a plus (+) sign immediately after the version number means “or
any later”. If a product is distributed under a composite license such as
dual-license or exception-clause, multiple license names are concatenated
with commas and used as the license name of the product.

16

Table 2.1: Representative abbreviations of license names

Abbreviation Name

Apache Apache Public License

BSD3 Original BSD minus advertisement clause

GPL General Public License

LesserGPL Lesser General Public License

LibraryGPL Library General Public License

MX11 MIT License/X11License

MPL Mozilla Public License

subversion Subversion License

Table 2.2: Top 15 frequent licenses

(a) DS1

License #Files

3 GPLv2+ 178,174

LibraryGPLv2+ 28,000

LesserGPLv2.1+ 24,540

GPLv2 22,840

GPLv3+ 18,372
GPLv2or

LGPLv2.1,
MPLv1 1 15,897

3 BSD3 11,933

3 MX11 11,715

LesserGPLv2+ 10,537

boostV1 9,275

GPLnoVersion 5,354

3 Apachev2 4,297

LibraryGPLv2 4,187

BSD2 4,123

LesserGPLv2.1 3,709

(b) DS2

License #Files

3 GPLv2+ 44,558

boostV1 13,461

GPLv3+ 12,037

LesserGPLv2.1+ 8,765

LibraryGPLv2+ 6,705

GPLv2 6,674

3 Apachev2 6,220

3 BSD3 4,784

LesserGPLv2+ 3,543

LesserGPLv2.1 2,943

3 MX11 2,478

BSD2 2,408

LesserGPLv3+ 1,227

FreeType 961

subversion+ 868

17

License #CodeClones

BSD3 2

GPLv2+ 1

MX11 2

#CodeClones in Extracted Clone Sets

Extracted
Clone Sets

BSD3 GPLv2+ MX11

Pivot
License

Figure 2.5: Example of the Counting Code Clones in Experiment 1

2.3.3 Experiment 1: counting clones for each license

Experiment 1 counts the number of code clones grouped by their license for
both data sets. Through probing the differences between the counts, we try
to reveal the relationship between CnP reuse and software licenses.

Method

The following procedure is iterated until there are no further interesting
licenses.

1. Manually select an arbitrary interesting license (the pivot license).

2. Extract the clone sets which include the source code under the pivot
license.

3. Count the code clones in the extracted clone sets grouped by license
(the peripheral license).

Figure 2.5 illustrates an example of this step. There are three files together
with their licenses. Boxes in the files denote clones, and these clones are
connected by lines to compose clone sets. Let us assume BSD3 is the pivot
license. Since the upper two clone sets include BSD3 clones, these sets are
extracted. Then, the clones in the sets are counted grouped by license.

Results

Distinguishing licenses are selected as pivot licenses from top popular li-
censes. (In Table 2.2, pivot licenses are marked on the left of the name).

18

Table 2.3: #Clones with pivot license in DS1

(a) with Apachev2

License #Clones

GPLv2+ 38,520

Apachev2 15,618

GPLv2 5,261

LibraryGPLv2+ 5,040

LesserGPLv2.1+ 4,491

Others 25,814

(b) with BSD3

License #Clones

GPLv2+ 94,301

BSD3 66,271

GPLv2 13,066

LibraryGPLv2+ 12,602

LesserGPLv2.1+ 12,269

Others 71,851

(c) with GPLv2+

License #Clones

GPLv2+ 794,569

GPLv3+ 114,476

LibraryGPLv2+ 70,804

LesserGPLv2.1+ 56,802

GPLv2 50,658

Others 245,805

(d) with MX11

License #Clones

GPLv2+ 104,542

MX11 84,482

LibraryGPLv2+ 13,830
GPLv2orLGPLv2.1,

MPLv1 1 13,738

GPLv2 13,639

Others 79,950

19

Table 2.4: #Clones with pivot license in DS2

(a) with Apachev2

License #Clones

Apachev2 9,336

GPLv2+ 5,903

GPLv2 1,590

GPLv3+ 1,466

LesserGPLv2.1+ 1,016

Others 4,793

(b) with BSD3

License #Clones

BSD3 8,686

GPLv2+ 7,394

GPLv3+ 1,667

LibraryGPLv2+ 1,479

GPLv2 1,457

Others 7,002

(c) with GPLv2+

License #Clones

GPLv2+ 71,569

GPLv3+ 6,643

LesserGPLv2.1+ 6,143

GPLv2 5,360

LibraryGPLv2+ 4,489

Others 24,418

(d) with MX11

License #Clones

GPLv2+ 6,985

MX11 5,086

LesserGPLv2.1+ 1,276

GPLv3+ 1,136

LibraryGPLv2+ 1,128

Others 5,764

20

Table 2.5: Normalized values for #Clones (deeper colored cells depict high
values)

(a) DS1

Apachev2 BSD3 GPLv2+ MX11

Apachev2 8.46E-04 3.30E-05 8.27E-06 3.72E-05

BSD3 4.28E-05 4.65E-04 1.11E-05 5.13E-05

GPLv2+ 5.03E-05 4.44E-05 2.50E-05 5.01E-05

MX11 5.91E-05 5.90E-05 1.42E-05 6.16E-04

Pivot License

(b) DS2

Apachev2 BSD3 GPLv2+ MX11

Apachev2 2.41E-04 3.23E-05 1.06E-05 4.00E-05

BSD3 2.09E-05 3.80E-04 1.32E-05 3.88E-05

GPLv2+ 2.13E-05 3.47E-05 3.60E-05 6.33E-05

MX11 1.64E-05 2.82E-05 1.49E-05 8.28E-04

Pivot License

21

Except the same type of license, four representative licenses are selected
based on its popularity. Ultimately, pivot licenses are GPLv2+, MX11,
BSD3 and Apachev2.

Tables 2.3 and 2.4 show the counts for DS1 and DS2 with each pivot
license. Each table shows peripheral licenses and the number of clones.

In all the resulting counts, the files distributed under GPLv2+ contain
most of the clones. In the result of DS1, the pivot license is generally second
highest except in the case of GPLv2+. Similarly, in the result of DS2, the
pivot license and GPLv2+ rank at first and second in the all counting results.

Meanwhile, the number of source files strongly affects the number of
clones. To exclude the affection, the number of clones is normalized by
dividing by the number of pivot license files and peripheral license files. The
normalized value means the expected number of the clones in a peripheral
license file when there are only one pivot license file and one peripheral
license file. Table 2.5 shows the normalized values. If the value is higher,
the cell has deeper color.

Table 2.5 shows that the expected number of clones is highest when the
peripheral license is the same as the pivot license in the case of Apachev2,
MX11 and BSD3.

Table 2.6 shows the number of clones per one pivot license file. These
numbers suggest the tendency to be reused of each pivot license. The case
of DS1 indicates that MX11, BSD3 or Apachev2 files tend to be reused
frequently compared to GPLv2+ files. Similarly, the case of DS2 indicates
that MX11, BSD3 files tend to be reused frequently compared to GPLv2+.

2.3.4 Experiment 2: statistical examination of licenses

The result of experiment 1 indicates the relationships between licenses and
frequency of CnP reuse. For a more detailed investigation, we statistically
examine the impact of the license on CnP count using the same data set.

Method

This experiment confirms whether the licenses affect to the number of CnP
reuse even if the other factors which affect the reusability are removed. For
the confirmation, two types of regression models are compared from the
perspective of the fitness; One type of the models is only based on the
factors which previous studies propose as reusability metrics, and the other
type is based on both of license information and the reusability factors.

22

Table 2.6: Number of clones for one source file distributed under a pivot
license

(a) in DS1

#Clones #Files (#Clones) / (#Files)

Apachev2 94,744 4,297 22.04887

BSD3 270,360 11,933 22.6565

GPLv2+ 1,333,114 178,174 7.482091

MX11 310,181 11,715 26.47725

(b) in DS2

#Clones #Files (#Clones) / (#Files)

Apachev2 24,104 6,220 3.875241

BSD3 27,685 4,784 5.786998

GPLv2+ 118,622 44,558 2.662193

MX11 21,375 2,478 8.625908

The response variable of the all regression models is the number of clones
which relate to a file in a product and which are outside of the product. The
counting rule is explained using the example in Figure 2.6. There is a clone
set between three products. Assume the case counting the number of related
clones focusing on leftmost file in product A. All clone sets that contains a
clone in the focusing file are collected. The response variable is the number
of clones in the collected clone sets, excluding the product that have the
focusing file. The clones in the same product are out of count because CnP
in a same product rarely causes a license problem.

Explanatory variables are licenses and the metrics which seem to relate to

Product CProduct A Product B

Figure 2.6: Counting extracted clones related to a file in a product

23

Table 2.7: The metrics for a file used in Experiment 2

Poulin’s
classification Employed metrics

Complexity
LOC: lines of code excluding comment
MCC: sum of McCabe’s cyclomatic complexity

Documentation COM: lines of comment

External EXF: # of called functions defined in external
dependencies EXV: # of used variables defined in external

Proven reliability AGE: elapsed seconds since the file was created

reusability. Table 2.7 shows the 6 metrics employed as explanatory variables.
The metrics are selected for covering Poulin’s classification of reusability
attributes [56]. Unfortunately, metric AGE is only applicable for DS2 since
the repository of DS1 (Debian lenny) does not contain created time of the
files.

Since license information is a nominal scale, license information must be
transformed into indicator variables. Top 15 licenses shown in Table 2.2 are
selected for the indicator variables for each data set.

Three regression models for each data set are made of the above men-
tioned variables. The regression models are described below. Both the
response variable and the metric values are logarithmically converted.

log(number of related clones + 1) =

ε+
∑
m∈M

αi log(m+ 1) (M1)

ε+
∑
m∈M

αi log(m+ 1) +
∑
l∈L

βil (M2)

ε+
∑
m∈M

αi log(m+ 1) +
∑
l∈L

βil +
∑
m∈M

∑
l∈L

γij l log(m+ 1) (M3)

where M is a set of metrics, and L is a set of indicator variables of Licenses.
The last clause of M3 means the interactions between the metrics and

licenses. If the licenses affect CnP frequency, models M2 and M3 fit the
data better than M1. The result of regression analysis is identified by the
combination of data set and model names, e.g. DS2-M3 means the result of
model M3 using dataset DS2.

As described above, the models are not straightforward linear expressions
but logarithmically converted. Straightforward linear models are discarded,

24

Table 2.8: Adjusted coefficient of determination values

(a) for DS1

Model R2

DS1-M1 0.5021

DS1-M2 0.5047

DS1-M3 0.5133

(b) for DS2

Model R2

DS2-M1 0.3396

DS2-M2 0.3522

DS2-M3 0.3692

because they show far low fitness compared to converted ones in our prelim-
inary experiment. Generally, logarithmic conversion improves the fitness of
regression models in many cases of software repository analysis.

Finally, fitness of the model is compared. The difference between residual
of the models are verified using ANOVA. If the significant differences exist,
adjusted coefficients of determination R2 for the models are compared. If
significant difference exists between two models, a model which has larger
R2 value fits to the data significantly better than another model.

Result

First of all, differences between fitness of the models are tested by ANOVA.
Tested pairs are <DS1-M1, DS1-M2>, <DS1-M2, DS1-M3>, <DS2-M1,
DS2-M2>, and <DS2-M2, DS2-M3>. The comparison confirms that there
are significant differences (p <2.2e-16) in the all pairs.

Since difference of the fitness is confirmed, the degree of fitness can be
compared by coefficients of determination R2. Table 2.8 shows that the R2

value for each model. The R2 values increase in order of M1 to M3 for both
data sets. This result confirms that the license of a file has a clear impact
for CnP reuse, even if the impacts of other factors are eliminated.

2.3.5 Revisiting Research Questions

RQ1

The experiment 1 shows that GPLv2+ code has been distinctly less often
reused than code with other licenses. Also, this result is supported by the
significant impact of the license confirmed in the experiment 2. According
to those results, we can conclude that the source code distributed under a
permissive license is more frequently reused than that distributed under a
restrictive license.

25

RQ2

In all investigations on the two data sets in the experiment 1, files dis-
tributed under a particular pivot license are most often imported into files
distributed under the same pivot license. Furthermore, Table 2.5 shows that
the probability of CnP is highest when a pivot and target licenses are the
same, except for GPLv2+. Therefore, we can conclude that source files that
are distributed under a license are the most frequently imported into ones
distributed under the same license. On the other hand, GPLv2+ was ranked
as first or second in raw count, respectively. However, Table 2.5 shows that
GPLv2+ files less frequently import source code from other files. Accord-
ing to those results, we can conclude that GPLv2+ files have a substantial
impact on the reuse count because of available huge number of GPLv2+ files.

2.4 Threats to Validity

To check the validity of the experiment and the conclusions, we discuss the
threats to the validity from four viewpoints; i.e. external, internal, construct,
and conclusion validity.

External Validity If a bias exists in the analyzed sets of source files, the
generality of the experimental results will be compromised. This re-
search uses two source file sets as analysis targets; source packages in
Debian GNU/Linux 5.0.2 and OSS projects hosted at SourceForge.net.
The set of source packages in Debian is a set of applications used
frequently in the real world. On the other hand, SourceForge.net is
a well-known site in the OSS community and registers various OSS
products without intentional distinction. The experiment used source
files randomly sampled from SourceForge.net. Therefore, the results
should generalize to the entire OSS world since any bias in the analysis
targets would be negligible.

Internal Validity The result of experiments may be incorrect if other fac-
tors that affect reuse count are missing in the model. Poulin [56]
proposes that the factors that affect software reusability are classified
into four categories: complexity, documentation, external dependen-
cies, and reliability. Furthermore, all criteria proposed in the works on
reusability measurement [57, 58] are also classified into the four cate-
gories. The metrics used in the experiment 2 covers the four factors,
therefore the model should include sufficient factors.

