
Tracking Data Dependence of Large-scale

Systems for Practical Program Understanding

Submitted to

Graduate School of Information Science and Technology

Osaka University

July 2017

Tomomi HATANO

Abstract

Software developers must understand program behavior through code reading for
software maintenance. When changing existing features, developers must under-
stand locations of the source code related to the features. When fixing bugs, devel-
opers must understand which statements cause the bugs.

Existing studies reported that developers spend a lot of time for program un-
derstanding. Developers are often required to read the source code of large-scale
systems that are unfamiliar to them. Therefore, many researchers investigated how
developers understand programs and developed numerous techniques to help de-
velopers understand programs.

Program dependence analysis is one of techniques for helping program under-
standing. It analyzes the source code to extract read/write relationships of variables
(called data dependence), method call relationships, and so on. Developers use
these relationships to explore the source code effectively and efficiently.

This dissertation describes studies on dependence analysis techniques for pro-
gram understanding. These studies aim to extract useful information from the
source code and provide it for developers. Furthermore, we released our analy-
sis tool to facilitate future studies on dependence analysis by other researchers.

First, we conducted an empirical study to statistically investigate the effective-
ness of thin slicing, which is a variant of program slicing to extract statements that
produce data used by a particular statement. Although an existing study showed
that thin slicing is useful for program understanding in small cases, it is not clear
whether thin slicing is effective for program understanding in general. We com-
puted thin slices with respect to all statements that consume data and measured
various metrics on extracted statements. The results showed that the size of the
extracted statements is small enough on average. Furthermore, we found that 10%
of thin slices can be effective for identifying the source statements of data. We
believe that these slices help developers track data dependence.

Second, we developed a novel dependence analysis technique tailored to un-
derstanding how outputs of a feature are computed from inputs (called business
rules). Existing techniques extract statements that correspond to business rules.

iii

However, these techniques may include conditional statements that do not corre-
spond to rules. Our technique excludes those conditional statements by construct-
ing a partial control-flow graph, every path of which outputs a computed result.
We evaluated whether this technique actually contributes to the performance of de-
velopers who extract business rules. A controlled experiment based on an actual
understanding process in one company shows that the technique enables develop-
ers to more accurately identify business rules without affecting the time required
for the task. This is the first study to apply an automated extraction technique to
practical tasks in business-rule understanding.

Finally, we developed a program analysis tool for Java named SOBA. It ana-
lyzes intra-procedural control-flow, data dependence, control dependence, method
call relationships, and so on. Its design enables to easily obtain the above informa-
tion without detailed knowledge of program analysis. We compared the functional
differences and usage differences between SOBA and existing tools. We also com-
pared the performance of them and showed that SOBA was faster than existing
tools. Furthermore, SOBA was applicable to a large-scale system which has over
67,000 classes. We believe that releasing the analysis tool as open source software
contributes to future studies of software engineering.

iv

List of Publications

Major Publications

1. Tomomi Hatano, Yu Kashima, Takashi Ishio, Katsuro Inoue. “A Statistical
Evaluation of Thin Slice Size”, In Proceedings of SES2013, pp1–6, 2013 (in
Japanese).

2. Tomomi Hatano, Yu Kashima, Takashi Ishio, Katsuro Inoue. “A Statisti-
cal Evaluation of Thin Slice Size”, IPSJ Journal, Vol.55, No.2, pp.971–980,
2014 (in Japanese).

3. Tomomi Hatano, Takashi Ishio, Joji Okada, Yuji Sakata, Katsuro Inoue.
“Dependency-Based Extraction of Conditional Statements for Understand-
ing Business Rules”, IEICE Transactions on Information and Systems, Vol.E99-
D, No.4, pp.1117–1126, 2016.

4. Tomomi Hatano, Takashi Ishio, Katsuro Inoue. “SOBA: A Simple Tookit for
Java Bytecode Analysis”, Computer Software, Vol.33, No.4, pp.4–15, 2016
(in Japanese).

5. Tomomi Hatano, Takashi Ishio, Joji Okada, Yuji Sakata, Katsuro Inoue. “Ex-
traction of Conditional Statements for Understanding Business Rules”, In
Proceedings of the 6th International Workshop on Empirical Software Engi-
neering in Practice, pp25–30, Osaka, Japan, 2014.

Related Publications

1. Tomomi Hatano, Takashi Ishio, Yoshitaka Moro, Yuji Sakata, Katsuro In-
oue. “Understanding Business System through Software Clustering Using
I/O Instructions for External Systems”, In Proceedings of SES2015, pp17–
27, Yokohama, 2015 (in Japanese).

v

2. Tomomi Hatano, Matsuo Akihiko. “Removing Code Clones from Indus-
trial Systems Using Compiler Directives”, In Proceedings of the 25th Inter-
national Conference on Program Comprehension, 336–345, Buenos Aires,
Argentina, 2017.

vi

Acknowledgement

I am deeply grateful to my supervisor, Professor Katsuro Inoue. Thanks to his con-
tinual support and valuable comments, I accomplished this study. I am extremely
happy and blessed to have the opportunity of his supervision. I am convinced that
all the things I have learned will be my wealth throughout my life.

I would like to express my gratitude to Professor Toshimitsu Masuzawa and
Professor Shinji Kusumoto for helpful comments and suggestions on this disserta-
tion. I would also like to acknowledge the guidance of Professors Yasushi Yagi.

I am indebted to Associate Professor Takashi Ishio at Nara Institute of Science
and Technology. Throughout my works, he gave me a great deal of comments on
conducting research, writing papers, presentation, and so on. His continual support
greatly contributed to this dissertation.

I would like to thank to Associate Professor Makoto Matsushita and Assis-
tant Professors Kula Raula Gaikovina at Nara Institute of Science and Technology.
They gave me helpful comments and suggestions for my research presentation.

I wish to thank to Dr. Yu Kashima and all the members of Inoue Laboratory.
I could have productive days thanks to their kind support. I would also like to
acknowledge the support of the team members at my company.

I would like to express the appreciation to Mr. Joji Okada and Mr. Yuji Sakata
at NTT DATA Corporation. They powerfully helped our development of a new
technique and an experiment.

Finally, I would like to thank to my family. They have always respected my
decision and supported my school life.

vii

Contents

1 Introduction 1
1.1 Program Understanding . 1
1.2 Understanding Developers’ Understanding 2

1.2.1 Eye tracking . 2
1.2.2 Biometrics . 2

1.3 Helping Developers’ Understanding 3
1.3.1 Natural language processing 3
1.3.2 Software metrics . 3
1.3.3 Software clustering . 4
1.3.4 Execution trace . 4
1.3.5 Static program dependence analysis 5

1.4 Challenges of Program Dependence Analysis for Understanding . 5
1.5 Contributions of the Dissertation 6

1.5.1 Evaluation of an existing analysis technique through an
empirical study . 6

1.5.2 Application of a dependence analysis technique to a prac-
tical understanding task 6

1.5.3 Development of a program analysis tool 7
1.6 Overview of the Dissertation . 7

2 An Empirical Study on Thin Slice Size 9
2.1 Introduction . 9
2.2 Related Work . 10

2.2.1 Program slicing . 10
2.2.2 Reducing slice size . 11
2.2.3 Thin slicing . 12
2.2.4 Statistics on Slice Size 14

2.3 Research Question . 14
2.4 Implementation of Thin Slicing 15

ix

2.4.1 Intra-procedural data dependence analysis 15
2.4.2 Inter-procedural data dependence analysis 16
2.4.3 Data dependence analysis on heap 16
2.4.4 Directed graph of bytecode instructions 16

2.5 Experiment . 16
2.5.1 Measuring metrics . 16
2.5.2 Subject programs . 19
2.5.3 Results . 20

2.6 Conclusion of This Chapter . 21

3 Extracting Conditional Statements for Understanding Business Rules 23
3.1 Introduction . 23
3.2 Related Work . 25
3.3 Motivating Example . 26

3.3.1 Business rules implemented in source code 26
3.3.2 Extraction of business rules by program slicing 27

3.4 The Proposed Technique . 28
3.4.1 Control-flow analysis . 30
3.4.2 Dependence analysis . 31
3.4.3 Extracting conditional statements 32

3.5 Evaluation . 33
3.6 Experiment with Human Subjects 34

3.6.1 Setup . 34
3.6.2 Results . 36

3.7 Comparison with Program Slicing 38
3.7.1 Setup . 38
3.7.2 Results . 39

3.8 Threats to Validity . 40
3.9 Conclusion of This Chapter . 41

4 Development of Program Analysis Tool for Java 43
4.1 Introduction . 43
4.2 Existing Tools and Our Motivation 44
4.3 SOBA . 45

4.3.1 Characteristics of SOBA 46
4.3.2 Example program . 48
4.3.3 Example studies using SOBA 50

4.4 Comparison with Soot and WALA 51
4.4.1 Programming . 51
4.4.2 Features . 52

x

4.4.3 Performance . 53
4.5 Conclusion of This Chapter . 54

5 Conclusion 55
5.1 Summary of Studies . 55
5.2 Future Directions . 56

xi

List of Figures

2.1 An example program. 11
2.2 A system dependence graph for computing slices. 12
2.3 A dependence graph for computing thin slices. 14
2.4 Bytecode representation corresponding to the program of Figure 2.1. 17
2.5 A dependence graph of bytecode instructions. 18
2.6 Cumulative frequency distribution for |Backward(v)| 22

3.1 An example method implementing business rules 27
3.2 A control-flow graph (a) and program dependence graph (b) of Fig-

ure 3.1 . 29
3.3 Three graphs to extract conditional statements: (a) is a subgraph

of Figure 3.2(a)for setFee (line 14). (b) is a dependence graph
extracted from (a). (c) is a subgraph of Figure 3.2(a)for setHour
(lines 15 and 17). 30

3.4 Comparison of the accuracy and time for tasks 36
3.5 The difference between our technique and developers 37
3.6 The number of conditional statements in MosP 39
3.7 The number of conditional statements in the sales management

system . 40

4.1 An example program which analyzes method call relationships us-
ing Soot . 45

4.2 An example program which analyzes method call relationships us-
ing WALA . 46

4.3 A class diagram of SOBA. 47
4.4 An example program which analyzes method call relationships us-

ing SOBA. 49
4.5 Execution results of Figure 4.4. 50
4.6 An example program which analyzes data dependence using SOBA. 50
4.7 Execution results of Figure 4.6. 51

xiii

List of Tables

2.1 A list of bytecode instructions and their types. 15
2.2 Subject programs. 20
2.3 Summary of metrics . 21
2.4 Ratio of thin slices whose |Method(Backward(v))| ≥ 2 and |S ource(v)| ≤

3. 22

3.1 Tables representing computational business rules for the fee and
time limit . 26

3.2 Target methods . 35
3.3 Task assignment . 35
3.4 The extraction results of conditional statements 39

4.1 Classes of SOBA. 48
4.2 Comparison of the line number, class number, and command line

options . 51
4.3 Comparison of features and their usage of each tool. 52
4.4 Measured objects for performance comparison 53
4.5 Performance comparison of programs analyzing call relationships

(time[ms] and memory[MB]) . 53
4.6 Performance comparison of programs analyzing data and control

dependence (time[ms] and memory[MB]) 54
4.7 Performance for Eclipse 4.2 and JDK 1.7.0 (67,973 classes and

543,425 methods) . 54

xv

Chapter 1

Introduction

Software systems play an important role in the modern society. They help to make
people’s lives more prosperous. Furthermore, many organizations rely on software
systems for their operations.

To meet continuously changing requirements of software users, developers
must performmaintenance tasks for existing software systems correctly and quickly.
Outdated systems are not worth for users because their requirements change in a
short time. In addition, systems that do not work properly can affect negative im-
pacts on their users.

1.1 Program Understanding

Software developers must understand existing programs for maintaining software
systems. Program understanding is a process of understanding features, structures,
and behavior of programs [1, 2]. Singer et al. [3] reported that developers perform
understanding tasks before changing source code because developers must explore
source code relevant to the intended change. Mäder et al. [4] reported that develop-
ers who know source files related to features can produce a software change more
efficiently [4].

Developers spend a lot of time with reading source code for understanding [1,5,
6]. Existing software systems are getting larger and more complex because devel-
opers have changed them for many years to meet users’ requirements. Furthermore,
developers often read unfamiliar code written by someones they do not know.

1

1.2 Understanding Developers’ Understanding

Many studies have been conducted to reveal how developers understand programs
and what information is important for understanding. To answer these questions,
researchers observed developers who perform understanding tasks using various
methods. The results from their studies tell us how we should support developers
who understand programs.

1.2.1 Eye tracking

Eye tracking is useful for exploring how developers read the source code. Crosby [7]
et al. used eye tracking to investigate how developers read the source code. They
explored the visual attention of developers who read a binary search algorithm
written in Pascal. The result showed that developers need numerous fixations in
most areas of the source code. Sharif [8] et al. investigated the effect of identifier-
naming conventions (i.e., camelCase and under score) on program understanding.
They used an eye tracker to capture quantitative data and replicate a previous study
where Binkley et al. [9] conducted an experiment to determine which identifier
style is faster and more accurate for software maintenance. The result showed
that developers recognized identifiers in the underscore style more quickly while
there was no difference in accuracy between the two styles. Furthermore, Sharif et
al. [10] investigated the relationship between scan time and defect detection time
in source code review. They showed that the longer reviewers spend in the initial
scan, the quicker they find the defect.

1.2.2 Biometrics

Some researchers utilize biometrics to reveal developers’ cognitive process in pro-
gram understanding. Parnin [11] analyzed electromyogram (EMG) signals of de-
velopers who perform programming tasks. EMG measures electrical signals emit-
ted from muscle nerves. His experiment would suggest that EMG can measure the
difficulty of understanding tasks. Siegmund et al. [12] applied functional magnetic
resonance imaging (fMRI), which measures blood-oxygenation levels that change
as a result of localized brain activity, to an experiment of program understanding.
In the experiment, to reveal which brain regions are activated during the tasks,
participants performed understanding tasks of the source code which implements
standard algorithms (e.g., sorting) in the fMRI scanner. The results showed a clear
activation pattern of five brain regions, which are related to working memory, at-
tention, and language processing. Their study provided an empirical evidence that
language processing is essential for program understanding.

2

1.3 Helping Developers’ Understanding

Researchers have proposed many techniques and conducted experiments to help
developers understand programs. The proposed techniques cover a wide range
of research topics: the automatic generation of software document, software met-
rics, architecture recovering by software clustering, analysis of execution trace,
and static program dependence analysis. This dissertation describes studies on
static program dependence analysis.

1.3.1 Natural language processing

Some studies automatically generate English documentation from the source code
using natural language processing techniques. Sridhara et al. developed summa-
rization techniques to generate natural language comments for Java methods [13]
and their formal parameters [14]. The techniques identify important statements
to extract keywords from identifier names in those statements. A natural lan-
guage processing technique stitches the keywords into English sentences. These
sentences help developers understand the behavior a Java method. McBurney et
al. [15] developed a summarization technique which includes the context of method
invocations to explain why the method exists or what role it plays in the system.
They conducted an experiment involving 12 participants to compare their sum-
maries with Sridhara’s summaries. The result showed that their summaries are su-
perior in quality. Moreno et al. [16] developed a technique to generate summaries
of Java classes. Their summaries allow developers to understand the main goal and
structure of the class. Their experiment showed that most of their summaries are
readable and understandable and they do not include extraneous information.

1.3.2 Software metrics

Some researchers use software metrics to identify which programs are difficult to
understand. Katzmarski et al. [17] asked developers to order multiple programs by
their complexity. The authors measured metrics of the programs to compare rank-
ings by developers and metrics values. They found that a simple metrics which
counts assignment statements was similar to developers’ opinion. Kasto et al. [18]
investigated the correlation between metrics and the difficulty of understanding
tasks using student subjects. The students were asked to answer questions. The
authors used the percentage of correct answers as the difficulty. The result showed
that several metrics (such as cyclomatic complexity and nested block depth) were
significantly correlated to the difficulty. The authors concluded that metrics can be
useful tool in the early prediction of the difficulty. Singh et al. [19] used devel-

3

opers’ activity logs, such as viewing a file, editing source code, as indicators of a
understanding effort. The authors investigated the correlation the activity logs and
software metrics. They showed that class cohesion, which measures relative num-
ber of directly connected methods in the class, had a significant correlation with
the logs.

1.3.3 Software clustering

Software clustering is useful for understanding the overview and architecture of
systems [20]. It decomposes a system into smaller manageable subsystems by
measuring the similarity among software entities (e.g., files and functions).

Mancoridis et al. [21] developed a clustering technique which creates subsys-
tems that have high-cohesion and low-coupling to other subsystems. The technique
reduces the system complexity to help developers understand a system structure.
Kobayashi et al. visualized a system structure [22] using their clustering tech-
nique [23]. The technique gathers classes that implement relevant features into a
cluster. They extract method call relationships to identify relevant classes. Anquetil
et al. [24] developed a clustering technique which uses the naming convention of
files. Scanniello et al. [25] proposed a technique for understanding three-tier archi-
tecture of client-server systems. It extracts inheritance relationships among classes
and interfaces of Java. It also extracts identifier names and measures their similar-
ity. Tzerpos et al. [26] developed a rule-based clustering technique for C systems.
In this technique, developers define rules such as gathering fileA.c and fileA.h into
the same cluster, gathering device drivers into the same cluster, and gathering util-
ity functions into the same cluster.

1.3.4 Execution trace

The analysis of execution traces helps developers understand the runtime behavior
of programs. De Pauw et al. [27] developed a technique to visualize the behavior
and an architecture of object-oriented systems. They showed that the technique
is effective in their daily work for understanding large and complicated systems.
Lange et al. [28] visualized program’s interactions to examine a large amount of
execution traces. Their visualization uses a graph which can present voluminous
information effectively and allow developers to find helpful information. Reiss [29]
developed a Java visualizer which describes a program action with low overhead
while the program is running. The visualizer enables developers to understand
what the program is actually doing. Greevy [30] introduced 3D visualization tech-
nique which helps developers understand overview of the dynamic behavior of
features. Beck et al. [31] proposed an approach which displays the consumed run-

4

time for each method on the source code editor. The approach is useful for finding
and fixing performance bottlenecks.

1.3.5 Static program dependence analysis

Program-dependence analysis techniques extract the following information from
the source code to provide it for developers who understand programs.

Control-flow: execution paths including the orders and branches of statements.

Data dependence: read/write relationships of variables.

Control dependence: an evaluation result of a statement determines whether an-
other statement is executed.

Method call relationships: a method calls another method.

Integrated development environments such as Eclipse often extract the above to
visualize the dependence.

Program slicing [32] is one of dependence analysis techniques for helping de-
velopers perform understanding tasks [33]. It analyzes data and control depen-
dence to extract all statements that may affect a statement specified by developers.
It enables developers to investigate how the values of variables are computed [34].
Therefore, developers can understand why programs output wrong values in de-
bugging [35]. Furthermore, program slicing techniques are embedded in a code
inspection tool [36].

1.4 Challenges of Program Dependence Analysis for Un-
derstanding

Program slicing techniques may be ineffective for understanding large-scale sys-
tems because these techniques extract so many dependencies that developers can-
not grasp. Binkley et al. [37] reported that program slicing extracts 30% of state-
ments on average. From this result, it is difficult for developers to read the extracted
statements for understanding large-scale systems.

While many researchers have proposed variants of program slicing that reduce
information provided for developers by focusing on limited dependencies [38–44],
thin slicing is one of promising techniques which track only data dependence be-
tween statements. It extracts statements that produce data used by a statement
specified by developers. It is expected that thin slicing is effective for understand-
ing large-scale systems because tracking data dependence is an important task for

5

understanding [45]. However, it is not clear whether thin slicing is effective for
understanding in general though an existing study demonstrated its effectiveness in
small cases.

It is difficult to apply existing dependence analysis techniques including pro-
gram slicing to a practical understanding process. One of understanding tasks for
industrial systems is answering a question: how outputs of a system are computed
from inputs? (called business rules). For example, a facility defines a calculation
procedure for admission fees that are 500 yen per child, 1,000 yen per student, and
1,500 yen per adult; this procedure is a business rule. Although existing studies
have proposed various techniques to extract statements corresponding to business
rules [46–50], the extracted statements may include irrelevant statements to busi-
ness rules.

Finally, an easy-to-use dependence analysis tool is required for developing a
novel analysis technique. Although existing tools are available for dependence
analysis, their users must pay high learning cost to use them efficiently. Further-
more, they have too many features and options for researchers in software engi-
neering who require basic information as described in Section 1.3.5 to conduct
their studies.

1.5 Contributions of the Dissertation

This dissertation describes three studies to meet the above challenges.

1.5.1 Evaluation of an existing analysis technique through an empiri-
cal study

We conducted an empirical study to evaluate the effectiveness of thin slicing. Al-
though an existing study showed that thin slicing is useful for program understand-
ing in some cases [51], it is not clear whether thin slicing is effective in general. We
measured various metrics on thin slices to investigate its effectiveness. The results
showed that the average size of thin slices is small enough and 10% of thin slices
can be effective for tracking data dependence. We believe that thin slicing can sup-
port developers to understand large-scale systems by visualizing data dependence.

1.5.2 Application of a dependence analysis technique to a practical
understanding task

We developed a novel dependence analysis technique for understanding business
rules and evaluated its effectiveness. Although understanding the rules is important

6

for maintaining business systems, existing techniques are not enough to help de-
velopers understand rules. The existing techniques are program slicing techniques
that extract statements relevant to the rules. However, they may include statements
that do not correspond to the rules. We developed a technique to exclude those
statements by constructing control-flow graphs, every path of which is reachable
to a given point. We evaluated whether our technique actually contributes to the
performance of developers investigating the rules. A controlled experiment showed
that our technique enables developers to more accurately identify statements corre-
sponding to the rules without affecting the time. The task in our experiment is based
on a practical understanding process which is actually performed in one company.
This is the first study to apply the extraction technique to a practical understanding
task of business rules and evaluate its effectiveness with human subjects.

1.5.3 Development of a program analysis tool

We developed a program analysis tool for Java. Java is a widely-used programming
language in research and the real world. Although existing tools have enough fea-
tures to perform program analysis, using them is difficult for those who do not have
detailed knowledge of many analysis algorithms. While researchers in software en-
gineering often require basic information about programs, they are not interested
in detailed behavior and implementation of algorithms. Our tool, named SOBA,
enables to easily obtain basic information such as control-flow, data dependence,
control dependence, and method call relationships. We released SOBA as open
source software to facilitate future studies on dependence analysis by other re-
searchers. We also hope that SOBA will be the chance to learn algorithms and
research on dependence analysis.

1.6 Overview of the Dissertation

Chapter 2 presents an empirical study on effectiveness of thin slicing. Chapter 3 ex-
plains our dependence analysis technique for understanding business rules. Chap-
ter 4 describes the design and implementation of our analysis tool for future studies.
Finally, Chapter 5 concludes this dissertation and discusses future directions.

7

Chapter 2

An Empirical Study on Thin Slice
Size

2.1 Introduction

In software maintenance, developers spend a lot of time for program understand-
ing [1, 6]. It is an important understanding task that locating the current imple-
mentation of a feature in the source code. Mäder et al. [4] reported that devel-
opers who know source files related to features can produce a software change
more efficiently. To locate the source code related to features, developers need to
explore data dependence among methods. Identifying multiple methods that use
same data through parameters and fields is useful to understanding the source code
locations [45]. However, it takes a lot of time for developers to explore data depen-
dence [52]

Program slicing is a promising technique to reduce the time required for under-
standing [32]. It extracts all statements (called a slice) that may affect a particular
statement. Although it reduces the source code lines developers must read, it ex-
tracts 30% of statements on average [37]. Therefore, it is difficult to use program
slicing for understanding large-scale systems.

Thin slicing [51] is a variant of program slicing which reduces the slice size. It
extracts only statements that produce data used by a particular statement. The size
of thin slices is much smaller than that of traditional slices. Thin slicing can be
effective for identifying locations where the same data is used because it focuses
on only data-flow paths. It is expected that thin slicing is effective for the task
to locate source code related to features. Sridharan et al. demonstrated 22 cases
where thin slicing reduced the time required for program understanding [51].

Although thin slicing is a promising technique, it is not revealed whether thin

9

slicing is effective for program understanding in general. Existing studies mea-
sured the average size of slices to evaluate the effectiveness of slicing techniques.
Binkley et al. [37] reported the average size of traditional slices and Jäsz et al [53]
also reported the average size of the approximation of traditional slices. As these
studies, the average size of thin slices must be measured to evaluate their effective-
ness.

We implemented a thin slicer for Java programs to measure thin slice size. We
address the question whether thin slicing is effective in general for program un-
derstanding in terms of the average slice size, while Sridharan et al. demonstrated
only 22 cases where thin slicing is useful. If thin slices are small enough but cap-
ture inter-procedural data-flow paths, they would enable developers to efficiently
investigate data-flow paths in the source code. On the other hand, if thin slices
are contained in a single method, they would be less effective since developers can
investigate data-flow paths by simply reading the source code. Thus, we also mea-
sure metrics about thin slices (such as the number of methods included in the slice
and the number of producer instructions) to investigate how many thin slices can
be effective for understanding.

2.2 Related Work

2.2.1 Program slicing

Program slicing is a technique which extracts all statements that may affect a par-
ticular statement [32]. A slice is computed using System Dependence Graph [54]
(SDG) which is extended from Program Dependence Graph (PDG). PDG is a di-
rected graph whose vertices representing each statement in a procedure of a pro-
gram and edges representing dependencies among the vertices. SDG is a directed
graph that connects PDGs of each procedure by procedure call relationship.

A slice with respect to a variable used in a statement, called a slicing criterion,
is computed as a set of vertices that are reachable from the vertex representing the
slicing criterion via edges in SDG. A backward slice and a forward slice can be
obtained by backward and forward traversal, respectively. A backward slice is a
set of statements that may affect a slicing criterion. A forward slice is a set of
statements that may be affected a slicing criterion.

Figures 2.1 and 2.2 show an example program and its SDG. The vertices a and
b represent formal parameters and the vertex ret represents a return value. A slice
with respect to Line 11 is a set of Lines {3, 4, 5, 7, 8, 9, 10, 11, 16}. The slice tells
that Lines 6 and 13 do not affect Line 11.

Program slicing is effective for program understanding and debugging. When
developers understand source code fragments they focus on, program slicing en-

10

1: public class Sample {

2: public static void m1() {

3: A x = new A();

4: A z = x;

5: int y = 1;

6: int i = 0;

7: A w = x;

8: w.f = add(y, 2);

9: if (w == z) {

10: int v = z.f;

11: System.out.println(v);

12: }

13: System.out.println(i);

14: }

15: public static int add(int a, int b) {

16: return a + b;

17: }

18: }

Figure 2.1: An example program.

ables developers to investigate how the values of variables are computed [34]. In
debugging, program slicing is used to reveal why programs output wrong val-
ues [35]. Kusumoto et al. [55] reported that program slicing enables developers
to effectively perform debugging tasks. Anderson et al. [36] embedded program
slicing techniques in their code inspection tool.