26

Construct Validity If the number of reuse instances by CnP is not ac-
curate, the experimental results may be incorrect. This research uses
Ninka to identify the license of a source file. Ninka has high recall
and precision [26]. Although files in which Ninka fails to identify the
license are excluded from the data sets used in the experiment to de-
tect CnP, this is conducted mechanically. Therefore, the impact on
the experimental result would be small. Next, the experiment uses
CCFinderX and a filter using the RNR metric [54] to identify reuse
by CnP. CCFinderX and CCFinder, which is the previous version of
CCFinderX, are used to detect CnP in several works [52, 53]. On the
other hand, the filter using the RNR metric is used to remove code
clones except by CnP in several works [59, 60]. Therefore, the useful-
ness of these tools has been shown experimentally. Note that we do not
consider the direction of CnP in the experiments. Hence, the values
from the experiment are larger than the actual values. However, the
discussion of this experiment is based not on an absolute number of
CnP instances, but on the difference in the numbers of CnP instances
in this research. From the above, the numbers of CnP instances ob-
tained in the experiment are adequate for comparing CnP instances
in two different applications.

Conclusion Validity The validity of the method used to derive our con-
clusions should be discussed. The results of the experiment lead to two
conclusions. Our first conclusion is that files under copyleft licenses
such as GPL, are less frequently reused than files under other licenses.
In the process of deriving this conclusion, four types of licenses, in-
cluding one copyleft license, were examined in the experiment. This
is fewer than the number of all OSS licenses. However, the analysis
targets included many files under these target licenses and the two
data sets used as the analysis targets showed common characteristics.
In addition, the number of CnP instances in files under the copyleft li-
cense is very different from the other figures. Therefore, the difference
between them is obvious. Our second conclusion is that files under the
same license perform CnP more frequently than files under different
licenses. This trend is visible in all the data sets and the licenses ex-
amined in the experiments. In addition, the number of CnP instances
among files under the same license is ten times greater than the num-
ber of files under different licenses. From the above, the method for
deriving these two conclusions has no major problems that could lead
to incorrect conclusions.

27

2.5 Summary

This study shows the impact of software licenses on CnP reuse in C/C++
files. The results of the experiment show that CnP mostly occurs within
source code distributed under the same license. On the other hand, a sub-
stantial amount of reused code fragments appears in the GPLv2+ source
code, since the number of GPLv2+ files is very large. Furthermore, the
results confirm that permissive licensed files tend to be reused more than
copyleft ones. As a result, the features of CnP reuse expected by reason of
license characteristic are confirmed quantitatively.

28

Chapter 3

Building Domain Specific
Dictionaries of Verb-Object
Relation from Source Code

3.1 Introduction

Identifier names in source code are important in program comprehension
which consumes a half of the time of program maintenance [61, 62]. A
software developer generally tries to guess a role of a program element from
identifier names [14, 15]. Therefore, identifiers should be named as its role
in the program appropriately [63, 64]. If an identifier name is inappropriate,
it is difficult for a developer to correspond a program element and a domain
knowledge. Lawrie et al. [65] revealed that identifiers that are acronyms
or meaningless serial numbers cause developers to waste much more time in
program comprehension, compared to when identifiers are spelled out fully
without any abbreviations.

Unfortunately, not all developers are able to give appropriate names to
identifiers, since a broader knowledge and a great deal of experience are
necessary to define accurate names. Developers need to learn the rules
of various words and their combinations (e.g. naming rules) in different
domains, such as programming language, development organization, and
application domain. The only way to learn these rules is through examples,
since the rules are not documented in many cases.

For the purpose of naming identifiers, our research group has built dic-
tionaries containing good examples of identifier names. In a previous work,
we proposed a method for building a dictionary of the super-sub (abstract-

29

concrete) relation of nouns used in identifiers [28]. The dictionary seems to
help naming of class names and variable names which consist of nouns.

However, identifier names in source code include not only nouns and
their relationship, but includes verbs. In particular, a method name often
includes a verb which represents the behavior of the method [63, 66, 67].
Additionally, an objective-phrase which represents the target of the method
is often appeared behind a verb. The above dictionary include neither verb
nor their relationships, so that it seems to not helpful for supporting naming
of a method.

This research proposes a method for building a dictionary of verb-object
(V-O) relations extracted from source code. In particular, verbs are ex-
tracted from a method name using existing natural language processing
and the pattern matching system. Similarly, objects are extracted from the
method name, names of formal parameters of the method, and the name of
the class to which the method belongs. This process is applied to a set of
source files categorized by application domain. Relations that appear fre-
quently in a domain are included in the dictionary for that domain. The
V-O dictionary seems to support the naming of methods [68].

In the evaluation, four domain dictionaries have been built from Java
source file sets. The relationships in the dictionaries were evaluated partic-
ipants who have Java program development experience and domain knowl-
edge. As a result, it has been confirmed that most of the relationships are
domain-specific relationships or relationships which is usual in Java pro-
grams.

The rest of the chapter is structured as follows. Section 3.2 explains in
detail the V-O relationship in object-oriented programs and naming rules of
methods, while Section 3.3 presents the algorithm used to build a dictionary
of V-O relations from source code. Section 3.4 discusses the evaluation
experiment and its results. Finally, Section 3.5 discusses related works,
while Section 3.6 gives our conclusions and future works.

3.2 Verb-Object Relationships in Object-Oriented
Program

3.2.1 Naming Convention

In general, it is recommended that an identifier has a specific and obvi-
ous name that expresses its role. Since a role of an identifier is sometimes
complicated in object-oriented programs, an identifier in an object-oriented

30

program is often expressed as a compound name, consisting of several words.

Unfortunately, white spaces are prohibited in identifiers in many pro-
gramming languages, and therefore, alternative ways are employed to ex-
press compound names, i.e. camel case and snake case. Camel case refers
to a concatenated string of words, whose first letters are capitalized (e.g.
CamelCase). Snake case is a concatenated string of words with underscores
between words (e.g. snake case). In Java source code, camel case is recom-
mended and popular [65].

Commonly, the name of a method in an object-oriented program includes
a verb. In most cases, the head of the method name is a verb or verb clause,
followed by a noun or adjectives [66, 67]. In other cases, the head of the
method name is a noun or adjective, or a noun or adjective clause, followed
by a verb in the past tense. For example, java.awt.event.ActionLister
in the Java API [69] has a method actionPerformed(ActionEvent).

In a few cases, the method name contains no verbs. For example, the
names of the toString() method of java.lang.Object and newInstance()

method of java.lang.Class do not contain any verbs. From one point of
view, these methods omit the obvious verbs, such as convert or create. The
alternative view is that to and new act as verbs in the methods. This paper
adopts the latter view.

3.2.2 Verb and Object in a Method Name

Object-oriented programs contain many statements describing operations
on targets. An operation and a target correspond to a verb and an object,
respectively. Receiver or parameter objects are used as the targets of the
operation. Fry et al. [70] proposed a method to extract verbs and direct
objects from method names, parameters, and class names.

In source code, there are many pairs of verbs and objects that seldom
appear in natural language texts. For example, java.net.Socket has a
method bind(SocketAddress). The method name actually means “bind
SocketAddress to Socket”. However, in natural language text, except for
programming documents, socket almost never acts as an object of the verb
“bind”. Moreover, the verb-object relations that appear in source code are
sometimes specific to a certain program domain, since programs in different
domains use different words, or the same words with a different meaning.
For instance, in a database domain, noun cursor is used as a pointer to a
selected data record for the purpose of accessing data records one-by-one.
On the other hand, in the GUI application domain, cursor means an editing
point of a text area. Only in a database domain does fetch from cursor

31

V DO IO #Products

Create Ticket User 3

Build Data Matrix 1

Set Password User 4

Describe Alias Xml 1

V DO IO

Create Ticket User

Set Password User

Extracted Verb-Object Relationships

Step3:
Filtering V-O Relationships

V-O Dctionary

Source Products
in a same Domain

Return Method Name Parameter Class

Words void create, Ticket, For, User User Stock

POSs VOID Verb, Noun, PrePos, Noun Noun Noun

Step1:
Extraction of Method
Property

Extraction Pattern

Structural Spec

Extraction Spec

Verb DO IO

Verb1 Noun2 Noun4

Return Method Name Parameter Class

VOID Verb1, Noun2, PrePos3, Noun4 * *

Method Property

Step2:
Extraction of V-O
Relationships
by Pattern Matching

Figure 3.1: Outline of our Technique

mean to acquire one set of data from the database.

3.3 Building Verb-Object Relationship Dictionary

This section describes a method to build a dictionary of V-O relations by
extracting the relations from object-oriented programs. The input to the
method is source files for a certain domain written in an object-oriented
language, while the output is a dictionary composed of tuples consisting
of a verb (V), direct-object (DO), and indirect-object (IO) specific to the
domain. Note that the IO field may be empty. An outline of the approach
is shown in Figure 3.1. The approach consists of the following three steps.

Step 1: Obtaining the identifiers related to each method. Retrieve
all method declarations in the input source, and obtain identifiers that
relate to declarations. Then, make a method property for each method

32

declaration. A method property is a tuple which includes four elements
representing an identifier and its attribute.

Step 2: Extracting V-O relations. Extract tuples consisting of V, DO,
and IO from method properties using with pattern matching.

Step 3: Filtering V-O relations. From the output of step 2, select the
tuples that appear in more than a certain number of software products.

The following subsections describe the detail of the steps.

3.3.1 Step 1: Obtaining the identifiers related to each method

This step extracts all the method declarations and related identifiers from
the input source files, and then makes method properties for each method.

A method property is a tuple of four sequences which include words to-
gether with their respective parts of speech. The four sequences correspond
to the return type of the method, the name of the method, the parameters of
the method, and the name of the class to which the method belongs, respec-
tively. Since a parameter has two types of identifiers which include formal
parameter names and type names of the formal parameter, two method
properties are made from a method if the method has one or more param-
eters: one contains the sequence of types of the parameters in the third
element, while the other contains the sequence of names of the parameters
(as shown in Figure 3.2).

The procedure to acquire the method property from the identifiers ob-
tained in the previous step is described below.

• An element corresponding to return type is a tuple of the name of the
return type and its part-of-speech. If the return type is not void, the
name of the return type is treated as a noun, otherwise, added as a
special tag “VOID”.

• An element corresponding to method name is a sequence derived from
a method name. First, the method is parsed into a word sequence with
camel case and snake case. Next, the part-of-speech tags are identified
using OpenNLP [71].

• An element corresponding to a parameter is a sequence with length
greater than 0. The n-th formal parameter of the method corresponds
to the n-th element of the sequence. As described above, formal pa-
rameter names and their types are respectively used for two method
properties. Each word in both is treated as a single noun word.

33

Return Method Name Parameter（Type : Name） Class

void createTicketForUser User:customer Stock

Return Method Name Parameter Class

Words void create, Ticket, For, User User Stock

POSs VOID Verb, Noun, PrePos, Noun Noun Noun

Return Method Name Parameter Class

Words void create, Ticket, For, User customer Stock

POSs VOID Verb, Noun, PrePos, Noun Noun Noun

Method Property using Type Names

Method Property using Parameter Names

Method Property

Figure 3.2: An example of Creating Method Properties

• An element corresponding to a class name is a sequence containing
only the class name which is treated as a noun.

3.3.2 Step 2: Extracting V-O relations

Pattern matching is used to obtain a tuple (V, DO, IO) from the method
property (see Figure 3.3). The pattern (extraction pattern) is composed
of two parts, the structure spec and extraction spec.

The structure spec is represented by a tuple of four elements. These four
elements correspond, respectively, to the return type, name of the method,
parameters, and class name. Unlike a method property, the elements of the
tuple are not sequences of words. An element of a structure spec is a wild
card or a sequence of pairs consisting of a part-of-speech and a word number.
Note that a wild card is also represented by * in this chapter.

The pattern match extracts (V, DO, IO) tuples from a method property
according to an extraction spec if its structure spec matches the method
property. A structure spec matches the method property only when all of
the following conditions are satisfied.

1. For each n-th element of the structure spec and the method property,

34

Method Property

Extraction Pattern

Structural Spec

Extraction Spec

Verb DO IO

Verb1 Noun2 Noun4

Pattern Matching

A Tuple of <V, DO, IO>

If the structural spec matches a method property,
words are extracted according to the extraction spec

Verb DO IO

create Ticket RetailShop

Return Method Name Parameter Class

Words void create, Ticket, For, RetailShop User Stock

POSs VOID Verb, Noun, PrePos, Noun Noun Noun

Return Method Name Parameter Class

VOID Verb1, Noun2, PrePos3, Noun4 * *

Figure 3.3: Method Property, Extraction Pattern, and Pattern Matching

the element of the structure spec is a wild card, or both sequences
have strictly the same part-of-speech in the same order.

2. If the structure spec has the same word number at several points, the
corresponding words in the method property are the same.

The extraction spec is represented by a tuple of three word numbers.
The third number may be empty. If the structure spec matches a method
property, the words that correspond to the word numbers specified in the
extraction spec are extracted as V, DO, and IO words, respectively. If the
third number is empty, IO is also empty.

The method properties obtained in the previous stage are collated with
the patterns. If two or more patterns match a single method property, mul-
tiple tuples for each pattern are extracted from the single method property.

3.3.3 Step 3: Filtering V-O relations

This step filters the output of step 2, and builds a dictionary of V-O relations
that frequently appear in the source code. In particular, only those tuples
that appear in a certain number of software products are included in the
dictionary. The threshold is tuned by hand.

35

3.4 Evaluation Experiment

We performed an experiment to evaluate the validity of the dictionary built
using the proposed method. This section describes the experiment in detail,
together with its result, and then examines and discusses the result.