2.2.2 Reducing slice size

Program slicing enables developers to read only source code which is relevant to a
particular variable. A smaller slice is more effective to reduce the time for source
code reading. Therefore, various methods have been proposed to reduce slice size.
Chopping [38] computes intersection of a forward slice with respect to a vertex pro-
ducing data and a backward slice with respect to a vertex using data. A chop indi-
cates data-flow paths between two variables. While chopping is originally defined
for intra-procedural slices, Reps et al. [39] extended chopping to inter-procedural
slicing. Distance-limited slicing [40] is another extension of program slicing; it
extracts vertices whose distance from slicing criteria is less than a given threshold.
Chen et al. [41] proposed an interactive method for feature location based on pro-
gram slicing. This method firstly visualizes only vertices which are connected to
a slicing criterion. When a developer selected an interesting vertex, vertices con-
nected to the selected vertex become visible. This method enables developers to
explore a small part of a dependence graph. Callstack-sensitive slicing [42] extracts
program statements relevant to a stack trace of a program crash. Barrier slicing [40]

11

Figure 2.2: A system dependence graph for computing slices.

extracts a smaller slice by terminating graph traversal at barrier vertices selected
by either developers or some conditions. Ceccato et al. [43] used barrier slicing
to locate source code fragments implementing a certain process. Wang et al. [44]
proposed a query language to search subgraphs that satisfy particular conditions in
a SDG.

2.2.3 Thin slicing

Thin slicing [51] extracts all statements that produce data used at a slicing criterion.
It reduces slice size and efforts for software maintenance. Sridharan et al. [51]
proposed two computation methods of thin slicing: context-sensitive thin slicing
and context-insensitive thin slicing. We address context-insensitive thin slicing
because Sridharan et al. reported that it is difficult to apply context-sensitive thin
slicing to large-scale systems due to its low-scalability.

A thin slice with respect to s is a set of statements that s are data-dependent on.
Thin slicing defines three types of data dependencies as follows.

Intra-procedural data dependency

A statement s2 is data dependent on s1 if all of the following conditions hold.

1. s1 defines a value of variable v.

2. s2 uses the value of variable v.

12

3. There exists an execution path from s1 to s2 on which variable v is not re-
defined.

Thin slicing ignores data-flow into base pointers of field accesses. It focuses
on the value flowing through the accesses. For example, with respect to x = p.f,
thin slicing traces data dependencies on f and ignores data dependencies on p.

Inter-procedural data dependency

Thin slicing connects inter-procedural data dependency as follows:

• The vertices corresponding to formal parameters of callees are data depen-
dent on the vertices corresponding to actual parameters of callers.

• The vertices that receive return values of callees are data dependent on the
vertices corresponding to return values of callees.

Data dependency on heap

A statement which uses a filed (array) variable is data dependent on another state-
ment which defines the filed (array) variable.

Computing thin slices

A thin slice is computed by graph traversal of a directed graph whose edges rep-
resent data dependencies. Figure 2.3 shows a dependence graph of Figure 2.1
program. The graph ignores control dependence edges and data dependence edges
of base pointers (a edge from Lines 7 to 8 is ignored). A thin slice with respect to
Line 11 is a set of Lines {5, 8, 10, 11, 16}. The thin slice reveals which statements
produce a value used at Line 11.

Advantages of thin slicing

Thin slicing reveals which statements define a variable used at a slicing criterion
because it focuses just on value flowing to reduce slice size. Sridharan et al. state
that thin slicing is effective for many program understanding tasks because base
pointer manipulation matters less than actual copying of the value through the heap.

13

Figure 2.3: A dependence graph for computing thin slices.

2.2.4 Statistics on Slice Size

Existing studies have conducted empirical studies on statistics of slice size to eval-
uate how program slicing techniques are effective in general. Binkley et al. [56]
investigated the average size of program slices. They reported that traditional pro-
gram slicing extracts 30% of statements in C programs. Kashima [57] also reported
average slice size in Java programs. He implemented a precise slicer for object-
oriented systems [58] and showed that it extracts 9% of statements. Jász et al. [53]
also conducted a similar experiment to evaluate their approach named Static Ex-
ecute Before (SEB) relation, which is an approximation of traditional program
slicing. They found that the average size of SEB is very close to that of tradi-
tional program slicing. Horwitz et al. [42] reported that a callstack-sensitive slice
is about 0.31 time the size of the corresponding full slice on average. Our work
follows these works to evaluate thin slicing because Sridharan et al. show only a
few cases where thin slice sizes are measured.

2.3 Research Question

We conduct an empirical study on thin slice size to evaluate whether thin slicing is
effective in general. We address two research questions as follows:

RQ1. Is the size of thin slice small enough on average?

RQ2. Are thin slices effective in program understanding?

14

Table 2.1: A list of bytecode instructions and their types.
Description Type Instructions

Read local variables transfer ILOAD, LLOAD, FLOAD, DLOAD, ALOAD
Write local variables transfer ISTORE, LSOTRE, FSTORE, DSTORE, ASTORE
Read field variables transfer GETFIELD, GETSTATIC
Write field variables transfer PUTFIELD, PUTSTATIC
Read array variables transfer IALOAD, LALOAD, FALOAD, DALOAD, AALOAD, BALOAD, CALOAD, SALOAD
Write array variables transfer IASTORE, LASTORE, FASTORE, DASTORE, AASTORE, BASTORE, CASTORE, SASTORE

Operand stack management - POP, POP2, DUP, DUP2, DUP X1, DUP2 X1, DUP X2, DUP2 X2, SWAP
Create objects source NEW, NEWARRAY, ANEWARRAY, MULTIANEWARRAY
Computations source IADD, LADD, FADD, DADD, ISUB, LSUB, FSUB, DSUB, IMUL, LMUL, FMUL, DMUL,

and sink IDIV, LDIV, FDIV, DDIV, IREM, LREM, FREM, DREM, INEG, LNEG, FNEG, DNEG,
ISHL, LSHL, ISHR, LSHR, IUSHR, LUSHR, IAND, LAND, IOR, LOR, IXOR, LXOR, IINC,
I2L, I2F, I2D, L2I, L2F, L2D, F2I, F2L, F2D, D2I, D2L, D2F, I2B, I2C, I2S,
LCMP, FCMPL, FCMPG, DCMPL, DCMPG

Create constants source ICONST M1, ICONST 0, ICONST 1, ICONST 2, ICONST 3, ICONST 4, ICONST 5,
LCONST 0, LCONST 1, FCONST 0, FCONST 1, FCONST 2, BIPUSH, SIPUSH,
LDC, DCONST 0, DCONST 1, ACONST NULL

Comparison sink IFEQ, IFNE, IFLT, IFGE, IFGT, IFLE, IFNULL, IF ICMPEQ, IF ICMPNE, IF ICMPLT,
IF ICMPGE, IF ICMPGT, IF ICMPLE, IF ACMPEQ, IF ACMPNE, IFNONNULL,
TABLESWITCH, LOOKUPSWITCH

Method invocations other INVOKEVIRTUAL, INVOKEINTERFACE, INVOKESPECIAL, INVOKESTATIC
Method exits transfer IRETURN, LRETURN, FRETURN, DRETURN, ARETURN, RETURN

2.4 Implementation of Thin Slicing

We implemented a thin slicer for Java bytecode to answer the research questions.
We analyzed not source code but rather bytecode because we can obtain informa-
tion analyzed by a compiler without parsing source code. Table 2.1 shows a list
of bytecode instructions. We construct a directed graph whose vertices represent
bytecode instructions and edges represent data dependencies between instructions.
Figure 2.4 shows an example of bytecode instructions that correspond to the pro-
gram of Figure 2.1. We describe the detail of our data dependence analysis.

2.4.1 Intra-procedural data dependence analysis

Local variables and elements of an operand stack

Java Virtual Machine stores values and computation results into an operand stack.
We analyze two types of data dependence edges: one is a edge between a local
variable and an element of an operand stack, the other is a edge between elements
of an operand stack.

Operand stack management instructions

Operand stack management instructions have no data dependence edge because our
implementation computes data dependence edges considering the effect of those
instructions. For example, when a return value of a method invocation is not used,
a POP instruction disposes of the value. Our implementation assumes that there is
no dependence edge from the method invocation.

15

2.4.2 Inter-procedural data dependence analysis

For each method call site that calls m, we find methods m1,m2, . . . ,mk that may
be invoked by the call site. For each parameter of mi, an actual in/out parameter
vertex is created and connected to its corresponding formal parameter vertex. We
use Variable-Type Analysis [59] to resolve dynamic binding.

2.4.3 Data dependence analysis on heap

A data dependence edge connects instructions that may read and write the same
field or the same array. First, a GETSTATIC instruction which reads a field f
is data dependent on PUTSTATIC instructions that write the same field f . Each
static field is identified by its class name and field name. Second, a GETFIELD
instruction is data dependent on PUTFIELD instructions when they may access the
same field of the same object. We use object-sensitive pointer analysis [60] that is
based on Andersen’s pointer analysis [61]. Similarly, array load instructions are
data dependent on array store instructions when they may access the same array.

2.4.4 Directed graph of bytecode instructions

Figure 2.5 shows a dependence graph for bytecode instructions of Figure 2.4. The
vertices surrounded by a dotted line represent instructions in add method and the
others represent instructions in main method.

2.5 Experiment

We compute thin slices and their metrics to answer our research questions.

2.5.1 Measuring metrics

We divide bytecode instructions into three types: source produces data, sink con-
sumes data, and trans f er propagate data without changing the value. Table shows
our classification for all instructions. Some instructions are source and sink. For
example, IADD, which adds two integers and stores the result, is sink that consumes
two integers and it is also sink that produces the computation result for following
instructions. The actual parameters of method calls are sink and return values are
source.

We compute backward thin slices with respect to all sink instructions and for-
ward thin slices with respect to all source instructions. This is because we ex-
pect that backward slices are effective for investigating how the values used by

16

Sample#m1#()V

2: NEW

3: DUP

4: INVOKESPECIAL A#<init>()V

5: ASTORE 0 (x)

8: ALOAD 0 (x)

9: ASTORE 1 (z)

12: ICONST_1

13: ISTORE 2 (y)

16: ICONST_0

17: ISTORE 3 (i)

20: ALOAD 0 (x)

21: ASTORE 4 (w)

24: ALOAD 4 (w)

25: ILOAD 2 (y)

26: ICONST_2

27: INVOKESTATIC Sample#add(II)I

28: PUTFIELD A#f: int

31: ALOAD 4 (w)

32: ALOAD 1 (z)

33: IF_ACMPNE L00044

36: ALOAD 1 (z)

37: GETFIELD A#f: int

38: ISTORE 5 (v)

41: GETSTATIC java/lang/System#out: java/io/PrintStream

42: ILOAD 5 (v)

43: INVOKEVIRTUAL java/io/PrintStream#println(I)V

47: GETSTATIC java/lang/System#out: java/io/PrintStream

48: ILOAD 3 (i)

49: INVOKEVIRTUAL java/io/PrintStream#println(I)V

52: RETURN

Sample#add#(II)I

2: ILOAD 0 (a)

3: ILOAD 1 (b)

4: IADD

5: IRETURN

Figure 2.4: Bytecode representation corresponding to the program of Figure 2.1.

method calls, conditional statements, and calculations are computed, and that for-
ward slices are effective for investigating which statements use computation results
and valuables. Transfers are excluded from slicing criteria because they just deliver
data.

We define following notations for thin slices. The number of elements con-
tained in S is denoted by |S |.

Backward(u) A set of vertices computed by backward thin slicing with respect to
a sink v.

Source(u) A set of source vertices that are included in Backward(v).

17

Figure 2.5: A dependence graph of bytecode instructions.

Forward(w) A set of vertices computed by forward thin slicing with respect to a
source w.

Sink(w) A set of sink vertices that are included in Forward(w).

Method(Sts) A set of methods whose vertices are included in a thin slice S ts.

Class(Sts) A set of classes whose vertices are included in a thin slice S ts.

LOC(Sts) Source code lines contained within a thin slice S ts.

We obtain line numbers from debug information embedded in class files. A
pair of a method declaration vertex and its formal parameter vertex is counted as
one source code line. Also, a pair of a method exit vertex and its return value vertex
is counted as one source code line.

18

We demonstrate examples of measuring metrics. Let v be 43 : INVOKEVIRTUAL.

Backward(v) = {12 : ICONST 1, 13 : IS TORE, 25 : ILOAD, 26 : ICONST 2,
27 : INVOKESTAT IC, 28 : PUTFIELD, 37 : GETFIELD,
38 : IS TORE, 42 : ILOAD, 43 : INVOKEVIRTUAL, a, b,
2 : ILOAD, 3 : ILOAD, 4 : IADD, 5 : IRETURN, ret}

S ource(v) = {12 : ICONST 1, 13 : IS TORE, 4 : IADD}
Method(Backward(v)) = {main, add}
Class(Backward(v)) = {S ample}
LOC(Backward(v)) = {5, 8, 10, 11, 16}
To answer RQ1, we compute |Backward(v)| with respect to each sink v and

|Forward(w)| with respect to each source w. To answer RQ2, we compute follow-
ing metrics for each sink v.

• |Method(Backward(v))|
• |Class(Backward(v))|
• |S ource(v)|

Furthermore, we compute following metrics for each source w.

• |Method(Forward(w))|
• |Class(Forward(w))|
• |S ink(w)|
When |S ource(v)| is small, we can narrow down producers of data to a few

by using thin slicing. Similarly, when |S ink(w)| is small, we can narrow down
consumers of data to a few. When |Method(Backward(v)), |Class(Backward(v))|,
|Method(Forward(w))|, |Class(Forward(w))| are big, their thin slices lie on various
methods or classes. In these cases, it is expected that thin slicing reduces the time
required for identifying producers and consumers while considering method call
relationships.

2.5.2 Subject programs

We analyzed seven Java programs in DaCapo benchmark 9.12 as shown in Ta-
ble 2.2. They were compiled by JDK 1.6.0 45 on Windows 7 (64bit) with library
classes. However, tomcat, pmd, xalan, and batik have no information about source
code lines because their source code is unavailable.