3.4.1 Experimental Setup

We prepared 29 extraction patterns by hand which are shown in Table 3.1
Note that the leftmost column shows an ID number of each pattern. Extrac-
tion patterns have been prepared by the following steps. First, we assumed
method signatures which are clearly identified (V, DO, IO) tuples, and then
made basic extraction patterns for the method signatures, e.g. Pattern 20 for
getter method, and pattern 8 for setter method. Next, we analyzed method
signature which were not matched defined patterns, then made a pattern for
the unmatched method signature. The analysis and making repeated until
all method were matched at least one pattern.

36

Table 3.1: List of the Extraction Patterns (V, N, PP mean verb, noun and
prepositional word, respectively)

Structure Spec Extraction Spec
ID Return Type Method Name Parameters Class Name V DO IO

1 * V1 N2 PP3 N4 * * V1 N2 N4
2 * V1 PP2 N3 * N4 V1 N4 N3
3 * V1 N2 * N3 V1 N2 N3
4 * V1 PP2 N3 N4 * V1 N4 N3
5 * V1 N2 PP3 N4 * V1 N2 N4
6 void V1 (empty) N2 V1 N2 (empty)
7 void V1 PP2 N3 (empty) N4 V1 N4 N3
8 void V1 N2 N2 N3 V1 N2 N3
9 void V1 N2 PP3 N4 * N5 V1 N2 N5
10 void V1 N2 N3 V1 N2 N3
11 void V1 N2 N3 N4 V1 N3 N4
12 void V1 N2 N3 N2 V1 N2 N3
13 void V1 N2 (empty) N2 V1 N2 (empty)
14 void N1 V2 N3 N4 V2 N1 N3
15 void N1 V2 N1 N3 V2 N1 N3
16 N1 V2 N1 N3 N1 V2 N1 N3
17 N1 V2 N1 PP3 N4 N4 N5 V2 N1 N4
18 N1 V2 N3 PP4 N5 (empty) N6 V2 N3 N5
19 N1 V2 PP3 N4 N5 N6 V2 N6 N4
20 N1 V2 N1 (empty) N3 V2 N1 N3
21 N1 V2 N3 N4 V2 N4 N3
22 N1 V2 PP3 N4 N5 V2 N5 N4
23 N1 V2 PP3 N4 * * V2 N1 N4
24 N1 V2 PP3 N4 (empty) N1 V2 N1 N4
25 N1 V2 PP3 N4 N4 V2 N4 N4
26 N1 V2 N3 (empty) N1 V2 N3 N1
27 N1 V2 (empty) N3 V2 N3 (empty)
28 N1 V2 N3 (empty) N3 V2 N3 N1
29 N1 V2 N1 (empty) N1 V2 N1 (empty)

The target of extraction was source code for 38 open source software
products shown in Table 3.2. The products were classified into four do-
mains,Web Applications, XML Processing, Databases, and GUIs, which are
abbreviated as Web, XML, DB, and GUI, respectively. For each domain,
source files were analyzed and a dictionary built.

3.4.2 Evaluation Target Dictionaries

Table 3.3 gives the output of the analysis before filtering. Since several
methods produce two or more tuples, the number of tuples is greater than
the number of methods that match any patterns.

Table 3.4 shows the frequency distribution of tuples obtained from a
certain number of software products. This table shows that the number

37

Table 3.2: Applications for Building Dictionaries

Web Applications

BBS-CS 8.0.3 JForum 2.1.8
JGossip 1.1.0.005 mvnForum 1.2.1

Yazd Discussion Forum Software 3.0 Order Portal 1.2.4
Arianne RPG 0.80 JBoss Wiki Beta2

JSP Wiki 2.8.3 SnipSnap 1.0b3

XML

Castor 1.3 DOM4J 1.6.1
JDOM 1.1.1 Piccolo 1.04

Saxon-HE 9.2.0.5 Xalan-J 2.7.1
Xbeans 2.0.0 Xerces-J 2.9.0
XOM 1.2.4 XPP3 1.1.4

xstream-1.3.1

Databases

Axion 1.0 Milestone 2 Apache Derby 10.5.3
H2 1.2.128 HSQLDB 1.8.1.1

Berkeley DB Java Edition 4.0.92 Mckoi 1.0.3
MyOODB 4.0.0 NeoDatis 1.9.22.674

OZONE 1.1 tinySQL 2.26

GUIs

ArgoUML 0.28.1 BlueJ 2.5.3
Eclipse Classic 3.5.1 jEdit 4.3.1

NetBeans 6.8 vuze 4.3.1.2
LimeWire 5.4

of tuples produced by two or more applications is significantly decreased
against the number of tuples produced by only one application.

Based on the above results, we set two as the threshold for filtering,
i.e. tuples appearing in two or more software products were included in the
dictionaries. We think that if the threshold is set at three, the number of
tuples is too small to evaluate.

Table 3.5 shows the number of methods which are successfully matched
with each pattern. A digit in parentheses is a ratio of the methods against
all methods in the source file set. The table shows that the extraction spec
3 takes tuples from more than half of the methods. Similarly, the extraction
spec 11 takes many tuples, then to the extraction spec 3.

38

Table 3.3: The number of Methods and Extracted Tuples

of methods

of methods
matched at least

one method
Ratio of the

matched methods # of tuples

Web 74,707 67,276 90% 67,429

XML 55,812 46,885 84% 49,926

DB 74,127 60,326 81% 63,087

GUI 298,696 247,918 83% 273,202

Table 3.4: Frequently Distribution of Tuples

of products producing tuples
1 2 3 4 5 6

Web 67,147 258 18 4 2 0

XML 49,379 465 63 13 5 1

DB 62,415 609 28 1 32 2

GUI 272,795 339 38 23 5 2

39

Table 3.5: The number of Methods Extracted Tuples by Extraction Pattern

ID DB GUI WEB XML

1 2782 (3.75) 7535 (2.52) 4188 (5.61) 1714 (3.07)

2 1612 (2.17) 4300 (1.44) 1165 (1.56) 757 (1.36)

3 49951 (67.39) 201859 (67.58) 59015 (79.00) 39540 (70.84)

4 492 (0.66) 1826 (0.61) 482 (0.65) 327 (0.59)

5 114 (0.15) 875 (0.29) 126 (0.17) 124 (0.22)

6 2048 (2.76) 9217 (3.09) 798 (1.07) 1091 (1.95)

7 309 (0.42) 561 (0.19) 346 (0.46) 92 (0.16)

8 2072 (2.80) 11752 (3.93) 4994 (6.68) 3679 (6.59)

9 1423 (1.92) 2882 (0.96) 2891 (3.87) 962 (1.72)

10 1218 (1.64) 6372 (2.13) 607 (0.81) 1089 (1.95)

11 5865 (7.91) 34064 (11.40) 4803 (6.43) 5384 (9.65)

12 18 (0.02) 47 (0.02) 8 (0.01) 11 (0.02)

13 34 (0.05) 38 (0.01) 9 (0.01) 8 (0.01)

14 474 (0.64) 10826 (3.62) 347 (0.46) 230 (0.41)

15 17 (0.02) 1092 (0.37) 10 (0.01) 3 (0.01)

16 16 (0.02) 35 (0.01) 7 (0.01) 28 (0.05)

17 27 (0.04) 101 (0.03) 98 (0.13) 15 (0.03)

18 587 (0.79) 1651 (0.55) 363 (0.49) 166 (0.30)

19 152 (0.21) 719 (0.24) 158 (0.21) 225 (0.40)

20 2829 (3.82) 7310 (2.45) 1278 (1.71) 2461 (4.41)

21 1239 (1.67) 6358 (2.13) 523 (0.70) 1363 (2.44)

22 85 (0.11) 408 (0.14) 17 (0.02) 92 (0.16)

23 604 (0.81) 2233 (0.75) 549 (0.73) 493 (0.88)

24 2 (0.00) 7 (0.00) 0 (0.00) 1 (0.00)

25 23 (0.03) 43 (0.01) 4 (0.01) 14 (0.03)

26 139 (0.19) 849 (0.28) 67 (0.09) 211 (0.38)

27 774 (1.04) 1886 (0.63) 367 (0.49) 814 (1.46)

28 22 (0.03) 81 (0.03) 14 (0.02) 28 (0.05)

29 7 (0.01) 22 (0.01) 0 (0.00) 10 (0.02)

40

3.4.3 Evaluation Process

The resulting dictionaries were evaluated by 6 students in a software engi-
neering laboratory. The participants all had experience in software develop-
ment in Java. Moreover, they evaluated the dictionaries for the domains in
which they had some experience.

For each domain dictionary, the tuples (V, DO, IO) were evaluated from
the following perspectives.

Perspective 1 The V-O relation of the tuple is actually used in the domain
or in Java programs.

Perspective 2 The verb, direct-object, and indirect-object are suitable.

Perspective 3 The tuple is useful for appropriate naming of identifiers.

Based on the perspectives, we prepared several questions for the partic-
ipants. The following three questions were based on the first perspective.

Q1 Is this (V, DO, IO) tuple popular in the domain of the dictionary?

Q2 Is this (V, DO, IO) tuple popular in common Java programs?

Q3 Is this (V, DO, IO) tuple popular in another domain? If so, give the
domain.

The following question was prepared according to the second perspective.

Q4 V, DO and IO are correctly extracted? If you do not think so, identify
the incorrect words.

The following three questions were based on the third perspective.

Q5 Should this (V, DO, IO) tuple be given as a good example to a developer
who is naming an identifier in a program in this domain?

Q6 Should this (V, DO, IO) tuple be given as a good example to a developer
who is naming an identifier in a common Java program?

Q7 Should this (V, DO, IO) tuple be given as a good example to a developer
who is naming an identifier in a program in another domain? If so,
give the domain.

41

Table 3.6: Response to Q1

(A) (B) (C) (D) (Z)

Web 21 35 7 3 24

XML 44 18 5 7 16

DB 32 36 4 9 9

GUI 42 26 9 6 7

Table 3.7: Response to Q2

(A) (B) (C) (D) (Z)

Web 16 29 10 30 5

XML 15 11 17 42 5

DB 22 13 32 17 6

GUI 32 37 9 6 6

The participants selected answers for Q1, Q2, Q5 and Q6 from (A)
strongly agree, (B) agree, (C) disagree, (D) strongly disagree, or (Z) no
idea.

Each of the dictionaries was evaluated by two participants, and each
of the participants evaluated two different dictionaries. 15 tuples that ap-
peared in three or more software products and 15 tuples that appeared in
two software products were evaluated by the participants. The tuples were
randomly and exclusively selected from the dictionary. However, since the
dictionary for the web application domain only contains 24 tuples appearing
in three or more products, only 6 tuples were evaluated by two participants.

3.4.4 Results of the Evaluation

First, we describe the results obtained according to perspective 1. Table
3.6 gives the results for Q1, and Table 3.7 the results for Q2. The sum of
the percentages of (A) strongly agree and (B) agree is 62% to 75% for Q1,
and 38% to 76% for Q2. These results show that the greater part of the
dictionaries consist of domain specific relations. However, several domain
independent relations are also included.

Table 3.8 gives the responses for Q3. All dictionaries contain some V-O
relations from another domain. The dictionary could be improved by sepa-
rating these relations into another dictionary. Table 3.9 shows the example

42

Table 3.8: Response to Q3(Numbers in parentheses mean the number of the
same answers)

Web Database(16), I/O processing(6),
Common Java Programs(2)

XML Data Analysis(2), GUI(1),
Parser(1), Resource Management(1),
Tree Structure(1), Graph Processing(1)

DB GUI(5), Web Application(1),
String Processing(1)

GUI Database(1), Networking(1),
Program Test Cases(1), Archiver(1),
Common Java Programs(4)

Table 3.9: Tuples being popular in other domains at responses of Q3

Verb Direct Object Indirect Object Answered domain

Web Set Password User Database

XML Perform Action ActionEvent GUI

DB Release Mouse MouseEvent GUI

GUI Open Connection Handler
Database,

Networking

Table 3.10: Response to Q4

Verb DO IO Two or more

Web 3 1 3 6

XML 5 7 1 12

DB 1 6 5 11

GUI 8 1 0 9

43

Table 3.11: Tuples answered as incorrect at responses of Q4

V DO IO Inappropriate point

Web Page Exists WikiEngine V, IO

XML Start Dtd XmlWriter DO

DB Perform Action Evt IO

GUI To String Mode V

Table 3.12: Response to Q5

(A) (B) (C) (D) (Z)

Web 19 32 11 4 24

XML 33 15 10 16 16

DB 35 29 10 10 6

GUI 28 30 13 11 8

Table 3.13: Response to Q6

(A) (B) (C) (D) (Z)

Web 13 19 23 30 5

XML 14 13 12 46 5

DB 31 13 24 16 6

GUI 29 26 15 13 7

Table 3.14: Tuples evaluated Useful at the Target Domain

Verb DO IO

Web Destroy Session HttpSessionEvent

XML Declare Prefix NamespaceSupport

DB Add Constraint Table

GUI Click Mouse MouseEvent

44

Table 3.15: Response to Q7 (Numbers in the parentheses mean the number
of the same answers)

XML Data Analysis(1), GUI(1), Parser(1)C
Resource Management(1), Tree Structure(1), Graph Processing(1)

DB GUI(5), Web Application(1)

Table 3.16: Extraction patterns and responses of tuples (numbers in each
cell correspond to the responses of Q1/Q2/Q5/Q6)

ID A B C D Z

1 7/3/9/4 17/3/13/3 1/15/5/12 2/10/3/12 7/3/4/3
2 1/0/1/0 0/2/0/1 1/0/1/1 0/0/0/0 1/1/1/1
3 78/49/65/52 66/45/58/35 11/36/20/36 15/62/27/69 34/12/34/12
4 5/3/3/3 0/1/1/1 0/0/1/0 0/1/0/1 0/0/0/0
5 2/1/1/1 2/3/1/2 0/0/2/1 1/3/1/3 2/0/2/0
6 8/4/7/6 5/6/6/4 2/4/2/4 0/2/0/2 1/0/1/0
7 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
8 14/10/12/10 12/9/11/7 2/6/5/8 2/7/2/7 3/1/3/1
9 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

10 1/0/0/0 1/0/2/0 0/1/0/0 0/3/0/4 4/2/4/2
11 9/8/9/7 7/4/6/4 3/2/3/3 1/8/2/8 2/0/2/0
12 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
13 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
14 30/13/22/12 16/25/20/18 3/9/4/16 3/7/5/7 4/2/5/3
15 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
16 0/1/0/1 1/0/1/0 0/0/0/0 0/0/0/0 0/0/0/0
17 1/0/1/1 1/0/1/0 0/2/0/0 0/0/0/1 0/0/0/0
18 4/3/5/3 10/0/9/0 1/11/4/10 2/6/2/7 5/2/2/2
19 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
20 7/10/6/8 9/7/3/3 2/1/4/1 3/5/8/11 2/0/2/0
21 3/3/3/3 1/3/1/3 2/0/2/0 0/0/0/0 2/2/2/2
22 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
23 1/3/1/2 3/2/1/3 1/1/3/1 3/3/3/3 2/1/2/1
24 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
25 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
26 0/0/0/0 1/0/1/0 0/1/0/0 0/0/0/1 0/0/0/0
27 1/2/1/1 0/1/0/2 2/0/2/0 0/1/0/1 2/1/2/1
28 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
29 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

45

of such tuples. As shown in this table, (Release, Mouse, MouseEvent) is in-
cluded in the DB dictionary, although the tuple belongs to the GUI domain.