19

Table 2.2: Subject programs.
Program Classes Methods Vertices Lines
tomcat 261 2,389 54,468 -
luindex 560 4,180 123,191 36,060
sunflow 657 4,609 190,526 43,974
avrora 1,838 9,304 211,343 68,936
pmd 2,369 16,439 448,722 -
xalan 2,805 22,377 815,861 -
batik 4,417 28,818 968,470 -

2.5.3 Results

RQ1

Table 2.3 shows the summary of measured metrics. The average size of backward
and forward thin slices is about 2.1% on the seven programs. Binkley et al. [37]
reported that the average size of traditional slices is about 30% in C programs.
Also, Kashima [57] reported that the average size is 9% in Java programs. Some
of his subject programs are same as our ones although his results do not include
library classes. Considering these reports, we conclude that the average size of
thin slices is small enough. For luindex, sunflow, and avrora, while the average of
|LOC(Backward(v))| was 0.3 point greater than that of |Backward(v)|, a correlation
coefficient between them was 0.9996. From these results, we expect that source
code lines of thin slices are also small.

However, thin slices are polarized into large and small ones. Figure 2.6 is cu-
mulative frequency distribution whose horizontal axis is for the ratio of |Backward(v)|
to a program, and vertical axis is the number of thin slices. It shows that 60 to 80%
of backward slices are less than 0.1% of a program while the rest are about maxi-
mum value of slices.

RQ2

Table 2.4 shows the ratio of thin slices that have a few producers and capture
inter-procedural data-flow paths. These 10% slices can be effective for tracking
data-flow because thin slicing tells producer values developers without traversing
multiple methods.

20

Table 2.3: Summary of metrics
Subject tomcat luindex sunflow avrora pmd xalan batik
Vertices 54,468 123,191 190,526 211,343 448,722 815,861 968,470

|Backward(v)|
max 922 12,820 34,512 30,458 40,784 62,957 93,810

ratio(%) 1.7 10.4 18.1 14.4 9.1 7.7 9.7
mean 55.2 3012.8 11264.9 6919.3 7108.6 12482.7 26159.3

ratio(%) 0.10 2.4 5.9 3.3 1.6 1.5 2.7

|Forward(w)|
max 3,673 23,633 43,041 27,592 52,339 105,749 140,965

ratio(%) 6.7 19.2 22.6 13.1 11.7 13.0 14.7
mean 57.2 1434.0 7834.8 2386.0 6226.3 18481.9 28719.3

ratio(%) 0.11 1.2 4.1 1.1 1.4 2.3 3.0

|LOC(Backward(v))|
max - 4,678 7,144 10,602 - - -

ratio(%) 13.0 16.2 15.4 - - -
mean - 1102.6 1933.2 2425.6 - - -

ratio(%) 3.1 4.4 3.5 - - -

|Method(Backward(v))| max 193 1,342 2,010 3,780 4,277 6,849 7,326
mean 8.0 155.6 155.7 128.7 126.5 385.5 576.9

|Method(Forward(w))| max 368 1,852 2,449 3,702 3,132 7,175 8,011
mean 6.4 116.1 230.2 331.0 369.6 1267.1 1632.0

|Class(Backward(v))| max 41 288 338 1,284 685 1,352 1,792
mean 2.9 68.4 112.8 278.0 111.3 264.9 489.7

|Class(Forward(w))| max 68 375 348 1,147 507 1,306 1,750
mean 2.3 35.9 46.2 98.9 67.0 243.4 361.6

|S ource(v)| max 382 5,494 15,451 14,964 18,900 27,441 40,687
mean 25.3 1371.4 5218.1 3470.6 3076.6 5215.6 11183.8

|S ink(w)| max 1,610 9,216 17,369 11,689 19,425 41,423 52,334
mean 25.4 537.6 3031.9 1021.4 2264.2 7238.5 10662.3

2.6 Conclusion of This Chapter

We measured thin slice size, the number of producer instructions, the number of
methods included in the slice, and others. The results showed that the average
size of thin slices is small enough. Furthermore, about 10% of thin slices can
be effective for tracking data-flow because they have a few producers and capture
inter-procedural paths. We expect that thin slicing can support developers to un-
derstand large-scale systems by visualizing inter-procedural data-flow paths. Ishio
et al. [62] reported that visualization of data-flow paths reduced the time required
for understanding.

21

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0% 11.0% 12.0% 13.0% 14.0% 15.0% 16.0% 17.0% 18.0%

Cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Ratio of |Backward(v)| to the number of all vertices

tomcat

luindex

sunflow

avrora

pmd

xalan

batik

Figure 2.6: Cumulative frequency distribution for |Backward(v)|

Table 2.4: Ratio of thin slices whose |Method(Backward(v))| ≥ 2 and |S ource(v)| ≤
3.

|S ource(v)|
Subject 1 2 3 total
tomcat 2.9 3.6 3.9 10.3
luindex 3.0 4.5 3.6 11.0
sunflow 1.8 2.5 2.4 6.7
avrora 3.5 3.7 2.5 9.7
pmd 2.8 3.5 4.1 10.5
xalan 2.7 3.4 3.3 9.4
batik 2.5 3.5 2.7 8.7

22

Chapter 3

Extracting Conditional
Statements for Understanding
Business Rules

3.1 Introduction

For the maintenance of a business system, developers must understand the busi-
ness rules implemented in the system [48,63,64]. Business rules are classified into
several types, such as computational business rules and constraints [63]. Compu-
tational business rules define how the output of a feature is computed from the
valid inputs. Constraints restrict the actions that the system or its users are allowed
to perform. In the implementation of these rules, conditional statements (e.g., if
statements) affect output values in the computations and verify that the constraints
are not violated.

Understanding business rules is a tedious and error-prone activity for two main
reasons [50]. First, the documentation describing the rules is typically lost, out-
dated, or otherwise unavailable. Second, the implemention of the rules is scatterd
throughout the source code. Developers are required to extract conditional state-
ments corresponding to the business rules. When understanding computational
business rules, developers must answer which of the conditional statements corre-
spond to the computational business rules for each output of a feature.

Backward program slicing [32] is used to understand business rules [47–50,
64]. Cosentino et al. [50] proposed an application of program slicing to extract
statements corresponding to business rules that compute a particular variable. How-
ever, they reported that the extracted statements may include conditional statements
that do not correspond to the business rules. Those statements are called technical

23

statements [50] because they frequently verify whether system resources, such as a
data file or database connection, are available for executing a feature. The technical
statements themselves do not affect the output directly, although they do determine
if the computation is executed. Furthermore, the extraction based on program slic-
ing does not distinguish the types of rules, although Wiegers et al. state that dis-
tinguishing them is helpful to understand business rules. Consequently, program
slicing is not enough to understand business rules because it may extract technical
statements and does not distinguish the types of rules.

This chapter tackles a problem that existing techniques include technical state-
ments as pointed out by Cosentino [50]. We propose a program-dependence anal-
ysis technique tailored to understanding computational business rules. Given a
variable representing an output, the proposed technique extracts the conditional
statements that may affect the computation of the value of the variable. To ex-
clude technical statements from the analysis, we construct a partial control-flow
graph (CFG), every path of which outputs a computed result. Further, we en-
sure that the specified variable is data-dependent on a statement that is directly or
transitively dependent on the extracted conditional statements. Our technique is
designed to extract conditional statements corresponding to computational busi-
ness rules, whereas the existing techniques extract multiple types of rules. In this
chapter, conditional statements corresponding to computational business rules are
called relevant statements.

We evaluated whether this technique actually contributes to the performance
of developers investigating computational business rules. The evaluation was a
controlled experiment based on an actual process in one company. Eight subjects in
the company were requested to identify relevant statements to a system output. The
results confirm that the proposed technique enables developers to more accurately
identify relevant statements, without affecting the time required for the task.

The contributions of this chapter are summarized as follows.

• We propose a program-dependence analysis technique for understanding busi-
ness rules. The proposed technique is a variant of program slicing that ex-
cludes technical statements.

• We evaluate our technique by conducting an experiment involving eight in-
dustrial experts. To the best of our knowledge, this is the first study to apply
an automated extraction technique to experts’ tasks in business-rule reverse
engineering.

• We apply the proposed technique and program slicing to two systems de-
veloped in industry and demonstrate that the proposed technique extracts a
reduced number of conditional statements.

24

3.2 Related Work

Sneed et al. [46] proposed a framework based on a program slicing technique to ex-
tract business rules from source code. They concluded that techniques for data flow
analysis and extracting partial paths are required for understanding business rules.
The framework is extended for COBOL [47], C/C++ [48], Java [49], respectively.
Furthermore, Cosentino et al. [50] extended the framework for COBOL programs
based on the principles of Model Driven Engineering. They automatically iden-
tify variables representing outputs using the COBOL command and visualize the
extracted rules at a higher abstraction level. Although they do not evaluate their
technique, a preliminary experiment indicates that their extraction based on pro-
gram slicing includes conditional statements that do not correspond to business
rules. Our technique enables the exclusion of those statements and extracts condi-
tional statements corresponding to computational business rules, while the existing
techniques extract multiple types of rules without distinguishing them. Further-
more, we conducted a controlled experiment to evaluate the ability of the proposed
technique to help developers.

Various variants of program slicing have been proposed for different situations.
Thin slicing [51] extracts only assignment statements that define the value of a
given variable. It excludes all conditional statements from a program slice for
code inspection and debugging of large-scale systems. Decomposition slicing [65]
extracts statements that may affect all the statements using a given variable. A
decomposition slice is computed from the union of traditional program slices to
capture all computations on the variable for software maintenance. Amorphous
slicing [66] transforms statements extracted by program slicing to simplify a pro-
gram while preserving the semantics of the program. The simplification (e.g., ex-
panding function calls) is convenient in the context of program understanding. Our
technique focuses on partial control-flow paths for a given variable to understand
computational business rules.

Dubinsky et al. [67] proposed a method to identify business rules in the code
using information retrieval techniques. They found that the quality of their tech-
nique depended on terms used in identifiers and comments. Because idiosyncratic
abbreviations are frequently used in the code of a business system, developers re-
quire knowledge of the system. Our dependency-based technique is independent
of identifiers and comments.

Pichler [68] proposed a symbolic execution technique to extract computations
from Fortran programs. Symbolic execution enables the computations to be repre-
sented by equations. However, it typically has low scalability owing to the fact that
all the paths of a program must be analyzed (called path explosion problem). Fur-
thermore, loop statements and invocations of libraries are challenging for symbolic

25

Table 3.1: Tables representing computational business rules for the fee and time
limit

(a) fee
values conditions

5 children
10 students
15 adults

(b) time limit
values conditions

3 premium members
2 no members

execution. To overcome these challenges, their technique requires actual test cases
and their execution results. Jaffar et al. [69] proposed a path-sensitive control-
flow graph where a statement may be represented by multiple vertices. Thisgraph
is constructed by symbolic execution and slicing the results (called tree slicing).
Although they attempt to reduce the number of the paths to be analyzed by merg-
ing vertices, the path explosion problem is a challenge for them. Because our
technique excludes conditional statements that do not correspond computational
business rules, it reduces the number of the paths compared to traditional slicing.
We expect that our technique can contribute to the path explosion problem in the
extraction of business rules.

3.3 Motivating Example

3.3.1 Business rules implemented in source code

Throughout this chapter, we use an example feature that includes the business rules
of an imaginary facility. The feature computes a usage fee and a time limit for
the facility. The charge is $15 for adults, $10 for students, and $5 for children.
The time limit is 2 hours for regular members and 3 hours for premium members.
Tables 3.1(a) and 3.1(b) describe the computational business rules for the fee and
time limit, respectively. The facility defines a constraint; children cannot become
premium members.

The feature is implemented by the single method in Figure 3.1. The method
action requires two variables as input: status, representing a user type (child /
student / other), and member (regular / premium). The method computes two
output variables corresponding to a usage fee and a time limit. The output variables
are represented by the parameters of the setFee and setHour methods.

The method action includes three steps. The first step verifies if the database
access at line 2 produced an error. The second step computes an output fee from
lines 5 through 14, following the rules presented in Table 3.1(a). Lines 7 through 9
examine a constraint between two input variables and cancel the computation if the

26

Figure 3.1: An example method implementing business rules

constraint is violated. The third step computes an output hour at lines 15 through
18, following the rules presented in Table 3.1(b).

Developers maintaining the system must recover Tables 3.1(a) and 3.1(b) from
the source code in Figure 3.1 to understand the computational business rules of the
feature. To recover the tables, developers must answer the question: Which of the
conditional statements are relevant to the values passed to setFee and setHour?

3.3.2 Extraction of business rules by program slicing

Backward program slicing [32] appears to be a promising technique to respond
to the above question. The technique extracts all the statements that may affect
the value of a given variable, referred to as the slicing criterion. The set of the
extracted statements is called the program slice.

A program slice is computed using a program dependence graph. This graph
is a directed graph where the vertices represent all the executable statements in a
program; the edges represent the control and data dependencies among the state-
ments. A statement s2 is control dependent on a statement s1, if s1 determines
whether s2 is executed. A statement s2 is data-dependent on a statement s1, if
s2 may use a variable whose value is defined by s1. These dependencies are ex-
tracted from a CFG. This graph is a directed graph where the vertices represent
all executable statements (or basic block) in a program; the edges represent the
control-flow paths [70].

Figures 3.2(a) and 3.2(b) illustrate examples of a CFG and program depen-

27

dence graph. In the graphs, each vertex has a label indicating the corresponding
line number. Each graph has a special vertex named Entry that represents the entry
of a method and controls statements that are not control-dependent on any state-
ments.

A program slice with respect to a slicing criterion is extracted by backward
traversal of a program dependence graph. The traversal visits all vertices that are
reachable from the vertex representing the criterion via edges. A set of the visited
vertices and criterion is the program slice for the criterion. For example, given line
14 as a slicing criterion, program slicing extracts lines {2, 5, 6, 7, 10, 11, 12, 14}.

Although backward program slicing extracts all statements that may affect the
value of a given variable, it cannot answer the question of which of the statements
are relevant to the given variable. For example, a program slice with respect to the
variable fee at line 14 includes four conditional statements (lines 2, 6, 7, and 11)
that may be executed before line 14. However, only lines 6 and 11 correspond to the
computational business rules for fee, because the value of fee is defined by the user
type (see Table 3.1(a)). Lines 2 and 7 do not correspond to the computational rules
for fee because line 2 is a technical statement which verifies database connections
and line 7 is a condition for the constraint to children. They only determine if the
feature is executed.

When investigating the computational business rules for the time limit, we can
extract statements that may affect a parameter passed to setHour at lines 15 and
17, by computing the union of program slices with respect to the lines (a decompo-
sition slice [65]). However, the resultant slice includes four conditional statements
at lines 2, 6, 7, and 16 , whereas only line 16 corresponds to the computational
business rules for the time limit. Lines 2 and 7 do not correspond to the computa-
tional business rules for the same reasons of the former example. Whereas line 6 is
relevant to setFee, a value of status does not affect a value of a parameter passed
to setHour on the paths that execute setHour. For setHour, line 6 is a condition
representing the constraint; it is not a part of computational business rules.

As demonstrated in these examples, program slicing does not distinguish con-
ditional statements corresponding to the computational business rules from other
conditional statements. Consequently, developers must manually extract the condi-
tional statements corresponding to the computational business rules for the output.

3.4 The Proposed Technique

The proposed technique is a program-dependence analysis of a single method in a
Java program, where we analyze data dependencies caused by method calls in the
method. The proposed technique requires two inputs: a method m that implements

28

(a) (b)

Figure 3.2: A control-flow graph (a) and program dependence graph (b) of Figure
3.1

the business rules to be analyzed and a setter method s called in m that receives
the output of the business rules. The proposed technique extracts the conditional
statements in m that are relevant to s. A conditional statement c is relevant to s, if c
directly or transitively affects a statement that determines an argument for method
s. Conditional statements that are not relevant to s include technical statements and
statements relevant to other setter methods.

The proposed technique includes three steps:

1. Extract a CFG of the method m and its subgraph Gs related to s.

2. Extract control-dependence edges in the CFG and Gs and data-dependence
edges in Gs.

29

Figure 3.3: Three graphs to extract conditional statements: (a) is a subgraph of
Figure 3.2(a) for setFee (line 14). (b) is a dependence graph extracted from (a).
(c) is a subgraph of Figure 3.2(a) for setHour (lines 15 and 17).

3. Extract relevant conditional statements from method m using control-flow,
control-dependence, and data-dependence edges.

The proposed technique uses a call graph for the entire program to identify
method call instructions inm that invoke s and to perform data-dependence analysis
on method calls in m. We use variable-type analysis [59] for our implementation.

3.4.1 Control-flow analysis

This step constructs a CFG from the bytecode of m, and extracts its subgraph such
that every path from the entry point invokes s. A CFG is a directed graph where the
vertices VCFG represent all the bytecode instructions of m and the edges CF repre-

30

sent control-flow paths [70]. Let S be the set of instructions invoking s. Subgraph
Gs has vertices Vs and edges CFs formulated as follows.

Vs = {v ∈ VCFG | ∃s ∈ S : v
CF∗−−−→ s}

CFs = {(v1, v2) ∈ CF | v1 ∈ Vs ∧ v2 ∈ Vs}

x
E−→ y denotes there exists an edge from x to y in E (i.e., (x, y) ∈ E). x E∗−−→ y

denotes there exists a path from x to y through edges in E. Note that x
E∗−−→ x.

Figure 3.3(a) is a sample subgraph of the CFG in Figure 3.2(a) with respect to
setFee. For simplicity, the vertices in Figure 3.3 represent executable statements
and their line numbers in the program although actual vertices of our implemen-
tation represent bytecode instructions. Whereas vertices 2 and 7 have branches in
the CFG, they have no branches in the subgraph. Thus, the conditional statements
corresponding to the vertices are not relevant to the computational business rules
for fee in Section 3.3.

3.4.2 Dependence analysis

This step extracts data-dependence edges (DDs) and two kinds of control-dependence
edges (CD and CDs). CD is the set of control-dependence edges extracted from
the CFG of m. CDs and DDs are sets of control-dependence and data-dependence
edges extracted from the subgraph Gs. In addition to the definition of depen-
dence representations given by Horwitz et al. [71], we extract the following data-
dependence edges.

Constant values

A constant value used in a statement is independent of other statements. However,
we define a data-dependence edge between a bytecode instruction that loads a con-
stant value and another instruction that uses the value. For example, the statement
at line 17 includes two bytecode instructions: the instruction that loads the constant
value 3 and the instruction that invokes setHour. There exists a data-dependence
edge between the two. This data-dependence is introduced to identify a conditional
statement that controls method call statements using different constant values.

Field and array variables

Suppose an instruction i1 defines the value of a field variable (or an element of an
array variable) and another instruction i2 uses the value of a field variable (or an

31

element of an array variable). There exists a data-dependence edge from i1 to i2 if
i1 and i2 may access the same field (or the same array). Each field is identified by
class name and field name considering class hierarchy. Each array is identified by
its type.

Invocations of methods

The side effect of method calls is conservatively analyzed to avoid overlooking
relevant statements. Suppose instructions i1 and i2 invoke methods. There exists a
data-dependence edge from i1 to i2 if the following condition holds.

De f (i1) ∩ Use(i2) � ∅

De f (i1) is the set of field and array variables that may be defined by methods
(directly or transitively) invoked from the instruction i1. Use(i2) is the set of field
and array variables that may be used by methods (directly or transitively) invoked
from i2. For a conservative analysis, we assume that library methods that are not
included in the target program may define and use all field and array variables in
the program.

For example, suppose that setFee in the Figure 3.1 defines a value of a field
A.x and setHour uses a value of the same field A.x, data-dependence edges from
an invocation of setFee to invocations of setHour are extracted.

3.4.3 Extracting conditional statements

Using the computed dependence edges, this final step extracts the set of relevant
conditional statements R from m as follows.

R = CV ∪ OW
CV = {c | ∃s ∈ S ,∃d ∈ Vs : c (CDs∪DDs)∗−−−−−−−−−−→ d

DDs−−−→ s}
OW = {c | ∃s1, s2 ∈ S ,∃d ∈ Vs : s1 CFs∗−−−−→ c ∧

c
(CD∪DDs)∗−−−−−−−−−→ d

DDs−−−→ s2}

CV represents the set of conditional statements that may affect statements passing
values to s. Each element of CV directly or transitively affects an instruction that
provides data to s. OW represents the set of conditional statements that determine
if a value set by s1 is overwritten by another value at s2. Because a conditional
statement affects an output even if it decides not to execute s2, we use CD instead
of CDs for the definition of OW.

32

Figure 3.3(b) presents the dependence graph of the program in Figure 3.1 when
setFee is specified as s (i.e., S = {14}). The conditional statements at lines 6 and
11 are extracted as relevant statements because they hold the condition ofCV . Fig-
ure 3.3(c) displays a subgraph when setHour is specified as s (i.e., S = {15, 17}).
The conditional statement at line 16 is extracted as a relevant statement because
it holds the condition of OW. The conditional statements at lines 2 and 7 are not
extracted because they do not hold the conditions of either CV or OW; nor do
they satisfy the condition of CV since they have no dependence edge to other ver-
tices. Furthermore, they do not satisfy the condition of OW because they are not
reachable from setFee or setHour.
R may include truly irrelevant statements because the proposed technique uses

only dependencies among instructions. If several assignment statements pass the
same value to s, conditional statements that select one of these statements are ir-
relevant to the output. However, the proposed technique regards such conditional
statements as relevant to the output.

Our implementation supports two techniques for providing the extracted condi-
tional statements to developers. The first one is code comments. Our tool adds code
comments to conditional statements as indicated in Figure 3.1. Because developers
are required to analyze the same method m for each output variable, an irrelevant
statement for one variable may be relevant for another. Developers can use the
code comments generated for several variables to understand the entire structure
of the method. The second technique is a CSV file. Our tool outputs a file listing
all the conditional statements in a specified method m and indicating whether each
statement is relevant. Developers can record the progress of the investigation in the
generated file.

3.5 Evaluation

Developers must examine the source code of a feature to understand the computa-
tional business rules, even if the relevant conditional statements are extracted by the
proposed technique. To evaluate whether the proposed technique can help develop-
ers identify relevant conditional statements, we conducted a controlled experiment
using human subjects. Our research questions are formulated as follows:

RQ1 Does the proposed technique help developers accurately identify conditional
statements relevant to computational business rules?

RQ2 Does the proposed technique affect the time required to identify relevant con-
ditional statements?

33

RQ3 Is the proposed technique accurate?

Because the controlled experiment investigates a particular case, it is not obvi-
ous that the proposed technique, in general, is more effective than program slicing.
We compared the proposed technique with program slicing to answer another re-
search question formulated as follows:

RQ4 How many conditional statements are removed from the program slices?

We applied our technique and program slicing to all the methods that imple-
ment business rules in two subject systems written in Java and compared the num-
ber of conditional statements extracted by the techniques.

3.6 Experiment with Human Subjects

3.6.1 Setup

Subjects

We recruited eight reverse engineering experts from one company. They had been
engaged in reverse engineering for at least one year. Their Java experience was
widely distributed from 0.5 to 12 years, with a median of one year. No subject was
familiar with the target system.

Tasks

The tasks used in our experiment were created from MosP 4.0.01, an attendance
management system. Two Java methods, m1 and m2, were randomly selected from
the longest methods whose conditional statements could not be removed by pro-
gram slicing. Table 3.2 presents the details of the two methods. Column |C| rep-
resents the number of all conditional statements in m. Column |Cs| represents the
number of conditional statements extracted by program slicing with respect to each
setter method (s1 and s2). All the conditional statements in Cs are located prior to
each setter method. Column |R| indicates the number of conditional statements
extracted by the proposed technique.

For each task, the subjects were given the following:

• Eclipse IDE including the source code of the system.

• Target method m and the setter method s to be analyzed.
1http://sourceforge.jp/projects/mosp/releases/53354

34

Table 3.2: Target methods
ID Methods LOC |C| |Cs| |R|
T1 m1 = getPaidHolidayDataDto 101 17 12 7s1 = setAcquisitionDate

T2 m2 = chkWorkOnHolidayInfo 152 23 23 15s2 = setPltWorkType

Table 3.3: Task assignment
Task 1 Task 2

Subject Target Our technique Target Our technique
1, 2 T1 Yes T2 No
3, 4 T1 No T2 Yes
5, 6 T2 Yes T1 No
7, 8 T2 No T1 Yes

• Spreadsheet including all conditional statements and their line numbers in
m.

The subjects performed one task with the proposed technique and the other
task without the proposed technique. Table 3.3 indicates the tasks assigned to the
subjects. The results of the proposed technique were provided to the subjects by
annotating conditional statements in the source code (as illustrated in Figure 3.1)
and in a spreadsheet. A subject working without the proposed technique received
a list of conditional statements in a spreadsheet without annotation. A program
slice was not explicitly provided because it includes all the conditional statements
located prior to s.

Each task included two subtasks that are typical reverse engineering processes
in the company. In the first subtask, the subjects classified each conditional state-
ment as either relevant or irrelevant and recorded the result in a given spreadsheet.
In the second subtask, they used the results of the first subtask to create a table
of the computational business rules. Each task was limited to two hours. The re-
sults of the second subtask were used to determine the correct answer of the first
subtask.

Procedure

At the beginning of the experiment, the subjects were given the following informa-
tion: (1) the purpose of the experiment, (2) a summary of the proposed technique,
(3) the process of the task, (4) an exercise in MosP using a sample task, and (5) an

35

Figure 3.4: Comparison of the accuracy and time for tasks

explanation of the answer for the sample task. The subjects performed their tasks
independently after the introduction.

Upon completion of all the tasks, the subjects discussed the correct answer with
the third author, who is also a reverse engineering expert in the company. Because
they reached agreement on the computational business rules in the tasks, we used
the results to evaluate the accuracy of the subjects.

3.6.2 Results

RQ1: Does the proposed technique help developers accurately identify condi-
tional statements relevant to computational business rules?

The left box plot in Figure 3.4 compares the accuracy of the developers’ classifica-
tion of conditional statements. The accuracy is the ratio of the number of correctly
classified conditional statements to the total number of conditional statements in
the method. We observed that developers supported by the proposed technique
classified the conditional statements more accurately. A Wilcoxon rank sum test
indicated that the difference was statistically significant (the p-value was 0.0148).
Furthermore, Cliff’s Delta [72], which measures the effect size for the test, indi-
cated that the difference was large (the delta was 0.625) [73]. The improvement
was achieved because the subjects without the proposed technique tended to acci-
dentally misclassify conditional statements as irrelevant. The proposed technique
enabled subjects to carefully investigate such relevant conditional statements by
identifying irrelevant conditional statements. We concluded that the proposed tech-
nique enabled the developers to accurately identify conditional statements relevant

36

Figure 3.5: The difference between our technique and developers

to computational business rules.

RQ2: Does the proposed technique affect the time required to identify relevant
conditional statements?

The right box plot in Figure 3.4 compares the time required to complete the task
with and without the proposed technique. Although developers supported by the
proposed technique required less time than those without the proposed technique,
the difference was small and not statistically significant (the delta was -0.172 and
the p-value was 0.645). This is because the subjects read the entire source code for
the methods to understand the business rules. Even if relevant conditional state-
ments are automatically extracted, they must verify what conditions are represented
in those statements. We conclude that the proposed technique does not affect the
time for investigating source code and creating tables.