Next, we give the results in perspective 2. Table 3.11 gives the responses
for Q4. The percentage of tuples with incorrect V, DO, or IO values vary
between 6% and 13%. This indicates that the 29 extraction patterns we
prepared could be improved. Table 3.11 shows the example. As shown in
the examples of DB and XML, tuples used acronyms such as Dvt and Evt
were judged as incorrect. In addition, as shown in the example of GUI, “To”
which we have decided to identify as a verb is judged as incorrect.

Finally, we present the results in perspective 3. Tables 3.12 and 3.13 give
the results for Q5 and Q6, respectively. The concrete examples evaluated as
useful are shown in Table 3.14. The sum of the percentages for (A) and (B)
is between 53% and 71% for Q5, and between 30% and 61% for Q6. The
results for Q5 and Q1 indicate that we need not only to improve precision of
the dictionaries, but also to select and provide the relations that developers
prefer. On the other hand, the results for Q6 show that the dictionaries
contain many tuples that are suitable as naming examples for common Java
programs. These tuples should be separated into a domain independent
dictionary.

Table 3.15 gives the responses to Q7. Similar to the results for Q3,
the responses for Q7 confirm the need to separate these tuples into another
dictionary.

Moreover, we evaluated what extraction pattern contributed the useful
tuples. Table 3.16 shows the number of responses for tuples (Q1/Q2/Q5/Q6)
grouped by extraction pattern which takes the tuple. This table shows that
the extraction pattern 3 most contributed for taking useful patterns. In
addition, the table also shows that the extraction patterns 14 and 20 taking
many useful tuples, although the number of methods corresponded to these
patterns were relatively small.

3.4.5 Follow-up clarification of the results

Several tuples were determined to be undesirable to developers, despite the
tuples are popular either in the domain or in common Java programs. We
asked the participants to give reasons for this. The answers are given below.

• The tuple contains uncertain words. (e.g. abbreviation)

• The tuple is common sense for average developers.

• The tuple is used not in the whole domain, but in programs that are
dependent on a specific library.

46

3.4.6 Discussion

The results for Q2 and Q3 show that the dictionaries contain V-O relations
in another domain. The contamination might be as a result of the following
two reasons.

• The threshold for filtering is too low to remove noise.

• Since software products generally span several domains, the relations
in the domains covered by each of the input products, also span several
domains.

The first problem is easy to solve by increasing the number of input
products.

Regarding the second problem, we have a solution as described below.
First, increase the number of domain categories and input products, and
then classify the products into the domain categories on a nonexclusive
basis. Thereafter, we track the original products of the tuples. If a tuple is
a candidate of two or more dictionaries, the best dictionary to include the
tuple is selected based on the original products and their domains.

3.4.7 Threats to Validity

From the viewpoint of the dictionary, the data assignment is performed
randomly, since the tuples are randomly extracted from the dictionaries.
However, the input software products were collected intentionally, and the
number of products may be insufficient.

Regarding the participants, they are students in a graduate school, and
not professional software developers. However, since they have experience
of software development through part-time jobs or research projects, they
have sufficient knowledge of several target domains to evaluate the dictio-
naries. Since the number of participants was not large enough, we could not
randomly assign participants to dictionaries.

3.5 Related Work

This section introduces related works on V-O relations in the source code,
and the differences between these works and our approach.

Shepherd et al. [72] and Fry et al. [70] extracted V-O relations from
methods or comments in source code written in an object-oriented language,
and used the relations for feature location and aspect mining. Hill et al. [73]

47

extracted the (V, DO, IO) tuples from source code and applied the tuples to
feature location and aspect mining. Our approach is to build domain-specific
dictionaries suitable for providing identifier names.

Host et al. built a dictionary of verbs from the name and body of meth-
ods [74], and created several naming rules from the dictionary to detect and
fix incorrect naming [75]. Our approach is more relaxed compared to that in
[75]; many good examples can be obtained using a verb with an associated
object.

3.6 Summary and Future Work

This paper proposed an approach for building a domain specific dictionary
of verb-object relations. The entries in the dictionary, i.e. tuples consisting
of (V, DO, IO), are extracted from identifiers related to a method. For
the evaluation experiment, 29 extraction patterns were made manually, and
then four domain dictionaries were made from 38 software source codes.
The dictionaries were evaluated six subjects. As a result, we confirmed that
the entries in the dictionaries are popular in the domain, or common in
programs written in Java.

One of the future work is about the extraction patterns. We made the 29
extraction patterns, but these have not been sufficient for any applications
to extract all V-O patterns. Therefore, future work includes developing a
meta algorithm of making extraction patterns, or developing a probability
model which is independent on the particular patterns.

In the experiment, we did not evaluate the diversity of the dictionaries.
Since common Java source code includes a lot of getter and setter methods,
most of tuples in our dictionaries may be these methods. However, the
dictionary should include various relationships, so that future work includes
evaluating the diversity. In addition, developing an approach for extracting
various V-O relationships is also included in future work.

In the proposed approach, a domain of software using as input is iden-
tified manually. However, to input a lot of software, these domains should
be identified automatically. Therefore, future work includes using an auto-
matic domain identification method and evaluating the output dictionary.
We also aim to improve the precision of the dictionaries and to build larger
dictionaries from a larger set of source code files.

48

Chapter 4

Comparison of Backward
Slicing Techniques for Java

4.1 Introduction

Program slicing [18] is an analysis technique developers use to extract state-
ments related to a specific behavior of interest. In particular, program slic-
ing extracts a set of statements that may affect the value of a variable in
a developer-specified statement. The set of statements extracted from a
program is called a program slice.

Existing studies have reported the effectiveness of program slicing for
supporting reuse activity. Lanubile et al. [19] proposed an approach for
making a new reusable component from existing software based on program
slicing [18]. Similarly, Komondoor [20] and Marx et al.[21] proposed ap-
proaches for component extraction based on program slicing, respectively.
The effectiveness of program slicing in other fields has also been reported.
Kusumoto et al. [30] report that program slicing is effective for debugging
tasks. If a variable has an incorrect value, developers can use the respec-
tive program slice to investigate program statements that are likely to have
output the incorrect value. In addition to debugging, program slicing has
been adopted by several advanced analysis techniques, e.g. information-flow
analysis [76] and change impact analysis [77].

Program slices should be accurate, in order to ensure that developers can
concentrate on the smallest number of statements during their tasks. The
System Dependence Graph (SDG) [33] has been proposed to represent how
statements interact with one another in a program to compute a program
slice. A program slice is obtained by backward traversal on an SDG from

49

a vertex corresponding to a variable in a specified statement. Although
SDG cannot determine the minimal program slice [78], several techniques
have been proposed to approach it. For example, Allen et al. propose
representing exception handling in SDG [37]. SDG has also been extended
to represent Java language constructs [34] and data-flow via the fields of
objects [35, 36, 24]. The accuracy of SDG data-flow information depends
on the underlying points-to analysis accuracy, e.g. set-based [79, 80], object
sensitive [81], and hybrid context sensitive analysis [82].

Today, not only accuracy, but also scalability is important. Acharya et
al. [77] combine a lightweight program slicing technique with an accurate one
for change impact analysis, because the accurate technique is very time con-
suming. Studies [22, 23] propose Static Execute Before/After analysis to al-
ternate program slicing. The analysis depends on only a control-flow graph,
instead of a traditional SDG. Consequently, Static Execute Before/After is
lightweight and scalable, though less accurate than an SDG-based technique.
Beszedes et al. [23] report that the technique is useful for impact analysis.

Tailoring program slicing for developers’ and researchers’ needs is an
important issue. Java is the most popular programming language, in both
open source [38] and industrial software development [39]; however, accu-
racy and scalability of Java program slicing techniques have not yet been
investigated. Binkley et al. [40] evaluate program slicing for C/C++. They
compare slices obtained with various configurations of CodeSurfer [41]. Jasz
et al. [22] compare static execute before analysis and program slicing for
C/C++. Beszedes et al. [23] compare static execute after analysis with
forward program slicing in C/C++ and Java. They did not include a simple
backward program slicing technique and static execute before analysis for
Java, in the comparison. Moreover, improved slicing [24], an advanced slic-
ing technique for Java, has not been evaluated with practical applications.

One of the key differences of Java and C/C++ is method parameters.
Java only supports call-by-value parameter, while C/C++ has both call-
by-value and call-by-reference parameter. As a result, a parameter cannot
be used as output directly in Java. Instead of call-by-reference parameters,
fields of objects in a parameter are often used. Therefore, in Java analysis,
treatment of a field is more important than that in C/C++. The other
key difference is a treatment of virtual method call. A method call in Java
is implicitly treated as a virtual method call, while a virtual method call
in C/C++ is used only if the called method is declared as virtual method.
Consequently, conservative analysis to resolve frequent virtual method calls
may increase the size of program slices. Furthermore, Java includes several
dynamic features such as reflection. These language differences may cause

50

the difference between the slicing results of Java and C/C++.
We compared slicing techniques through Java program analysis, to an-

swer the following research questions.

RQ1. How accurate and scalable are slicing techniques compared to each
other?

RQ2. Which slicing technique is most appropriate in specific situations?

Our analysis compared four slicing techniques as follows.

Static Execute Before (SEB) (See Section 4.2.1 for details): A lightweight
technique based on control-flow analysis. Given a program statement,
SEB extracts statements that may be executed before an execution
of the statement which is completed. This approach is proposed as a
replacement of program slicing [22]. Although SEB is context sensitive
and never lost dependences, this technique has potential incorrectness
caused by ignoring data dependences.

Context-insensitive Slicing (CIS) (Section 4.2.2): A simple program
slicing technique [40], based on control-dependence and data-dependence
analysis with an SDG which data dependence edges directly connect
vertices representing field read/write statements instead of making
trees of fields. CIS extracts statements that may affect the execu-
tion of a given statement. CIS covers all possible data-flow paths, and
therefore may include infeasible control-flow paths.

Intersection of SEB and CIS (HYB) (Section 4.2.3): An improvement
of the two aforementioned techniques by combining these techniques.
HYB extracts an intersection of the statements extracted by both SEB
and CIS, and excludes infeasible paths from CIS. This is natural im-
provement, but is not evaluated. Therefore, we introduced this tech-
nique for comparison.

Improved Slicing (IMP) (Section 4.2.4): A sophisticated program slic-
ing technique for Java [24]. This is an extended version of traditional
program slicing technique [33] in order to precisely analyze Java. This
technique analyzes the data structure of objects and how objects are
manipulated in feasible control-flow paths. It is expected to extract a
more accurate program slice than the other techniques. However, it
is also expected that the analysis cost is higher than the others. The
actual precision and scalability of IMP in Java is unclear.

51

Note that our comparison focuses on strategies to represent a program
as a graph, rather than the accuracy of the underlying analysis techniques,
such as points-to analysis, because all four methods can use the same analysis
techniques as infrastructure.

We apply the four program slicing techniques to six applications in Da-
Capo Benchmarks [83], in the comparison. We investigated scalability with
two configurations: Application separate from the library, and the whole sys-
tem including the library. We analyzed only an application with the former
configuration, by approximating control-flow and data-flow information in
the library. We analyzed all the control-flow and data-flow paths in both
the application and the library with the latter configuration.

In addition, we investigated the scalability of IMP in detail since IMP
could not analyze the whole system in the above experiment. We prepared
various analysis configurations using the six applications and sub packages
in java and javax packages. We measured the analysis time and the analyz-
ability by performing SDG construction of the configurations.

The rest of the paper is organized as follows. Section 4.2 presents the
concepts of the four program slicing techniques. Section 4.3 explains the im-
plementation details of our slicing tool. Section 4.4 describes the experiment
using the tool. Sections 4.5 and 4.6 discuss the results and the threats to
validity, respectively. Section 4.7 explains related work. Finally, Section 4.8
summarizes the study.

4.2 Slicing Techniques Under Evaluation

This section introduces the basic ideas of the four slicing techniques com-
pared in this study. All four techniques extract a program slice in two steps:
Graph Construction, and Graph Traversal. Each technique constructs a
graph representation of a target program, in the graph construction step.
A slice for a given program element is extracted by graph traversal, in the
graph traversal step. After a graph is constructed once, all slices can be
extracted from that graph.

Tables 4.1 and 4.2 show examples used in the following subsections to
explain the differences among the techniques. Both of their source code col-
umn show the same example program. The main method of the program is
located on line 2. It calls four methods init, pass, sum, and mult in sequen-
tial order. Two of the methods, sum and mult, call the same method foo.
Note that the init method creates values for the sum and mult methods.
The pass method does nothing for the other methods.

52

Table 4.1: Example of Source Code and its Slicing Results (The criteria is
y at line 5)

Line Source code SEB CIS HYB IMP

1 class Main {
2 public static void main(String[] args) {
3 A a = init(); X X X X
4 pass(); X
5 int y = sum(a); X X X X
6 int z = mult(a); } X
7 static A init() {
8 A a = new A(); X X X X
9 a.x = 1; X X X X

10 return a; } X X X X
11 static int sum(A a) {
12 int l = a.foo(); X X X X
13 return 1 + l; } X X X X
14 static int mult(A a) {
15 int l = a.foo(); X
16 return 10 * l; } X
17 static void pass() { return ; } X
18 }
19 class A {
20 int x;

21 int foo() { return this.x; } } X X X X

Tables 4.1 and 4.2 show not only source code, but also results of slicing.
The criterion of Tables 4.1 and 4.2 are the variable y in line 5, and the
variable z in line 6, respectively. The right columns of the both tables show
the slicing results by each slicing technique for comparison in the following
subsections. The top row of the columns shows the slicing technique. Each
cell shows whether the slice includes the corresponding line or not. If a
cell includes a check mark, the slice includes the corresponding line. For
example, the slice of SEB with respect to the slicing criterion y includes
lines 3, 4, and 5 in main, and all lines in init, pass, sum, and foo.

4.2.1 SEB: Static Execute Before

SEB [22] extracts statements that may be executed before the statement
of interest execution is completed. SEB uses a control-flow graph for each
method and a call graph for a target application. Given a program state-
ment in a method, SEB identifies call sites that may directly or transitively

53

Table 4.2: Example of Source Code and its Slicing Results (The criteria is
z at line 6)

Line Source code SEB CIS HYB IMP

1 class Main {
2 public static void main(String[] args) {
3 A a = init(); X X X X
4 pass(); X
5 int y = sum(a); X X X
6 int z = mult(a); } X X X X
7 static A init() {
8 A a = new A(); X X X X
9 a.x = 1; X X X X

10 return a; } X X X X
11 static int sum(A a) {
12 int l = a.foo(); X X X
13 return 1 + l; } X X X
14 static int mult(A a) {
15 int l = a.foo(); X X X X
16 return 10 * l; } X X X X
17 static void pass() { return ; } X
18 }
19 class A {
20 int x;

21 int foo() { return this.x; } } X X X X

invoke the method that includes the statement. Then, SEB identifies other
statements, using graph traversal on control-flow graphs. SEB also identifies
statements in methods that may be invoked before the given method. SEB
extracts statements that may affect a given statement. Hence, it can be seen
as the most lightweight variant of program slicing.

For example, if y in the line 5 is selected to compute a slice, the result
includes lines 3, 4, 5 and also lines with the methods init, pass, sum, and
foo, as shown in Table 4.1. The methods sum and foo are included because
the variable y on line 5 is returned from sum, and the method calls foo.
While foo is called from both sum and mult, mult is not included in the
result, because the call site is not executed before line 5.

4.2.2 CIS: Context-Insensitive Slicing

CIS extracts statements that may affect the execution of a given state-
ment. CIS is based on the context insensitive slicing technique implemented

54

in CodeSurfer [41] which is evaluated in the study of Binkely et.al. [40].
Similar to traditional program slicing, CIS makes SDG. The vertices rep-
resent statements in the program, and edges represent control dependence
and data dependence in the program. CIS extracts a program slice with
backward traversal from vertices that correspond to a selected statement.

Control dependence represents the effect of control statements (e.g. if

statements), while control-flow represents only the order of execution se-
quence. Data dependence represents the def-use relationship of variables.
SDG represents data flow relationships with vertices that represent for-
mal parameters of the method and actual arguments of the method call.
Parameter-in/out edges connect vertices for parameters, according to method
call relationships. If a method call instruction is a virtual method call, firstly,
a possibly callable methods from the call instruction are extracted using with
a points-to analysis result. Next, call edges and parameter-in/out edges are
drawn between the call instruction and all callable methods.

We extend SDG of the context insensitive slicing technique [41], to rep-
resent data dependence of object fields and class variables, to compute a
program slice for Java. An SDG has a data dependence edge for a field
access between statements s and t, if s writes a field of an object and t
may read the field of the object. Points-to analysis is used to check whether
the two statements may have accessed the same object or not. Similarly, a
data dependence edge exists between statements s and t if s writes a class
variable and t reads the class variable.

Note that these data dependence edges for fields and class variables are
potentially context-insensitive because these edges ignore method call re-
lationships. As a result, performing context-insensitive slice rather than
context-sensitive slice is required for keeping soundness of the slicing result.

Figure 4.1 is an excerpt of an SDG representing the program in Tables 4.1
and 4.2. A vertex with a label that is a method name represents a method
entry vertex. A vertex with a label that is a digit represents a statement. A
rectangle vertex, with a label that is a parameter name, represents a formal
parameter. A data dependence edge, from line 9 to line 21, shows data
dependence through field x. If a developer selects variable y on line 5, CIS
would extract lines 3, 5, and 6 in the main method, and lines in the sum,
foo, init, and mult methods. This is because vertices corresponding to
those lines are reachable from the vertex corresponding to line 5. As shown
in Tables 4.1, compared to the SEB of y, CIS excludes the line 4 and pass

which are executed before line 5 but do not have data/control dependence
on line 5.

One of the shortcomings of CIS is that it may include infeasible control-

55

main

control
dependence edge

data
dependence edge

call edge

parameter
in/out edge

543 6

init

8 9 10
sum

12 13a

mult

15 16a

foo

21this

pass

17

Figure 4.1: SDG for CIS

flow paths. An inter-procedural path is feasible if a method call in the path
corresponds to a method return in the path. A control-flow path through
lines 12, 21, and 12 is feasible, because it starts from a method call and
correctly returns to the call site. On the other hand, a path through lines
15, 21, and 12 is infeasible, because it goes to another call site. Including
mult in the slice of CIS for y would be caused by traversing this infeasible
path.

4.2.3 HYB: Context-Insensitive Slicing with Static Execu-
tion Before

HYB extracts an intersection of statements obtained by SEB and CIS. As
mentioned above, CIS for y includes mult as a false positive, even though
mult is never called before line 5. HYB combines SEB and CIS to remove
such infeasible statements from the result of CIS, by computing an intersec-
tion of the SEB and CIS results.

As shown in Table 4.1, a slice for y in line 5 includes lines of sum, foo,
and init, while it excludes pass and mult. The result is just an intersection
of the result of SEB for y and that of CIS. As a result, the result of HYB is
improved by either of the two techniques.

4.2.4 IMP: Improved Slicing

IMP [24] extracts statements that may affect the execution of a given state-
ment, similar to CIS. For C/C++, Liang et al.[35] extended traditional pro-

56

gram slicing [33] to handle the fields of objects. IMP is a further extension
of field handling for precise analysis of Java. IMP regards all fields accessed
by a method as arguments of the method, instead of edges directly connect-
ing field access between methods. This representation reflects how fields are
manipulated through control-flow paths. Similar to CIS, if a method call
instruction is a virtual method call, call edges and parameter-in/out edges
are drawn between call instruction and all callable methods.

IMP represents fields of a parameter as a tree. Let r.f is a receiver
object r and a field f, p(r) is points-to set of r. A vertex representing field
f is added as a child of a vertex representing r if a vertex representing r’

which points-to set p(r’) is equal to p(r) does not exist in the pass from
root to r. As a result, a tree made by the IMP’s approach has at least
one vertex representing an accessed field. Additionally, the IMP’s approach
can handle recursive structure distinguishing their points-to sets. Whereas
the existing technique [35] stops expansion of a field tree at a specific level
given by a parameter in order to avoid infinite expansion of a recursive data
structure, IMP uses points-to information to stop infinite expansion.

A program slice is extracted by backward two-phase slicing [33], which
avoids inter-procedural infeasible paths. For two-phase slicing, summary
edges are prepared. A summary edge connects an actual-in vertex to an
actual-out vertex if the actual-out vertex depends on the actual-in vertex.
After building summary edges, two-phase slicing is performed. The first
phase of two-phase slicing perform backward traversal from a given criteria
along data dependence edges, control dependence edges, call edges, summary
edges, and parameter-in edges, but not along parameter-out edges. The
second phase performs backward traversal from all actual-out vertices visited
in the first phase along data dependence edges, control dependence edges,
summary edges, and parameter-out edges, but not along call edges and
parameter-in edges.

Figure 4.2 shows SDG for IMP, for the source code in Tables 4.1 and 4.2,
with omitted vertices that represent actual arguments and summary edges
[84]. Vertices that represent parameters not only have argument/parameter
variable vertices, but also have field vertices. For example, vertex 10, which
is the statement vertex and also formal-out vertex of init, has field vertex x,
because the variable a returned in line 10 has a field x. Similarly, formal-in
vertices of sum, mult, and foo have x as field vertices.

Figure 4.3 shows the subgraph of SDG for line 5 and sum including
omitted vertices in Figure 4.2. Line 5 has the call instruction of sum which
has argument a and returned value assigning to y. SDG in Figure 4.3 has
vertices of a and $Actual-out which correspond to the argument and the

57

main

543 6

init

8 9 10
sum

12 13a

mult

15 16a

foo

21this

x
x

x

pass

17

x

control
dependence edge

data
dependence edge

call edge

parameter
in/out edge

Figure 4.2: SDG for IMP

call sum y…

…

Summary edge

$Actual-outa

x

Line 5

sum

12 13a

x

… foo …

Figure 4.3: Subgraph of SDG for line 5

58

returned value respectively. Additionally, the SDG has a vertex x which
represents a field x of the argument a.

A red dashed line in Figure 4.3 shows a summary edge. In an execution
of sum, parameter a is used as a receiver object of call foo in line 12, and then
a field x of a is used for the return value of foo. The returned value of foo in
line 12 is used for return value of sum in line 13. As a result, argument a and
x has transitive dependencies for return value of sum. Therefore, summary
edges connect a vertex a and a vertex x to a $Actual-out vertex. Similar to
the subgraph for line 5, subgraphs for lines 3, 12, and 15 have actual-in/out
vertices and summary edges.

If the variable y on line 5 is selected, IMP performs two-phase slicing
as follows: Firstly, first phase visits actual-out vertex of call sum via data
dependence edge, and then actual-in vertices of call sum via summary edges,
and more. As a result, first phase visits vertices of line 5 and line 3 including
actual-in/out vertices. Second phase starts from actual-out vertices of line 5
and 3, and visits sum, foo, init via any edges except call and parameter-in
edges. As a result, IMP extracts line 3, line 5, sum, foo, and init. Note
that this result is the same as the result of HYB as shown in Table 4.1. HYB
is effective in the case that SEB can remove infeasible paths from the result
of CIS.

On the contrary, if the variable z on line 6 is selected, IMP extracts
line 3, line 6, and mult, foo, and init. Table 4.2 shows that this is more
precise than HYB, because HYB extracts sum in addition to the three other
methods, because sum is executed before mult, and sum is reachable from
mult, via an infeasible path in SDG.

4.2.5 Comparison of Graph Construction Process

Those four slicing techniques call both graph construction and control-flow
analysis. SEB computation requires only the results of these analyses. CIS,
HYB, and IMP all require additional processes, which include points-to and
control/data dependence analyses. After that, SDG for CIS and HYB is
constructed by making a traditional SDG and the connecting field/class
variable. On the other hand, SDG for IMP is constructed by building a field
tree of each argument and parameter, making the vertices and edges like in
traditional SDG, and then computing the summary edges [84].

59

4.3 Implementation

We implemented four slicing techniques that target Java bytecode, because
the bytecode is easier to analyze than the source code. Moreover, there are
tools for points-to analysis and handling reflection targeting bytecode. We
use the same points-to analysis and reflection handling process with all four
slicing techniques. Therefore, all of the techniques under comparison use
the same call graph and points-to information.

4.3.1 Points-to Analysis and Call Graph Construction

We used the Spark pointer analysis toolkit [85] with the Soot framework
[86] for points-to analysis and call graph construction. Spark is imple-
mented based on Andersen’s points-to analysis algorithm [80], which is flow-
insensitive, context-insensitive analysis. This context insensitive algorithm
is good enough [87], because the slicing techniques under comparison do
not require explicit context sensitivity, such as object sensitivity [81]. We
used the default Spark configuration, the so called “on-fly-cg” and “field-
sensitive”, though Spark has many other options.

4.3.2 Handling Reflection

Reflection, which is a dynamic feature of Java, is the cause of imprecision
in static program analysis. We used TamiFlex [88] to get the reflection
result from a program execution. This tool can replace a reflection method
invocation with a concrete method invocation, observed during a target
program execution.

4.3.3 Approximation of Library

A slicing tool should analyze all methods reachable from the main method of
the program, including the library used by the program, when computing a
program slice. On the other hand, libraries may consume time and memory
space for analysis, because class libraries, such as the JDK Platform API,
include a large number of classes, even though most of them are not used
by target programs. Additionally, some library methods are unanalyzable,
e.g. native methods and methods protected by software license. We used
the following approximations, to handle such unanalyzable code.

First, we assumed that for each library the method calls, the return value
depends on the arguments. We connected edges from vertices representing
arguments to their corresponding vertex representing the return value.

60

Secondly, we assumed that for collection classes (e.g. List and Map),
method calls that modify a collection affect method calls that refer to the
collection content. We manually listed methods such as add and put to
modify a collection. We regarded other methods as those that refer to
content. We translated the former method calls into statements, writing
an artificial field representing collection, and the latter method calls into
statements reading the field.