RQ3: Is the proposed technique accurate?

It is our opinion that the proposed technique accurately extracts relevant statements
though it sometimes includes irrelevant statements and misses relevant statements.
There were 17 relevant conditional statements created during the discussion with
the subjects. Fourteen of the original 22 statements were extracted by the proposed
technique and the remaining three conditional statements were missed by the pro-
posed technique. Hence, the recall and the precision of the proposed technique
are 0.82 (14/17) and 0.64 (14/22), respectively. The proposed technique included
eight statements that were classified as irrelevant by the subjects, because of a sim-
ple conservative analysis for library methods. The conditional statements would be
excluded if a more precise analysis was implemented.

The proposed technique missed three conditional statements because of a dif-
ference between actual dependence and conceptual dependence. A simplified ex-

37

ample is illustrated in Figure 3.5. In the source code, two conditional statements, if
(i == 0) and if (i == 1), determine a value passed to the method setX. The proposed
technique classified the former statement as relevant and the latter statement as ir-
relevant, because the former statement determined the parameter: 10 is passed if
i == 0 and 20 otherwise. Conversely, developers classified both conditional state-
ments as relevant because they subconsciously regarded the two consecutive state-
ments as a single control-flow structure.

We determined that the proposed technique can extract conditional statements
without missing relevant statements by regarding consecutive conditional state-
ments as a combined statement as indicated in the right side of Figure 3.5. Al-
though conditional statements extracted by this technique may include irrelevant
statements, the technique is expected to reduce the developers’ identification time
because they are only required to consider the extracted statements without inspect-
ing the other conditional statements.

3.7 Comparison with Program Slicing

3.7.1 Setup

We extracted conditional statements from all the methods that implement business
rules in two systems: MosP and a small sales management system, which is used
in a company for a system development exercise. Using naming rules of class and
method, we identified methods M that implement business rules and setter methods
S that receive the outputs. M and S in MosP are identified as follows:

M: all the methods that belong to classes ending with “Action”

S: all the methods that start with “set” and belong to classes ending with “Vo” or
“Dto”

In MosP, Action classes have methods that implement business rules. The meth-
ods store the computational results into DTO objects to transfer the results to a
database. Further, the methods store the computational results into VO objects to
display the results on the user interface. We identified M and S in the sales man-
agement system in a similar manner. In this experiment, we analyzed all the pairs
of m ∈ M and s ∈ S that were directly invoked by m.

38

Table 3.4: The extraction results of conditional statements
System MosP Sales
#targets 1,440 28

#(our < slice) 991 28
our 1 1

median slice 2 8.5
all 4 10
our 48 4

max slice 65 19
all 70 19
our 4,381 20

sum slice 7,527 224
all 11,831 248

Figure 3.6: The number of conditional statements in MosP

3.7.2 Results

RQ4: How many conditional statements are removed from the program slices?

Table 3.4 presents the extraction results of conditional statements. Row #targets
represents the number of method pairs where the number of conditional statements
extracted by program slicing is larger than zero. Row #(our < slice) represents the
number of method pairs where the number of conditional statements extracted by
the proposed technique is smaller than that of the conditional statements extracted
by program slicing. The remainder of Table 3.4 represents the statistics of the
number of conditional statements. Figures 3.6 and 3.7 plot the distributions of
the number of conditional statements in MosP and the sales management system,

39

Figure 3.7: The number of conditional statements in the sales management system

respectively.
In MosP, for 69% (991/1,440) method pairs, the number of conditional state-

ments extracted by the proposed technique was smaller than that of the conditional
statements extracted by program slicing. A test using a R package2 estimated that
the number of conditional statements extracted by the proposed technique was 1.75
smaller with the median than that of conditional statements extracted by program
slicing. We consider that the reduction is effective for developers investigating the
computational business rules because they must analyze all possible method pairs
in the system. From the sum indicated in Table 3.4, we conclude that the proposed
technique can reduce conditional statements that developers must analyze to 58%
(4,381/7,527) of program slicing.

In the sales management system, for all method pairs, the number of condi-
tional statements extracted by the proposed technique was smaller than that of the
conditional statements extracted by program slicing. Furthermore, the reduction
size was greater than that in MosP (the estimated median was 5.75). This is be-
cause the computational business rules were simple, whereas the violation checks
for inputs were large and complicated. The proposed technique excluded condi-
tional statements for the checks, whereas program slicing extracted them.

3.8 Threats to Validity

In the controlled experiment with human subjects, we used the discussion results
of the nine experts as the correct answer. These results may be wrong because the

2http://cran.r-project.org/web/packages/exactRankTests/

40

experts were not developers of the subject system. Moreover, the results may be
biased because they may have wanted to believe their own answer. However, we
believe that this possibility is low because the nine experts did finally agree on the
same answer.

Because the controlled experiment was conducted on a single case, different
results may be observed on other companies. However, we consider that the evalu-
ation follows an actual situation in understanding business rules because the subject
system is developed by a different company from the one that the participants work
for. Furthermore, we open the answer used in the evaluation on our website 3 to
make the experiment replicable.

In the comparative experiment with program slicing, we used the naming rules
of classes and methods to identify the methods to be analyzed. The first author
reviewed the source code of the subject systems and determined that using the
naming rules was valid. However, the analyzed methods may include inappropriate
methods and there may exist other methods that should be analyzed. We did not
read all the methods in the subject systems.

We obtained the comparison results from two systems. The results may not
be applicable to arbitrary business systems. However, we believe that the proposed
technique can be effective in general business systems because the two systems had
different uses (attendance and sales management) and were developed by different
organizations.

3.9 Conclusion of This Chapter

We have proposed a program-dependence analysis technique designed for under-
standing computational business rules. The proposed technique extracts condi-
tional statements that are relevant to an output value. We conducted a controlled
experiment to evaluate whether this technique actually contributed to the perfor-
mance of developers. We determined that the proposed technique enabled devel-
opers to more accurately identify conditional statements relevant to computational
business rules. Furthermore, we compared the number of conditional statements
extracted by the proposed technique and program slicing. We confirmed that the
proposed technique is more effective for developers investigating computational
business rules compared to program slicing.

In future work, we would like to support conceptually related conditional state-
ments as described in the result of RQ3. We are also interested in the inter-
procedural analysis of business rules distributed across several methods. Finally,

3http://sel.ist.osaka-u.ac.jp/people/t-hatano/ieice/exp.html

41

we plan to apply the proposed technique to other enterprise systems to evaluate the
effectiveness of the proposed technique.

42

Chapter 4

Development of Program
Analysis Tool for Java

4.1 Introduction

As shown in chapters 2 and 3, program analysis techniques play an important role
which extracts useful information from software products and provides it for de-
velopers. For example, software metrics (such as lines of code and cyclomatic
complexity) is used to ensure the software quality. Furthermore, control-flow, data
dependence, control dependence, and method call relationships are also useful for
understanding program structures.

One method to perform program analysis is parsing the source code to analyze
syntax trees and symbol tables, like compilers. Existing analysis tools are designed
to be able to analyze multiple programming languages [74]. Another method is
analyzing compiled binaries. In Java, we can obtain package names of classes,
types of method parameters, and others from bytecode though they are not directly
appeared in the source code. Soot [75] adopts this method.

Although existing tools provide many features for program analysis, their users
must understand the behavior and characteristics of algorithms. For example, be-
cause Soot provides rich options for analysis, users must have enough knowledge
for deciding proper options. In the context of software engineering, it is difficult
for users who do not know the detail of algorithms to utilize existing tools.

We developed SOBA (Simple Objects for Bytecode Analysis), which is a class
library to provide basic features for bytecode analysis of Java. SOBA analyzes
intra-procedural control-flow, data dependence, control dependence, method call
relationships, and so on. It is easy to use without detailed knowledge of program
analysis. The source code of SOBA is open as MIT license so that researchers can

43

use it for their program analysis studies. It is also used for the studies of chapters
2 and 3 in this dissertation.

4.2 Existing Tools and Our Motivation

Soot [75] and WALA [76] are bytecode analysis tools used for software engineer-
ing studies. These tools implement many algorithms that are useful for program
analysis.

Although existing tools implement plenty algorithms, it is difficult to execute
them and understand their execution results for those who do not understand the
detail of algorithms. For example, when obtaining call graphs using Soot, we need
to select a points-to analysis algorithm and implementation of binary decision tree
for points-to analysis. Users are required to have detailed knowledge of algorithms
because the accuracy and performance of analysis differ according to algorithms.
Furthermore, existing tools have programming constraints due to their designs and
implementation. For example, Soot’s execution is divided in a set of different packs
and each pack contains different phases. Users must understand their details and
write programs following their constraints. Also, Soot is unsuitable for concurrent
analysis because it is designed in the singleton pattern.

Figure 4.1 shows an example program which creates a call graph using Soot.
This program is based on an example program shown in Soot’s user guide 1. We run
the following command to execute this program. This command specifies target.jar
as a target program, Class Hierarchy Analysis [77] as an algorithm for analyzing
method call relationships, and classes referred by target.Main as analyzed classes.
java SootCallGraph -cp target.jar -whole program

-p -cg.cha -app target.Main

Lines 3 through 15 in Figure 4.1 implements a pack and phase. This program
adds a SceneTransformer object which implements a process for creating a call
graph to “wjtp” pack which analyzes the whole program. Line 16 runs Soot’s
analysis. As a result, method call relationships are displayed at the console.

Figure 4.2 shows an example program which creates a call graph using WALA.
This program is based on an example program shown in com.ibm.wala.examples.
drivers.PDGCallGraph class. We run the following command to execute this pro-
gram.
java WalaCallGraph target.jar

Lines 3 through 7 in Figure 4.2 specify analysis targets and options. Line 8
creates a object representing a call graph. Note that each method does not always
correspond each vertex in this graph. Users must understand the detail of WALA’s

1http://www.brics.dk/SootGuide/

44

1: public class SootCallGraph {

2: public static void main(String[] args) {

3: PackManager.v().getPack("wjtp").add(new Transform("wjtp.myTrans",

new SceneTransformer() {

4: @Override

5: protected void internalTransform(String phaseName, Map options) {

6: CallGraph cg = Scene.v().getCallGraph();

7: for (Iterator<MethodOrMethodContext> callers = cg.sourceMethods();

callers.hasNext();) {

8: MethodOrMethodContext caller = callers.next();

9: for (Iterator<Edge> edges = cg.edgesOutOf(caller); edges.hasNext();) {

10: Edge edge = edges.next();

12: SootMethod srcMethod = edge.getSrc().method();

13: SootMethod tgtMethod = edge.getTgt().method();

14: System.out.println(srcMethod.toString() + " may call "

+ tgtMethod.toString());

15: }}}}));

16: soot.Main.main(args);

17: }}

Figure 4.1: An example program which analyzes method call relationships using
Soot .

design and select proper options. In WALA, call graphs are abstracted to compare
analysis results and performance between different algorithms. However, users
must understand the detail of algorithms to understand analysis results.

Soot and WALA are suitable for evaluating the performance between different
algorithms by researchers who know the details of algorithms. However, in soft-
ware engineering studies, the evaluation is not always required. The selection of
algorithms is not important when researchers need basic information about target
programs such as a list of classes, methods, and call graphs. In this situation, users
need a simple tool which provides getter methods for obtaining analysis results
when target programs are given. We designed and developed SOBA to meet this
requirement.

4.3 SOBA

SOBA is a class library to implement program analysis for Java bytecode. Users
can obtain following information about programs.

• A list of classes and methods in the target programs.

• Method call relationships.

• Intra-procedural control-flow, control dependence, and data dependencen.

45

1: public class WalaCallGraph {

2: public static void main(String[] args) {

3: AnalysisScope scope = AnalysisScopeReader

.makeJavaBinaryAnalysisScope(args[0], null);

4: ClassHierarchy cha = ClassHierarchy.make(scope);

5: Iterable<Entrypoint> entrypoints = Util.makeMainEntrypoints(scope, cha);

6: AnalysisOptions options = new AnalysisOptions(scope, entrypoints);

7: CallGraphBuilder builder = Util

.makeZeroCFABuilder(options, new AnalysisCache(), cha, scope);

8: CallGraph cg = builder.makeCallGraph(options, null);

9: for (CGNode caller: cg) {

10: for (Iterator<CGNode> callees = cg.getSuccNodes(caller); callees.hasNext();) {

11: CGNode callee = callees.next();

12: IMethod callerMethod = caller.getMethod();

13: IMethod calleeMethod = callee.getMethod();

14: System.out.println(callerMethod.toString() + " may call "

+ calleeMethod.toString());

15: }}}}

Figure 4.2: An example program which analyzes method call relationships using
WALA .

SOBA is designed to enable those who do not have the detailed knowledge of
program analysis to easily obtain the above. The above information was often
required in our research group.

SOBA provides only basic algorithms for Java analysis. Class Hierarchy Anal-
ysis [77], which analyzes method call relationships, resolves dynamic binding ac-
cording to the language specification of Java. The algorithms for intra-procedural
control-flow, control dependence, and data dependence are established as compiler
optimization techniques. SOBA is a small-scale library compared with Soot and
WALA because we consider that the implementation of these algorithms should
be provided without the high learning cost. The algorithms for inter-procedural
control-flow, dependence analysis, and points-to analysis are active research fields
even now. SOBA does not provide the implementation of these techniques because
users must understand the detail of algorithms and select proper options. We ex-
pect that users learn program analysis algorithms through the development using
SOBA.

4.3.1 Characteristics of SOBA

When users specify jar/zip/class files or directories as analysis targets, SOBA an-
alyzes them. SOBA can read zip files containing multiple programs because it
recursively decompress them.

SOBA creates hierarchical data structures (expect for VTAResolver) shown

46

Figure 4.3: A class diagram of SOBA.

in Figure 4.3 Because VTAResolver, which is a class to analyze method call re-
lationships, requires a lot of time and memory space, its instance is created by
users’ instruction. Users can access analysis results by invoking getter methods
contained by each class. Table 4.1 shows the overview of main classes and their
features of SOBA. When users invoke getter methods for control-flow, control de-
pendence, and data dependence, their analysis results are cached in MethodInfo
objects. Users can also access data structures of ASM (Tree API) because SOBA
is a wrapper library of ASM. Tree API has detailed information such as string
literals.

SOBA implements two algorithms for resolving dynamic binding: Class Hi-
erarchy Analysis (CHA) [77] and Variable Type Analysis (VTA) [59]. CHA lists
method candidates by analyzing the class hierarchy. VTA analyzes the class hier-
archy and data types that may be assigned to receiver objects by tracking data-flow.
While the original VTA computes reachable data types from themainmethod given
by users, SOBA can analyze the whole program without giving the main method
because it assumes that all data types are reachable for methods which are never
invoked by others.

CHA is a basic algorithm which can exhaustively list method candidates for
programs that use reflection because it computes method candidates according to
the class hierarchy. However, even if CHA lists multiple candidates, they may be
more limited in actual programs (e.g., invocations of List interface must be bound
to ones of ArrayList). In these cases, users will require to exclude unlikely candi-

47

Table 4.1: Classes of SOBA.
Class name Description Feature
JavaProgram Represents a whole program Gets a list of classes (ClassInfo)

declared in this program.
ClassInfo Represents a class Gets a class and package name.

Gets a list of methods (Method-
Info) declared in this class.
Gets a list of fields (FieldInfo)
declared in this class.

MethodInfo Represents a method Gets a return type and signature
of this method.
Gets control-flow, control depen-
dence, and data dependence.
Invokes ASM Tree API.

FieldInfo Represents a field Gets a field name and type.
ClassHierarchy Implementation of CHA [77] Gets a superclass and subclasses

of a specified class.
Resolves dynamic binding.

VTAResolver Implementation of VTA [59] Resolves dynamic binding.

dates because CHA lists multiple candidates for all invocations. SOBA implements
VTA, which takes linear time for program size, to apply large-scale programs.

SOBA analyzes data dependences between instructions that read/write local
variables (except for array variables) and push/pop elements of an operand stack.
SOBA does not analyze inter-procedural dependence because its analysis requires
more advanced techniques such as points-to analysis.

SOBA labels classes to distinguish target classes and library classes when users
specify them. We expect that users give labels to exclude information about library
classes and call relationships within library classes from analysis results.

4.3.2 Example program

Analyzing method call relationships

Figure 4.4 shows an example program to analyze method call relationships. In
this program, target programs are specified by arguments of a command. This
program outputs strings that represent methods invoked by each method. Line 3
creates a JavaProgram object for target programs. Line 4 gets a ClassHierarchy
object to resolve dynamic binding. for iterations in Lines 5 through 15 visit each
class (ClassInfo) and method (MethodInfo). Line 7 lists instructions of method
invocations and Line 8 resolve their callees using CHA. for iteration in Line 10

48

1: public class SobaCallGraph {

2: public static void main(String[] args) {

3: JavaProgram program = new JavaProgram(ClasspathUtil.getClassList(args));

4: ClassHierarchy ch = program.getClassHierarchy();

5: for (ClassInfo c: program.getClasses()) {

6: for (MethodInfo m: c.getMethods()) {

7: for (CallSite cs: m.getCallSites()) {

8: MethodInfo[] callees = ch.resolveCall(cs);

9: if (callees.length > 0) {

10: for (MethodInfo callee: callees) {

11: System.out.println(" [inside] " + m.toLongString()

+ " may call " + callee.toLongString());

12: }

13: } else {

14: System.out.println(" [outside] " + cs.toString());

15: } } } } } }

Figure 4.4: An example program which analyzes method call relationships using
SOBA.

outputs the callees. Line 14 outputs caller instructions because ClassHierarchy
returns an empty array when callees are not included in target programs.

Figure 4.5 shows the execution result of the program described in Figure 4.4 for
SOBA. Figure 4.5 lists signatures and return types of methods invoked by the main
method. <init> represents an invocation of a constructor. The last line outputs
[outside] because methods of Iterator class invoked in enhanced for-loops are
not included in the analysis targets.

Analyzing data dependence

Figure 4.6 shows an example program which analyzes intra-procedural data depen-
dence between instructions. Line 7 gets a DataDependence object. The iteration
of Line 8 gets and outputs each data dependence edge which represents read/write
relationships between instructions.

Figure 4.7 shows the execution result of the program described in Figure 4.6
for itself. A notation i -> j means that there exists a data dependence edge from
the i-th instruction to the j-th instruction. Dependence edges on operand stacks
and local variables are expressed as STACK and LOCAL, respectively. When the
bytecode contains debug information, users can obtain variable names, types, and
line numbers.

49

[inside] demo/soba/ClassHierarchyPerformance.main(java/lang/String[]:args): void

may call soba/util/files/ClasspathUtil.getClassList(java/lang/String[]:files):

soba/util/files/IClassList[]

[inside] demo/soba/ClassHierarchyPerformance.main(java/lang/String[]:args): void

may call soba/core/JavaProgram.<init>(soba/core/JavaProgram:this,

soba/util/files/IClassList[]:lists): void

[inside] demo/soba/ClassHierarchyPerformance.main(java/lang/String[]:args): void

may call soba/core/JavaProgram.getClassHierarchy(soba/core/JavaProgram:this):

soba/core/ClassHierarchy

[inside] demo/soba/ClassHierarchyPerformance.main(java/lang/String[]:args): void

may call soba/core/JavaProgram.getClasses(soba/core/JavaProgram:this):

java/util/List

[outside] java/util/List.iterator()Ljava/util/Iterator; called by

demo/soba/ClassHierarchyPerformance.main(java/lang/String[]:args): void

...

Figure 4.5: Execution results of Figure 4.4.

1: public class DumpDataFlowEdge {

2: public static void main(String[] args) {

3: JavaProgram program = new JavaProgram(ClasspathUtil.getClassList(args));

4: for (ClassInfo c: program.getClasses()) {

5: for (MethodInfo m: c.getMethods()) {

6: System.out.println(m.toLongString());

7: DataDependence dd = m.getDataDependence();

8: for (DataFlowEdge e: dd.getEdges()) {

9: System.out.println(e.toString());

10: } } } } }

Figure 4.6: An example program which analyzes data dependence using SOBA.

4.3.3 Example studies using SOBA

Kashima et al. [78] implemented inter-procedural dependence analysis using SOBA
to visualize data and control dependence among methods. Kashima et al. [79] also
implemented points-to analysis and program slicing. Although these studies are
similar to a research filed of Soot and WALA, they implemented their analyzers
based on SOBA to measure performance of them in detail.

Matsumura et al. [80] implemented a tool to replay states of local variables in
Java programs using execution traces. The first author used SOBA to load subject
programs, access data structures of ASM, and get intra-procedural control-flow
graphs. Although this is the first time for the first author to analyze Java byte-
code, he implemented the tool in short time without reading various papers about
program analysis.

Kashiwabara [81] proposed a method to recommend verbs of methods using
signatures, field names, and field types. This study obtained the above information

50

soba/example/dump/DumpDataFlowEdge

.main(java/lang/String[]:args): void

PARAM -> 4 (LOCAL:0)

4 -> 5 (STACK:2)

2 -> 6 [1/2] (STACK:1)

5 -> 6 [2/2] (STACK:2)

2 -> 7 (STACK:0)

7 -> 10 (LOCAL:1)

...

Figure 4.7: Execution results of Figure 4.6.

Table 4.2: Comparison of the line number, class number, and command line options
Program Comparison items SOBA Soot WALA
Call relationships # Lines 18 18 17

Imported classes 6 8 12
Required command
line options

Analysis targets Analysis targets,
Using CHA,
Main class

Analysis targets

Data dependence # Lines 17 15 27
and # Imported classes 7 9 21
Control dependence Required command

line options
Analysis targets Analysis targets Analysis targets

Total classes included in tools 116 3,248 1,575

from subject programs. Although the first author did not have knowledge about
algorithms Soot implements and bytecode, she implemented analysis programs in
short time using getter methods provided by SOBA.

4.4 Comparison with Soot and WALA

4.4.1 Programming

We compared the scale of programs using SOBA, Soot, and WALA. Table 4.2
shows the line number, class number, and command line options of two programs:
one analyzes call relationships using CHA, and the other one analyzes data and
control dependence. We open the source code of these programs that are also used
to compare performance. We counted lines from the beginning to the end of a
class excepting for blank lines. We used enhanced for-loops for classes that im-
plement Iterable interface. “# Impoared classes” represents the number of required
classes that are included in the package of each tool. “# Total classes included
in tools” represents the number of classes that are not tests (their names do not
end with “Test”). For WALA, we target only three projects: com.ibm.wala.core
com.ibm.wala.shrike and com.ibm.wala.util.

51

Table 4.3: Comparison of features and their usage of each tool.
Feature SOBA Soot WALA

Data structure ASM Tree API Jimple2 Statement object3
Loading analysis
targets

Gives Class-
pathUtil.getClassList
jar/zip/class files

Specifies jar/class files using -cp option Gives AnalysisScop-
eReader.makeJavaBinaryAnalysisScope
jar/class files

Call relationships Gets a ClassHierarchy object Specifies main class and an algorithm
using -whole-program -p cg.cha option,
and invokes Scene.v().getCallGraph()
method

Gives an AnalysisOptions object main
class and gets an object implementing
CallGraph interface

Data and control
dependence

Gets a DataDependence object Creates a HashMutablePDG object Specifies options (DataDepen-
denceOptions class , ControlDepen-
denceOptions class) and creates a
PDG object

Points-to analysis None Specifies -p cg.spark or -p cg.paddle
options using command lines and in-
vokes Scene.v().getPointsToAnalysis()
method

Gets an object implementing Pointer-
Analysis interface

Inter-procedural
dependence analy-
sis

None Creates a HashMutablePDG object or
uses points-to analysis results

Creates a SDG object

WhileWALA’s programwhich analyzes data and control dependence has larger
lines, the other programs are almost same size. SOBA’s programs require less
classes than WALA’s. Furthermore, total classes of SOBA are also fewer than the
others because it provides only limited features. We conclude that SOBA reduces
classes users must learn. Soot’s program which analyzes call relationships requires
command lines options to specify an algorithm.

4.4.2 Features

Table 4.3 lists features and their usage of each tool. All tools have corresponding
features for specifying analysis targets, call relationships, and data/control depen-
dence though their usage is different from each other. On the other hand, Soot
and WALA have features for points-to analysis and inter-procedural dependence
analysis while SOBA does not. However, users can implement context-insensitive
inter-procedural analysis using SOBA.

While Soot andWALA require options to analyze call relationships and data/control
dependence, SOBA does not. In call relationships analysis, Soot and WALA re-
quire main class given by users. When main class is given, tools analyze classes
that are reachable from main class. This is not suitable for analyzing web appli-
cations in which specifying main class is difficult. Because SOBA analyzes all
classes included in targets ignoring reachability, it may analyze needless classes
for users. However, we consider that the negative impacts of analyzing needless
classes is not significant in terms of the execution time and memory consumption
because SOBA is implemented to be small and fast. While WALA provides ad-
vanced options to select algorithms of dependence analysis, SOBA provides only
basic algorithms.

52

Table 4.4: Measured objects for performance comparison
Program SOBA Soot WALA
Call relationships Relationships between Method-

Info objects
Relationships between SootMethod ob-
jects

Relationships between objects imple-
menting IMethod interface

Data and control
dependence

Relationships between Ab-
stractInsnNode objects of ASM
Tree API

Relationships between PDGNode ob-
jects

Relationships between Statement ob-
jects

Table 4.5: Performance comparison of programs analyzing call relationships
(time[ms] and memory[MB])

SOBA Soot WALA
Subjects # Methods Time Memory Time Memory Time Memory
sunflow 4,828 1,894 285 10,744 1,915 2,250 151
avrora 10,073 2,085 344 12,005 1,068 2,965 540
pmd 19,523 2,630 455 20,868 654 4,405 362
h2 19,962 2,508 570 35,368 5,475 5,041 1,172
batik 36,063 3,522 801 35,369 8,006 8,041 637

4.4.3 Performance

We measured the execution time and memory consumption of two kinds of pro-
grams using SOBA, Soot, and WALA: one analyzes call relationships and the
other analyzes data and control dependence. We selected five subject programs
from DaCapo benchmark (version 9.12) [82]. Measurement targets are processes
that obtain purpose information in the representation of each tool. Table 4.4 shows
the detail of the representation.

Tables 4.5 and 4.6 show the performance of each tool. In this comparison,
we use JDK1.8.0 as a standard library. We executed benchmark programs ten
times on Intel Xeon E5-2690 2.90GHz to compare the average execution time and
memory consumption. The result shows that SOBA is faster than Soot and WALA
in call relationships analysis. While the memory consumption depends on subject
programs in comparison of SOBA and WALA, SOBA requires less memory space
than Soot. In data and control dependence analysis, SOBA requires less time and
memory space than Soot and WALA. We conclude that SOBA is high performance
because its features are limited.

Table 4.7 shows performance of call relationships analysis for large-scale pro-
grams. The VTA performance using Soot and WALA was not measured because
Soot crashed in analysis and WALA does not provide VTA. SOBA requires less
memory space than Soot and WALA because SOBA does not create a dependence
graph to analyze call relationships while Soot and WALA have objects to represent
all call relationships. Although VTA of SOBA requires a lot of memory space, it
is able to analyze large-scale programs fast.