Finally, we excluded the hashCode and equals methods of all classes
from analysis, if collection classes were not included in the analysis. This is
because those methods are usually called back from collection classes.

4.4 Experiment

4.4.1 Design and Analysis Target

The goal of this experiment was to evaluate and compare scalability and
accuracy of four slicing techniques. We measured the time required to con-
struct an SDG and the size of the SDG, to analyze scalability. We measured
the ratio of instructions included in a slice against the instructions in a
target program, to analyze accuracy.

We analyzed six applications in DaCapo Benchmarks (version 9.12) [83].
DaCapo Benchmarks is a collection of real Java applications, with their
execution scenarios. The six applications we used are avrora, batik, h2,
luindex, pmd, and sunflow. Table 4.3 shows the size of the applications
based on the number of methods that are reachable from their main methods.
The table shows the number of classes, which includes reachable methods,
the number of reachable methods, and the number of bytecode instructions
in reachable methods. The columns “APP” and “LIB” show the numbers
of classes/methods/instructions for application classes and library classes,
respectively. We regard classes in the following packages as library classes:
java.*, javax.*, sun.*, com.sun.*, com.ibm.*, org.xml.*, apple.awt.*, and
com.apple.*. We obtained this list of packages from a TamiFlex document
[89].

First, we executed the default application execution scenarios with Tam-
iFlex, to record invoked methods by reflection. Next, Soot performed points-
to analysis and call graph construction, with the output of TamiFlex. We
constructed an SDG based on this information. A slicing criterion is a ver-
tex in the SDG that corresponds to a bytecode instruction in APP. We
performed backward slicing with each slicing criteria, and then measured
the size of each slice.

61

Table 4.3: Size of Analysis Targets

#Classes #Methods #Instructions
APP LIB APP LIB APP LIB

avrora 49 1,701 290 10,697 9,690 321,666

batik 146 4,133 674 26,459 26,336 769,825

h2 130 1,741 670 11,118 18,875 331,844

luindex 74 1,705 380 10,710 11,678 322,652

pmd 139 1,712 480 10,762 13,838 322,857

sunflow 58 3,751 331 24,144 11,786 684,263

We compared the relative slice sizes against an application, because the
four techniques define graphs differently. We computed slice size, as the
ratio of the number of application method instructions in the slice to the
number of application method instructions in the program.

We used two different configurations. The first was Application separated
from library, which analyzes application classes with library approximation.
The second was the whole system including library that analyzes the whole
application and its libraries without approximation.

We used a machine with Windows 7 64bit, Intel Xeon E5-2620 2.00GHz
2 processor CPU, and 64GB of RAM.

4.4.2 Result

Configuration 1: Application separated from library

Figure 4.4 shows the bar charts of the time required to construct an SDG for
each application. Note that HYB used the same SDG as CIS, so that those
times are the same. Table 4.4 shows the time of each step. The columns
“Points-to Analysis (all)” and “Control-flow Analysis (all)” show the time
required for points-to analysis and control-flow analysis. These analyses are
common for all techniques. The column “Dependence Analysis (CIS/HYB)”
shows the time required to analyze dependencies for CIS and HYB, using
the information obtained by the points-to and control-flow analyses. The
column “Dependence Analysis (IMP)” shows the time required to analyze
dependencies for IMP, using the same information.

The time required for SDG construction was dependent on the time
required for points-to and control-flow analyses, in this configuration. CIS
took only a few additional seconds, while dependence analysis of IMP took

62

avrora batik h2 luindex pmd sunflow
0

50

100

150

200

250

300
R

eq
ui

re
d

Ti
m

e
(s

ec
on

ds
)

SEB
CIS
HYB
IMP

Figure 4.4: Time to Construct SDG in Configuration 1

ten times longer than that of CIS. The time required was still shorter than
that required for the underlying analyses. After SDG construction, all four
slicing techniques under comparison were able to compute a program slice
in less than one second (a few milliseconds in most cases).

Table 4.5 shows the number of vertices and the number of edges for each
SDG. IMP usually constructs a larger graph than CIS, to more precisely
represent data-flow. CIS had 44 percent of the number of vertices that IMP
had and 29 percent of the number of edges that IMP had.

Figures 4.5, 4.6 and 4.7 show the distribution of slice sizes of each ap-
plication. The X-axis in these figures shows the index of slice criteria. It
means that slices corresponding to the points in the same X-axis had the
same criteria. The Y-axis shows the relative size of a program slice. The
slices are sorted in ascending order of the relative IMP slice. The legend in
the figures shows that CIS, SEB, HYB, and IMP are represented by blue,
green, red, and light blue points, respectively.

IMP extracted smaller slices than the other three slicing techniques. For

63

(a) avrora

(b) batik

Figure 4.5: Scatter Plots of Relative Slice Size (percentage) on Configuration
1 (avrora and batik)

64

(a) h2

(b) luindex

Figure 4.6: Scatter Plots of Relative Slice Size (percentage) on Configuration
1 (h2 and luindex)

65

(a) pmd

(b) sunflow

Figure 4.7: Scatter Plots of Relative Slice Size (percentage) on Configuration
1 (pmd and sunflow)

66

Table 4.4: Detail of Time to Construct SDG in Configuration 1

Points-to
Analysis

(all)

Control-Flow
Analysis

(all)

Dependence
Analysis

(CIS/HYB)

Dependence
Analysis
(IMP)

avrora 49.16 sec. 0.18 sec. 0.82 sec. 7.84 sec.

batik 193.49 sec. 0.25 sec. 2.75 sec. 63.59 sec.

h2 59.76 sec. 0.23 sec. 1.97 sec. 28.25 sec.

luindex 51.82 sec. 0.22 sec. 0.91 sec. 9.66 sec.

pmd 62.81 sec. 0.22 sec. 1.07 sec. 8.48 sec.

sunflow 130.83 sec. 0.13 sec. 0.94 sec. 12.40 sec.

Table 4.5: SDG Size in Configuration 1

CIS IMP
#Vertices #Edges #Vertices #Edges

avrora 14,948 32,916 43,767 178,110

batik 38,439 86,394 84,052 276,873

h2 30,291 64,538 151,738 1,054,257

luindex 18,388 39,701 47,957 181,496

pmd 22,782 48,096 50,322 175,634

sunflow 17,887 38,755 44,047 185,103

example, with avrora, IMP extracted less than 40 percent of the program
instructions in 99 percent of the cases. IMP extracted 9.6 percent of the
instructions on average. On the contrary, SEB extracted more than 80
percent of the instructions in all cases except for batik. One half of the
instructions SEB extracted were likely false positives, according to IMP
slice. An HYB slice was smaller than both SEB and CIS slices.

Figures 4.5, 4.6 and 4.7 show that several clusters of slices that had
similar slice sizes are visible. A similar trend is reported in [90]. The phe-
nomenon was caused by a dependence cluster [91], which is a strongly con-
nected component in a graph. If traversal of program slicing reached an
element in a dependence cluster, the traversal reached all elements in the
dependence cluster.

67

avrora batik h2 luindex pmd sunflow
0

100

200

300

400

500

600

700

R
eq

ui
re

d
Ti

m
e

(s
ec

on
ds

)

SEB
CIS
HYB

Figure 4.8: Time to Construct SDG in Configuration 2

Configuration 2: The Whole System Including Library

Figure 4.8 shows the bar charts of the time required to construct an SDG
for each application. Table 4.6 shows the time required to construct an
SDG for an application including the library. The table does not include
IMP, because 64GB of memory was insufficient for IMP to construct an
SDG. Points-to analysis took several minutes, and SDG construction for
CIS also took several minutes. SEB was much faster than CIS for a large-
scale program, because the time for SDG construction increased significantly
compared with points-to analysis. Table 4.7 shows the number of SDG
vertices and edges for CIS. The numbers of vertices and edges were, on
average, 28 and 40 times larger than SDG without the library, respectively.

The maximum time to compute a slice with SEB, CIS, and HYB was
4.27, 5.13, and 8.55 seconds, respectively. The results show that a program
slice can be computed for a large program, within a practical time period.
HYB computation took only a few seconds longer than CIS computation,
because CIS had to construct a control-flow graph.

68

(a) avrora

(b) batik

Figure 4.9: Scatter Plots of Relative Slice Size (percentage) on Configuration
2 (avrora and batik)

69

(a) h2

(b) luindex

Figure 4.10: Scatter Plots of Relative Slice Size (percentage) on Configura-
tion 2 (h2 and luindex)

70

(a) pmd

(b) sunflow

Figure 4.11: Scatter Plots of Relative Slice Size (percentage) on Configura-
tion 2 (pmd and sunflow)

71

Table 4.6: Detail of Time to Construct SDG in Configuration 2

Points-to
Analysis

(all)

Control-Flow
Analysis

(all)

Dependence
Analysis

(CIS/HYB)

avrora 117.75 sec. 1.40 sec. 67.97 sec.

batik 349.31 sec. 3.10 sec. 298.52 sec.

h2 132.21 sec. 2.24 sec. 86.96 sec.

luindex 125.85 sec. 1.24 sec. 78.94 sec.

pmd 128.67 sec. 1.40 sec. 81.19 sec.

sunflow 264.57 sec. 2.89 sec. 193.19 sec.

Table 4.7: Size of SDG for CIS in Configuration 2

#Vertices #Edges

avrora 449,186 1,335,862

batik 1,124,286 3,927,998

h2 477,478 1,423,244

luindex 494,814 1,480,095

pmd 499,047 1,490,075

sunflow 1,033,777 3,207,852

Figures 4.9, 4.10 and 4.11 show the slice size distributions. The X-axis is
the index of slices sorted by the ascending order of HYB slice size. The Y-
axis shows the relative slice size. The relative slice size does not include the
instructions in the library, because the library instructions are not visible to
developers.

The resultant distributions are similar to the scatter plots of configura-
tion 1. Although SEB extracted a small slice in some cases, it often extracted
more than 80 percent of the instructions. Slices extracted by CIS were all
almost the same size, due to SDG dependence clusters, while the maximum
CIS slice size was lower than that of SEB. HYB extracted a significantly
smaller slice in some cases, and a slightly smaller slice than CIS for most
cases, because HYB was an intersection of SEB and CIS.

72

4.4.3 Scalability Analysis of Improved Slicer

Design and Analysis Targets

While IMP cannot analyze an entire system as mentioned previously, it is im-
portant to know the scalability for practical use. To measure the scalability
of IMP, we measured required time to construct SDG for various config-
urations. If the construction takes longer than a predetermined threshold
(3,600 seconds), the configuration is classified as unanalyzable. The thresh-
old is determined by the length of developers’ typical daily sessions [92].

We have used the same six applications as the first experiment. We
selected 14 major sub-packages in LIB which are shown in Table 4.8. Table
4.8 shows the numbers of classes, methods, and instructions reachable from a
main method of an application. Note that the numbers in Table 4.8 are taken
from the result in the configuration: the whole system including library.

We constructed configurations for each application (A) with the set of
sub-packages in Table 4.8 (S) by the following steps.

1. For each s ∈ S, one sub-package configuration including A and s is
created.

2. Select sub-packages S′ ⊆ S whose one-package configurations are an-
alyzable within the time limit.

3. For each k ∈ {2, 3, ..., |S′|}, a configuration is created by randomly
selecting k sub-packages from S′.

Result

Table 4.9 shows the distribution of analyzable programs and required time to
prepare SDG. In order to show the difference of analyzability by the program
size, we aggregate the result by the number of instructions. The interval is
10,000. The first column of Table 4.9 shows the range of the number of
instructions. The column “#Config.” shows the number of configurations
whose size is included in the corresponding range. The column “#Analyz-
able (Percentage)” shows the number and ratio of the configurations which
were analyzed within the limit time. The rightmost column shows the mean
of required time to prepare SDG for the analyzable configuration programs.
Note that all programs include over 100,000 instructions always failed to be
analyzed, so that their results are totaled in the last row.

As Table 4.9 shown, even if a program is small size, the analysis time may
be over 3,600 seconds. The minimum configuration which was not analyzed

73

Table 4.8: Sub packages used for scalability analysis

Sub Package Name #Classes #Methods #Instructions

java.awt 399 3,113 97,136

java.beans 20 192 5,792

java.io 92 805 21,089

java.lang 175 1,440 35,003

java.math 8 150 9,257

java.net 83 622 17,662

java.nio 127 623 10,156

java.security 108 482 11,400

java.sql 9 33 870

java.text 52 525 19,422

java.util 494 3,340 82,178

javax.crypto 27 166 5,365

javax.security 15 75 1,549

javax.swing 835 5,568 146,716

within 3,600 seconds is avrora with java.text package that has 26,325 in-
structions. Any configurations including java.text were not analyzed within
the time limit, partly because java.text includes a recursive data structure
such as a container for text that increases analysis cost.

The minimum unanalyzable configuration including more than one sub-
packages is the configuration which includes h2, java.io, java.lang, java.math
and java.security. The configuration includes 75,552 instructions. Since in-
dividual sub-packages are analyzable, the configuration is classified as unan-
alyzable because of the scalability rather than the complexity of one of the
sub-packages. Actually, most of configurations including more than 80,00
instructions were classified as unanalyzable.

On the other hand, the maximum analyzable configuration is sunflow
with java.awt, javax.crypto, and javax.security packages. The configuration
includes 477 classes, 3,409 methods and 98,073 instructions.

Table 4.9 shows that programs including less than 70,000 instructions
are analyzable in the highly probabilities which is at least 83.33%. On the
contrary, the success probability of an analysis is slightly falling down if a
program includes more than 70,000 instructions. The ratio of analyzable
programs including from 70,000 to 80,000 instructions is about 55%. In
addition, in the case of more than 80,000 instructions, the percentage of

74

Table 4.9: The Distribution of the Analyzable Programs and Time to Con-
struct SDG

Range of
#Instructions #Config.

#Analyzable
(Percentage)

Mean of Time
to Prepare SDG

[0,10k) 0 0 (0%) NA

[10k,20k) 8 8 (100%) 113.39 sec.

[20k,30k) 28 25 (89.28%) 121.35 sec.

[30k,40k) 12 10 (83.33%) 255.02 sec.

[40k,50k) 11 10 (90.90%) 416.16 sec.

[50k,60k) 2 2 (100%) 307.81 sec.

[60k,70k) 3 3 (100%) 837.48 sec.

[70k,80k) 9 5 (55.55%) 807.05 sec.

[80k,90k) 9 1 (11.11%) 1,934.65 sec.

[90k,100k) 9 3 (33.33%) 1,055.56 sec.

[100k,230k) 14 0 (0%) NA

analyzable programs is more smaller. Therefore, 70,000 instructions seem
to be the limit of analyzable program size by IMP of our implementation.

4.5 Discussion

We review the results in terms of accuracy and scalability to answer to RQ1.

First, we discuss accuracy. SEB in many cases extracted from 80 to 100
percent of the entire program. This indicates that SEB may have been only
slightly effective. CIS consistently extracted 70 percent for any instructions
in a program. This was caused by large SDG dependence clusters, as previ-
ously mentioned. HYB slices were sometimes much smaller than CIS slices,
partly because SEB removed instructions in dependence clusters caused by
infeasible SDG control-flow paths. IMP extracted smaller slices than the
other techniques; however, it could not compute a slice for the entire pro-
gram.

Table 4.10 shows the median relative slice sizes among the slicing tech-
niques. IMP extracted 22 percent of the instructions that SEB extracted
and 69 percent of the instructions that HYB extracted. Therefore, IMP
would be the best choice of the four slicing techniques when using the li-
brary approximation.

Binkley et al. [40] report the average backward slice size as 28.1 percent

75

Table 4.10: Rates Compared Other Techniques

Configuration1 Configuration 2

HYB / SEB 0.42 0.75

HYB / CIS 0.99 0.99

IMP / SEB 0.22 -

IMP / HYB 0.69 -

of the program, while IMP in this study had an average of nine percent. IMP
might have achieved this improvement with more accurate field representa-
tions. In [40], they used another representation proposed by Liang et al.
[35], the disadvantages of which are discussed in [24]. Differences between
C/C++ and Java might also have affected the results. C/C++ programs
can access arbitrary memory locations with pointers, while Java programs
use only objects and fields to access memory locations. This difference could
make Java program analysis easier than C/C++ analysis.

Second, we discuss scalability. IMP cannot analyze an entire system,
as mentioned previously. IMP may construct a large tree of fields for an
argument, because a field often contains another object. In the worst case,
the size of a tree is estimated as O(fp), where f is the number of fields in
an object and p is the number of object allocation sites. In other words, the
number of vertices may increase exponentially according to program size.
Actually, scalability anlaysis in Section 4.4.3 shows following two findings:

• If an analysis target program includes a container library, failure prob-
ability of the analysis will increase.

• 70,000 instructions is the indication of the analyzable program size of
IMP. If a program includes more than 70,000 instructions, the success
probability of analysis will be falling down. Moreover, 98,073 instruc-
tions is the limit size for analysis by IMP. The limit is large enough
to analyze various programs in the DaCapo Benchmarks without li-
braries, while it is insufficient to analyze the programs with libraries.

On the contrary, since SEB needs only call graph and control-flow graph,
the required memory space and analysis time are explicitly smaller than
IMP. Similarly, the memory space of CIS/HYB depends on control/data de-
pendencies of each method, call graph, and square of the field access instruc-
tions. The results showed that this cost is also practical, because CIS/HYB
can be computed even if the analysis target includes Java Platform APIs.

76

We answer to RQ2 based on the previous discussion. Since IMP output
the best precise result, IMP is suitable if an analysis target program can be
analyzed. However, if the program size is larger than 70,00 instructions, the
analysis is prone to fail. In addition, approximation of container libraries
may be needed. Therefore, it is suitable that developers need to analyze
a middle-size application or a subsystem of a large application. Note that
development of a suitable approximation for an application may present
technical challenges.

On the other hand, when developers need to analyze a large program or
a program including a library, e.g. Java Platform API, HYB is the most
suitable technique, in terms of scalability and accuracy. CIS analyzes control
and data dependencies in HYB, and SEB takes a few additional seconds to
remove infeasible control-flow paths from CIS.

4.6 Threats to Validity

We approximated Java library code in the comparison of IMP and the other
techniques, due to IMP’s scalability. If a method in a Java library provided
dependence via heap fields, IMP and CIS slices will not include statements
that actually relate to the selected statement. The approximation assumes
methods in the library do not call back application methods. This assump-
tion may also result in false negatives. We did not directly compare the
results of these two configurations, due to this threat.

Points-to analysis affects slices. We used Spark, but there are many
other points-to analysis tools and methods we could have used: e.g. object-
sensitive points-to analysis [81], hybrid context-sensitive points-to analysis
[82], etc. The resulting slices could be more precise if more accurate points-
to analysis is used. Improving points-to analysis would be more effective
for CIS and IMP, rather than SEB, because SEB uses only a call graph
created by points-to analysis, while CIS and IMP use improved field access
information, in addition to the call graph.

Reflection handling also affects analysis results. We used TamiFlex,
which collects methods that were actually invoked during execution of a
target program. The results are affected not only by the analysis target
programs, but also by their execution. Program slices computed in the
study miss some statements that could be executed through reflection, but
are excluded from the default execution scenario in the DaCapo Benchmarks.

We obtained the results from six applications. The results may not be
applicable to arbitrary Java programs; however the target programs included

77

real Java applications. Therefore, we believe the result is indicative of a
general trend.

The results of this experiment depend on the experimental environment
which includes CPU, RAM, and operating system. Therefore, the concrete
values such as seconds of execution may not be applicable to general execute
environments. However, the result of relatively comparing each technique is
generally applicable, such as the ratio of difference of the precision and the
analysis time.

Our slice implementations might contain some defects possibly affecting
the results shown here. We have provided our implementation and dataset
on our website, to enable other researchers to replicate the study and conduct
further research.

4.7 Related Work

Binkly et al. [40] compare various kinds of program slicing. However, IMP
and SEB were not included in the comparison. Additionally, the target
applications are written in C/C++. Our targets were programs written in
Java. In addition, CodeSurfer which is a program slicing tool and used in
[40] can analyze C++ templates in analysis target source code, but it does
not analyze templates in library and not in analysis target source code, such
Standard Template Library (STL). [40] does not clear about handling STL.
On the contrary, our Java bytecode analysis includes Java Platform APIs
corresponding to STL can be performed.

[22] also compares program slicing and SEB and analyzes programs writ-
ten in C/C++. We have compared SEB and two slicing techniques, CIS and
IMP, for Java programs. Beszedes et al. [23] compared static execute after
analysis with forward program slicing for C/C++ and Java programs. How-
ever, they did not evaluate SEB and the backward slicing techniques that
we have compared in this study.

Binkley et.al. also evaluated optimization techniques of massive slic-
ing which is an application of program slicing [93]. Massive slicing takes
all program slice from each possible criteria, and is used for debugging.
Optimization techniques evaluated in [93] optimize SDG or memory repre-
sentation for SDG, but it is required that building full SDG for the first
time. We evaluate approaches of building SDG or one corresponding SDG
before optimizing.

[24] evaluates the SDG size of programs. However, most of the analyzed
programs are student programs, and the analyzed program size is at most 10

78

KLOC, while we analyzed real Java applications. They also did not report
the average size of a slice compared with other techniques.

There are slicing approaches for object-oriented programming languages
other than IMP. Liang et al. [35] propose an SDG that also simulates object
trees of formal/actual in/out vertices. However, they expand field trees
based on the object type (i.e. variable type) and use k-limit to expand
a tree to stop infinite expansion. Therefore, the approach is less precise
than IMP. Larsen et al. [36] also proposes an SDG that treats heap field
input/output as formal/actual in/out. This means that the Larsen approach
does not make an object tree, it is field-based, not object-sensitive. IMP
is an object-sensitive approach; therefore, it is more precise than Larsen’s
approach.

4.8 Summary

We evaluated the scalability, precision and tradeoffs of four slicing tech-
niques; SEB, CIS, HYB, and IMP. We selected six real Java applications in
DaCapo benchmarks for evaluation. We computed slices of instructions in
each application and compared the slice sizes and computation times of the
slicing techniques.

The results show that HYB had good scalability, which was achieved with
a small cost increase over CIS. An HYB slice is 25 percent smaller than the
SEB slice. Moreover, an HYB slice is sometimes significantly smaller than
a CIS slice, because HYB considers feasible control-flow paths from SEB.
When developers need to analyze a large program or a program including a
library, our results indicate that HYB is suitable.

On the other hand, our results show that IMP is the most accurate of
the four slicing techniques. An IMP slice contains 22 percent of SEB and
69 percent of HYB. However, IMP does not have the scalability required to
analyze a large program, such as a whole system including a JDK library.
When developers need to analyze a middle-size program or a subsystem, our
results indicate that IMP is suitable.

79

80

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we have addressed three issues related to software reuse,
which include software license, retrieval for reusable components implement-
ing a feature, extraction of a reusable component.

First, we have performed a quantitative study for the investigation of
the impact of software licenses to copy-and-paste reuse activity among OSS
projects. The study has shown the followings:

• copy-and-paste mostly occurs within source code under the same li-
cense

• substantial amount of reused code fragments appeared in GPLv2+
product

• permissive licensed files tend to be reused more than copyleft ones

The result of the first study gives the quantitative guide for developers’
license selection.

Secondly, we proposed an approach for building domain specific verb-
object relationship dictionaries. The dictionary includes tuples consisting
of (Verb, Object, Indirect Object) which are extracted from identifiers in
method signatures. In the experiment, we showed that the tuples in the
dictionary are popular in the target domain or common Java programs. The
result of the second study helps appropriate naming and resolving searching
issue.

Thirdly, we performed a comparative study of four backward program
slicing techniques for Java. The comparison shows that the combination

81

of context-insensitive slicing and static execute before has the scalability
for analyzing an entire large system, and outputs a slice which size is 25
percent smaller than static execute before, on average. On the other hand,
improved slicing has the scalability for analyzing middle size applications,
and is smaller than 31 percent compared to the combination technique.
The results of the third study help selection of the program slicing which is
appropriate to a situation for a developer who wants to extract a component
from an existing system.

We believe that the results of these studies improve reuse activities from
both sides of a reusable product developer and a user of a reusable compo-
nent.

5.2 Future Work

Some future work is needed for support of distributing reusable product
from the points of view of license and identifier names. Future work of the
license study is making license selection support tool which provides the im-
pact and future of popularity of a product per license. Regarding identifier
names, current researches provide precise identifier names by natural lan-
guage processing. However, these studies targeted English identifier names,
despite many programming languages enable to use Unicode characters for
identifier names. Therefore, future work includes support of non-English
names such as Japanese.

On the other hand, future work for support of extraction process in-
cludes proposing more lightweight slicing techniques for daily uses. Another
direction includes the improvement of representation of a program slice for
confirming that an extracted component is appropriate for a reuse purpose,
such as a representation by natural language like summary comments for a
method [94].

82

Bibliography

[1] Commons collections. http://commons.apache.org/proper/

commons-collections/ (Accessed December 2014).

[2] SourceForge.net. http://sourceforge.net/ (Accessed December
2014).

[3] Github. https://github.com/ (Accessed December 2014).

[4] Open Source Initiative. http://www.opensource.org/ (Accessed De-
cember 2014).

[5] Open Source Initiative. Open Source Definition. http://www.

opensource.org/docs/osd (Accessed December 2014).

[6] Open Source Initiative. The BSD license. http://opensource.org/

licenses/BSD-3-Clause (Accessed December 2014).

[7] Apache Software Foundation. Apache License, Version 2.0. http://

www.apache.org/licenses/LICENSE-2.0 (Accessed December 2014).

[8] Free Software Foundation. GNU general public license. http://www.

gnu.org/licenses/gpl.html (Accessed December 2014).

[9] Epson pulls linux software following gpl violations.
http://beta.slashdot.org/story/02/09/11/2225212/

epson-pulls-linux-software-following-gpl-violations (Ac-
cessed December 2014).

[10] Playstation 2 game ico violates the gpl. http:

//news.slashdot.org/story/07/11/28/0328215/

playstation-2-game-ico-violates-the-gpl (Accessed Decem-
ber 2014).

83

[11] GitHub Inc. 10 million repositories. https://github.com/blog/

1724-10-million-repositories (Accessed December 2014).

[12] Ryuji Shimada, Makoto Ichii, Yasuhiro Hayase, Makoto Matsushita,
and Katsuro Inoue. A-score: Software component recommenda-
tion system based on source code under development (in japanese).
50(12):3095–3107, December 2009.

[13] Tetsuo Yamamoto, Norihiro Yoshida, and Yoshiki Higo. Seamless code
reuse with source code corpus. In 20th Asia-Pacific Software Engineer-
ing Conference, volume 2, pages 31–36, 2013.

[14] A. von Mayrhauser and A. M. Vans. Identification of dynamic compre-
hension processes during large scale maintenance. IEEE Transaction
on Software Engineering, 22(6):424–437, 1996.

[15] Nancy Pennington. Empirical studies of programmers: second work-
shop. pages 100–113. Ablex Publishing Corp., 1987.

[16] Victor Basili, Gianluigi Caldiera, Frank McGarry, Rose Pajerski, Ger-
ald Page, and Sharon Waligora. The software engineering labora-
tory: An operational software experience factory. In Proceedings of the
14th International Conference on Software Engineering, pages 370–381,
1992.

[17] Charles W. Krueger. Software reuse. ACM Computing Surveys,
24(2):131–183, June 1992.

[18] Mark Weiser. Program slicing. IEEE Transactions on Software Engi-
neering, SE-10(4):352–357, July 1984.

[19] F. Lanubile and G. Visaggio. Extracting reusable functions by flow
graph based program slicing. Software Engineering, IEEE Transactions
on, 23(4):246–259, Apr 1997.

[20] Raghavan Komondoor and Susan Horwitz. Effective, automatic proce-
dure extraction. In Proceedings of the 11th IEEE International Work-
shop on Program Comprehension, pages 33–42, 2003.

[21] Andreas Marx, Fabian Beck, and Stephan Diehl. Computer-aided ex-
traction of software components. In Proceedings of the 17th Working
Conference on Reverse Engineering, pages 183–192, October 2010.

84

[22] J. Jász, A. Beszedes, T. Gyimothy, and V. Rajlich. Static execute
after/before as a replacement of traditional software dependencies. In
Proceedings of the International Conference on Software Maintenance,
pages 137–146, Sept 2008.

[23] A. Beszedes, T. Gergely, J. Jasz, G. Toth, T. Gyimothy, and V. Ra-
jlich. Computation of static execute after relation with applications to
software maintenance. In Proceedings of the International Conference
on Software Maintenance, pages 295–304, Oct 2007.

[24] Christian Hammer and Gregor Snelting. An improved slicer for java. In
Proceedings of the 5th ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering, pages 17–22, 2004.

[25] Debian Project. Debian GNU/Linux. http://www.debian.org/ (Ac-
cessed December 2014).

[26] Daniel M. German, Yuki Manabe, and Katsuro Inoue. A sentence-
matching method for automatic license identification of source code
files. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, pages 437–446, 2010.

[27] Toshihiro Kamiya. CCFinder Official Site. http://www.ccfinder.

net/ccfinderx.html (Accessed December 2014).

[28] Yasuhiro Hayase, Makoto Ichii, and Katsuro Inoue. A novel approach
for building a thesaurus for program comprehension (in japanese). In
Proceedings of winter workshop 2008 in Dogo, number 3, pages 33–34,
2008.

[29] Andrea de Lucia, Anna Rita Fasolino, and Malcolm Munro. Under-
standing function behaviors through program slicing. In Proceedings
of the 4th International Workshop on Program Comprehension (WPC
’96), pages 9–18, 1996.

[30] Shinji Kusumoto, Akira Nishimatsu, Keisuke Nishie, and Katsuro In-
oue. Experimental evaluation of program slicing for fault localization.
Empirical Software Engineering, 7(1):49–76, March 2002.

[31] Mark Weiser. Programmers use slices when debugging. Communica-
tions of the ACM, 25(7):446–452, July 1982.

85

[32] K.B. Gallagher and J.R. Lyle. Using program slicing in software main-
tenance. Software Engineering, IEEE Transactions on, 17(8):751–761,
Aug 1991.

[33] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In Proceedings of the ACM SIGPLAN 1988 Con-
ference on Programming Language Design and Implementation, pages
35–46, 1988.

[34] Neil Walkinshaw, Marc Roper, Murray Wood, and Neil Walkin-
shaw Marc Roper. The java system dependence graph. In In Third
IEEE International Workshop on Source Code Analysis and Manipula-
tion, pages 55–64, 2003.

[35] D. Liang and M. J. Harrold. Slicing objects using system dependence
graphs. In Proceedings of the International Conference on Software
Maintenance, pages 358–367, 1998.

[36] Loren Larsen and Mary Jean Harrold. Slicing object-oriented software.
In Proceedings of the 18th International Conference on Software Engi-
neering, pages 495–505, 1996.

[37] Matthew Allen and Susan Horwitz. Slicing java programs that throw
and catch exceptions. In Proceedings of the 2003 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-based Program Manip-
ulation, pages 44–54, 2003.

[38] Leo A. Meyerovich and Ariel S. Rabkin. Empirical analysis of pro-
gramming language adoption. In Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Sys-
tems Languages and Applications, pages 1–18, 2013.

[39] iTR co. Inc. Press release. http://www.itr.co.jp/company_outline/
press_release/130919PR/index.html (Accessed December 2014).

[40] David Binkley, Nicolas Gold, and Mark Harman. An empirical study of
static program slice size. ACM Transactions on Software Engineering
and Methodology, 16(2), April 2007.

[41] Grammatech’s codesurfer. http://www.grammatech.com/research/

technologies/codesurfer Accessed December 2014.

86

[42] Walt Scacchi. Free/open source software development: Recent research
results and emerging opportunities. In The 6th Joint Meeting on Euro-
pean Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering: Companion Papers,
pages 459–468, 2007.

[43] Free Software Foundation. What is copyleft? http://www.gnu.org/

copyleft/copyleft.en.html (Accessed December 2014).

[44] Michel Ruffin and Christof Ebert. Using Open Source Software in Prod-
uct Development: A Primer. IEEE Software, 21(1):82–86, 2004.

[45] Yu Kashima, Yasuhiro Hayase, Norihiro Yoshida, Yuki Manabe, and
Katsuro Inoue. A preliminary study on impact of software licenses on
copy-and-paste reuse. In Proceedings of the International Workshop on
Empirical Software Engineering in Practice, pages 47–52, 2010.

[46] Open Source Initiative. Open source licenses. http://www.

opensource.org/licenses (Accessed December 2014).

[47] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd
Petter N. Slyngstad, and Maurizio Morisio. Development with Off-the-
Shelf Components: 10 Facts. IEEE Software, 26:80–87, 2009.

[48] Free Software Foundation. Various licenses and comments about
them. http://www.gnu.org/licenses/license-list.en.html (Ac-
cessed December 2014).

[49] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: finding copy-paste
and related bugs in large-scale software code. IEEE Transaction on
Software Engineering, 32(3):176–192, March 2006.

[50] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,
and Lorraine Bier. Clone Detection Using Abstract Syntax Trees. In
Proceedings of the International Conference on Software Maintenance,
pages 368–377, 1998.

[51] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An
Ethnographic Study of Copy and Paste Programming Practices in
OOPL. In Proceedings of the 2004 International Symposium on Empir-
ical Software Engineering, pages 83–92, 2004.

87

[52] Daniel M. German, Massimiliano Di Penta, Yann-Gael Gueheneuc, and
Giuliano Antoniol. Code siblings: Technical and legal implications of
copying code between applications. In Proceedings of the 2009 6th
IEEE International Working Conference on Mining Software Reposi-
tories, pages 81–90, 2009.

[53] Hung-Fu Chang and Audris Mockus. Evaluation of source code copy
detection methods on freebsd. In Proceedings of the 2008 International
Working Conference on Mining Software Repositories, pages 61–66,
2008.

[54] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Method and implementation for investigating code clones in a software
system. Information & Software Technology, 49(9-10):985–998, 2007.

[55] Makoto Ichii, Takashi Ishio, and Katsuro Inoue. Cross-application fan-
in analysis for finding application-specific concerns. In Proceedings of
the Fourth Asian Workshop on Aspect-Oriented Software Development,
pages 39–43, 2008.

[56] J.S. Poulin. The search for a general reusability metric. In Proceedings
of the Workshop on Reuse and the NASA Software Strategic Plan, 1996.

[57] Judith Barnard. A new reusability metric for object-oriented software.
Software Quality Control, 7:35–50, May 1998.

[58] William Frakes and Carol Terry. Software reuse: metrics and models.
ACM Computing Surveys, 28:415–435, June 1996.

[59] Simone Livieri, Yoshiki Higo, Makoto Matushita, and Katsuro In-
oue. Very-Large Scale Code Clone Analysis and Visualization of Open
Source Programs Using Distributed CCFinder: D-CCFinder. In Pro-
ceedings of the 29th International Conference on Software Engineering,
pages 106–115, 2007.

[60] YongLee Yii, Yasuhiro Hayase, Makoto Matsushita, and Katsuro In-
oue. Token Comparison Approach to Detect Code Clone-related Bugs.
Technical report of IEICE. SS, 107(505):37–42, 2008.

[61] R. K. Fjeldstad and W. T. Hamlen. Application program maintenance
study: report to our respondents. In Proceedings of GUIDE 48, April
1983.

88

[62] T. A. Corbi. Program understanding: challenge for the 1990’s. IBM
Systems Journal, 28(2):294–306, 1989.

[63] Steve McConnell. Code Complete, Second Edition. Microsoft Press,
Redmond, WA, USA, 2004.

[64] Robert C. Martin. Clean Code: A Handbook of Agile Software Crafts-
manship. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1 edition,
2008.

[65] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley.
What’s in a name? a study of identifiers. In Proceedings of the 14th
IEEE International Conference on Program Comprehension, pages 3–
12, 2006.

[66] Oracle Corporation. The java tutorial. http://java.sun.com/

docs/books/tutorial/java/javaOO/index.html (Accessed Decem-
ber 2014).

[67] Microsoft. Method naming guidelines. http://msdn.microsoft.

com/en-us/library/4df752aw(v=vs.71).aspx (Accessed December
2014).

[68] Yuya Onizuka, Yasuhiro Hayase, Takashi Ishio, and Katsuro Inoue.
Supporting method naming for java programs using verb-object rela-
tions (in japanese). In IEICE Technical Report, volume 111, pages 1–6,
2012.

[69] Sun Microsysytems. Java platform, standard edition 6 api specifica-
tion. http://java.sun.com/javase/6/docs/api (Accessed December
2014).

[70] Zachary Fry, David Shepherd, Emily Hill, Lori Pollock, and K Vijay-
Shanker. Analysing source code: looking for useful verb-direct object
pairs in all the right places. IET Software, 2(1):27–36, 2008.

[71] The Apache Software Foudation. Opennlp. http://opennlp.apache.
org/ (Accessed December 2014).

[72] David Shepherd, Lori Pollock, and K. Vijay-Shanker. Towards support-
ing on-demand virtual remodularization using program graphs. In Pro-
ceedings of the 5th International Conference on Aspect-Oriented Soft-
ware Development, pages 3–14, 2006.

89

[73] Emily Hill, Lori Pollock, and K. Vijay-Shanker. Automatically cap-
turing source code context of nl-queries for software maintenance and
reuse. In Proceedings of the 31st International Conference on Software
Engineering, pages 232–242, 2009.

[74] Einar W. Høst and Bjarte M. Ostvold. The programmer’s lexicon,
volume i: The verbs. In Proceedings of the Seventh IEEE International
Working Conference on Source Code Analysis and Manipulation, pages
193–202, 2007.

[75] Einar W. Høst and Bjarte M. Ostvold. Debugging method names. In
Proceedings of the 23rd European Conference on Object-Oriented Pro-
gramming, pages 294–317, 2009.

[76] Christian Hammer and Gregor Snelting. Flow-sensitive, context-
sensitive, and object-sensitive information flow control based on pro-
gram dependence graphs. International Journal of Information Secu-
rity, 8(6):399–422, October 2009.

[77] Mithun Acharya and Brian Robinson. Practical change impact analysis
based on static program slicing for industrial software systems. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
pages 746–755, 2011.

[78] Sebastian Danicic, Chris Fox, Mark Harman, Rob Hierons, John
Howroyd, and Michael R. Laurence. Static program slicing algorithms
are minimal for free liberal program schemas. The Computer Journal,
48(6):737–748, November 2005.

[79] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 32–41, 1996.

[80] Lars Ole Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, Department of Computer Science,
University of Copenhagen, May 1994.

[81] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized
object sensitivity for points-to analysis for java. ACM Transactions on
Software Engineering and Methodology, 14(1):1–41, January 2005.

[82] George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity
for points-to analysis. In Proceedings of the 34th ACM SIGPLAN Con-

90

ference on Programming Language Design and Implementation, pages
423–434, 2013.

[83] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The dacapo benchmarks: Java benchmarking develop-
ment and analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and
Applications, pages 169–190, 2006.

[84] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay.
Speeding up slicing. In Proceedings of the 2Nd ACM SIGSOFT Sym-
posium on Foundations of Software Engineering, pages 11–20, 1994.

[85] Ondřej Lhoták and Laurie Hendren. Scaling java points-to analysis
using spark. In Proceedings of the 12th International Conference on
Compiler Construction, pages 153–169, 2003.

[86] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot - a java bytecode optimization frame-
work. In Proceedings of the 1999 Conference of the Centre for Advanced
Studies on Collaborative Research, pages 13–. IBM Press, 1999.

[87] Erik Ruf. Context-insensitive alias analysis reconsidered. In Proceedings
of the ACM SIGPLAN 1995 Conference on Programming Language
Design and Implementation, pages 13–22, 1995.

[88] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. Taming reflection: Aiding static analysis in the presence of
reflection and custom class loaders. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, pages 241–250, 2011.

[89] Eric Bodden. DacapoAndSoot. https://code.google.com/p/

tamiflex/wiki/DaCapoAndSoot (Accessed December 2014).

[90] Judit Jász, Lajos Schrettner, Arpád Beszedes, Csaba Osztrogonác, and
Tibor Gyimothy. Impact analysis using static execute after in webkit.
In Proceedings of the 2012 16th European Conference on Software Main-
tenance and Reengineering, pages 95–104, 2012.

91

[91] David Binkley and Mark Harman. Locating dependence clusters and
dependence pollution. In Proceedings of the 21st IEEE International
Conference on Software Maintenance, pages 177–186, 2005.

[92] Chris Parnin and Spencer Rugaber. Resumption strategies for in-
terrupted programming tasks. Software Quality Control, 19(1):5–34,
March 2011.

[93] David Binkley, Mark Harman, and Jens Krinke. Empirical study of
optimization techniques for massive slicing. ACM Transactions on Pro-
gramming Languages and Systems, 30(1), November 2007.

[94] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and
K. Vijay-Shanker. Towards automatically generating summary com-
ments for java methods. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, pages 43–52, 2010.

92