53

Table 4.6: Performance comparison of programs analyzing data and control depen-
dence (time[ms] and memory[MB])

SOBA Soot WALA
Subjects # Methods Time Memory Time Memory Time Memory
sunflow 4,828 1,894 285 10,744 1,915 2,250 151
avrora 10,073 2,085 344 12,005 1,068 2,965 540
pmd 19,523 2,630 455 20,868 654 4,405 362
h2 19,962 2,508 570 35,368 5,475 5,041 1,172
batik 36,063 3,522 801 35,369 8,006 8,041 637

Table 4.7: Performance for Eclipse 4.2 and JDK 1.7.0 (67,973 classes and 543,425
methods)

Algorithm CHA VTA
Tool SOBA Soot WALA SOBA
Execution time [ms] 15.5 65.8 27.3 95.5
Memory consumption [GB] 2.0 23.7 16.4 37.2

4.5 Conclusion of This Chapter

We developed SOBA, which is a class library to analyze Java bytecode. Its design
enables those who do not have detailed knowledge of program analysis to easily
obtain analysis results. We confirmed that SOBA is high performance in call rela-
tionships and data/control dependence analysis. Although our research group uses
SOBA for our studies, we need feedback from other users to evolve it. Further-
more, we would like to evaluate whether SOBA has enough features for software
engineering researchers.

54

Chapter 5

Conclusion

5.1 Summary of Studies

This dissertation described three studies on dependence analysis to tackle with the
challenges of program understanding.

First, we conducted an empirical study to evaluate the effectiveness of thin
slicing in terms of slice size. Our experiment showed that the average size of thin
slices is about 2.1% on the seven programs. Furthermore, we found that 10%
of thin slices can be effective for tracking inter-procedural data dependence. We
believe that thin slicing can support developers to understand large-scale systems
by visualizing data dependence.

Second, we developed a novel dependence analysis technique for understand-
ing business rules. While existing techniques for business rules extraction include
statements that do not correspond to the rules, our technique excludes those state-
ments by constructing a partial control-flow graph. We evaluated whether this
technique actually contributes to the performance of developers who extract busi-
ness rules. A controlled experiment based on an actual process in one company
showed that our technique enabled developers to more accurately identify condi-
tional statements corresponding to rules without affecting the time required for the
task.

Third, we developed SOBA, which is a program analysis tool for Java byte-
code. Its design enables those who do not have detailed knowledge of program
analysis to easily obtain basic information such as intra-procedural control-flow,
data dependence, control dependence, and method call relationships. Researchers
utilize SOBA for their studies on program analysis because its source code is open
as MIT license.

55

5.2 Future Directions

Although existing studies and our first study on program slicing evaluated its gen-
eral effectiveness by measuring slice size, we also need another evaluation which
focuses on a specific understanding task. Researchers need to understand the char-
acteristics of each technique and identify which technique is suitable for a certain
task because program understanding includes various activities.

Some future work is needed for further support of understanding the source
code which implements essentially complicated business rules. Even if we ac-
curately describe the behavior of the source code, developers may not be able to
understand the description. For example, although Chapter 3 introduced tables
that describe business rules (Table 3.1), tables that describe essentially compli-
cated rules would be much larger and more complicated. Future work includes a
understandable expression way of business rules.

56

Bibliography

[1] Thomas A. Corbi. Program understanding: Challenge for the 1990’s. IBM
Systems Journal, Vol. 28, No. 2, pp. 294–306, 1989.

[2] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Understanding soft-
ware systems using reverse engineering technology perspectives from the rigi
project. In Proceedings of the 1993 Conference of the Centre for Advanced
Studies on Collaborative Research, pp. 217–226, 1993.

[3] Janice Singer, Timothy C Lethbridge, Norman Vinson, Nicolas Anquetil,
Norman G Vinson, and Nicolas Anquetil. An examination of software engi-
neering work practices. In Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative Research, pp. 21–36, 1997.

[4] Patrick Máder and Alexander Egyed. Assessing the effect of requirements
traceability for software maintenance. In Proceedings of the 28th Interna-
tional Conference on Software Maintenance, pp. 171–180, 2012.

[5] Anneliese von Mayrhauser, A. Marie Vans, and Adele E. Howe. Program un-
derstanding behaviour during enhancement of large-scale software. Journal
of Software Maintenance, Vol. 9, No. 5, pp. 299–327, 1997.

[6] Thomas D. LaToza, Gina Venolia, and R DeLine. Maintaining mental mod-
els: a study of developer work habits. In Proceedings of the 28th International
Conference on Software Engineering, pp. 492–501, 2006.

[7] Martha E. Crosby and Jan Stelovsky. How DoWe Read Algorithms?: A Case
Study. IEEE Computer, Vol. 23, No. 1, pp. 24–35, 1990.

[8] Bonita Sharif and Jonathan I. Maletic. An eye tracking study on camelcase
and under-score identifier styles. In Proceedings of the 18th International
Conference on Program Comprehension, pp. 196–205, 2010.

57

[9] Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. To
camelcase or under score. In Proceedings of the 17th International Confer-
ence on Program Comprehension, pp. 158–167, 2009.

[10] Bonita Sharif, Michael Falcone, and Jonathan I. Maletic. An eye-tracking
study on the role of scan time in finding source code defects. In Proceedings
of the 2012 Symposium on Eye Tracking Research and Applications, pp. 381–
384, 2012.

[11] Chris Parnin. Subvocalization - Toward hearing the inner thoughts of de-
velopers. In Proceedings of the 19th International Conference on Program
Comprehension, pp. 197–200, 2011.

[12] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. Understanding under-
standing source code with functional magnetic resonance imaging. In Pro-
ceedings of the 36th International Conference on Software Engineering, pp.
378–389, 2014.

[13] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and
K. Vijay-Shanker. Towards automatically generating summary comments
for java methods. In Proceedings of the 25th International Conference on
Automated Software Engineering, pp. 43–52, 2010.

[14] Giriprasad Sridhara, Lori Pollock, and K. Vijay-Shanker. Generating param-
eter comments and integrating with method summaries. In Proceedings of the
19th International Conference on Program Comprehension, pp. 71–80, 2011.

[15] Paul W. McBurney and Collin McMillan. Automatic documentation genera-
tion via source code summarization of method context. In Proceedings of the
22nd International Conference on Program Comprehension, pp. 279–290,
2014.

[16] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pol-
lock, and K. Vijay-Shanker. Automatic generation of natural language sum-
maries for java classes. In Proceedings of the 21st International Conference
on Program Comprehension, pp. 23–32, 2013.

[17] Bernhard Katzmarski and Rainer Koschke. Program complexity metrics and
programmer opinions. In Proceedings of the 20th International Conference
on Program Comprehension, pp. 17–26, 2012.

58

[18] Nadia Kasto and Jacqueline Whalley. Measuring the difficulty of code com-
prehension tasks using software metrics. In Proceedings of the 15th Aus-
tralasian Computing Education Conference, pp. 59–65, 2013.

[19] Vallary Singh, Lori L. Pollock, Will Snipes, and Nicholas A Kraft. A Case
Study of Program Comprehension Effort and Technical Debt Estimations. In
Proceedings of the 24th International Conference on Program Comprehen-
sion, pp. 1–9, 2016.

[20] Brian S. Mitchell and Spiros Mancoridis. On the automatic modularization
of software systems using the bunch tool. IEEE Transactions on Software
Engineering, Vol. 32, No. 3, pp. 193–208, 2006.

[21] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn R. Chenm, and Gansner. Em-
den. Bunch: A clustering tool for the recovery and maintenance of software
system structures. In Proceedings of the 1999 International Conference on
Software Maintenance, pp. 50–59, 1999.

[22] Kenichi Kobayashi, Manabu Kamimura, Keisuke Yano, Koki Kato, and Aki-
hiko Matsuo. SArF map: Visualizing software architecture from feature and
layer viewpoints. In Proceedings of the 21st International Conference on
Program Comprehension, pp. 43–52, 2013.

[23] Kenichi Kobayashi, Manabu Kamimura, Koki Kato, Keisuke Yano, and Aki-
hiko Matsuo. Feature-gathering dependency-based software clustering using
Dedication and Modularity. In Proceedings of the 28th International Confer-
ence on Software Maintenance, pp. 462–471, 2012.

[24] Nicolas Anquetil and Timothy Lethbridge. File clustering using naming con-
ventions for legacy systems. In Proceedings of the 1997 Conference of the
Centre for Advanced Studies on Collaborative Research, pp. 2–13, 1997.

[25] Giuseppe Scanniello, Anna D’Amico, Carmela D’Amico, and Teodora
D’Amico. Using the Kleinberg Algorithm and Vector Space Model for Soft-
ware System Clustering. In Proceedings of the 18th International Conference
on Program Comprehension, pp. 180–189, 2010.

[26] Vassilios Tzerpos and RC Holt. ACDC: An algorithm for comprehension-
driven clustering. In Proceedings of the 7th Working Conference on Reverse
Engineering, pp. 258–267, 2000.

[27] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visu-
alizing the behavior of object-oriented systems. In Proceedings of the 8th

59

Conference on Object-oriented Programming Systems, Languages, and Ap-
plications, pp. 326–337, 1993.

[28] Danny B. Lange and Yuichi Nakamura. Object-oriented program tracing and
visualization. IEEE Computer, Vol. 30, No. 5, pp. 63–70, 1997.

[29] Steven P. Reiss. Visualizing java in action. In Proceedings of the 2003 Sym-
posium on Software Visualization, pp. 57–65, 2003.

[30] Orla Greevy, Michele Lanza, and Christoph Wysseier. Visualizing live soft-
ware systems in 3d. In Proceedings of the 2006 Symposium on Software
Visualization, pp. 47–56, 2006.

[31] Fabian Beck, Oliver Moseler, Stephan Diehl, and Rey Günter D. In situ un-
derstanding of performance bottlenecks through visually augmented code. In
Proceedings of the 21st International Conference on Program Comprehen-
sion, pp. 63–72, 2013.

[32] Mark Weiser. Program Slicing. IEEE Transactions on Software Engineering,
Vol. SE-10, No. 4, pp. 352–357, 1984.

[33] Andrea De Lucia, Fasolino Anna Rita, and Munro Malcolm. Understand-
ing function behaviors through program slicing. In Proceedings of the 4th
International Workshop on Program Comprehension, pp. 9–18, 1996.

[34] Thomas D. LaToza and Brad a. Myers. Developers ask reachability questions.
In Proceedings of the 32nd International Conference on Software Engineer-
ing, pp. 185–194, 2010.

[35] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Mor-
gan Kaufmann Publishers Inc., 2005.

[36] Paul Anderson, Thomas Reps, and Tim Teitelbaum. Design and implemen-
tation of a fine-grained software inspection tool. IEEE Transactions on Soft-
ware Engineering, Vol. 29, No. 8, pp. 721–733, 2003.

[37] David Binkley, Nicolas Gold, and Mark Harman. An empirical study of static
program slice size. ACM Transactions on Software Engineering and Method-
ology, Vol. 16, No. 2, pp. 1–32, 2007.

[38] Daniel Jackson and EJ Rollins. A new model of program dependences for
reverse engineering. In Proceedings of the 2nd Symposium on Foundations of
Software Engineering, pp. 2–10, 1994.

60

[39] Thomas Reps and Genevieve Rosay. Precise Interprocedural Chopping. In
Proceedings of the 3rd Symposium on Foundations of Software Engineering,
pp. 41–52, 1995.

[40] Jens Krinke. Visualization of program dependence and slices. In Proceedings
of the 20th International Conference on Software Maintenance, pp. 168–177,
2004.

[41] Kunrong Chen and Václav Rajlich. Case study of feature location using de-
pendence graph. In Proceedings of 8th International Workshop on Program
Comprehension, pp. 241–247, 2000.

[42] Susan Horwitz, Ben Liblit, and Marina Polishchuk. Better Debugging via
Output Tracing and Callstack-Sensitive Slicing. IEEE Transactions on Soft-
ware Engineering, Vol. 36, No. 1, pp. 7–19, 2010.

[43] Mariano Ceccato, Mila Dalla Preda, Jasvir Nagra, Christian Collberg, and
Paolo Tonella. Barrier Slicing for Remote Software Trusting. In Proceedings
of the 7th International Working Conference on Source Code Analysis and
Manipulation, pp. 27–36, 2007.

[44] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang, Hong Mei, and Jef-
frey Xu Yu. Matching dependence-related queries in the system dependence
graph. In Proceedings of the 25th International Conference on Automated
Software Engineering, p. 457, 2010.

[45] Hongyu Kuang, P Mader, and Hao Hu. Do data dependencies in source
code complement call dependencies for understanding requirements trace-
ability? In Proceedings of the 28th International Conference on Software
Maintenance, pp. 181–190, 2012.

[46] Harry M. Sneed and Katalin Erdos. Extracting business rules from source
code. In Proceedings of the 4th International Workshop on Program Com-
prehension, pp. 240–247, 1996.

[47] Hai Huang and WT Tsai. Business rule extraction from legacy code. In
Proceedings of the 20th Conference on Computer Software and Applications,
pp. 162–167, 1996.

[48] X Wang, J Sun, and X Yang. Business rules extraction from large legacy sys-
tems. In Proceedings of the 8th Euromicro Working Conference on Software
Maintenance and Reengineering, pp. 249–253, 2004.

61

[49] Valerio Cosentino, Jordi Cabot, Patrick Albert, Philippe Bauquel, and Jacques
Perronnet. A Model Driven Reverse Engineering Framework for Extracting
Business Rules out of a Java Application. In Proceedings of the 6th Inter-
national Conference on Rules on the Web: Research and Applications, pp.
17–31, 2012.

[50] Valerio Cosentino, Jordi Cabot, Patrick Albert, Philippe Bauquel, and Jacques
Perronnet. Extracting business rules from COBOL: A model-based frame-
work. In Proceedings of the 20th Working Conference on Reverse Engineer-
ing, pp. 409–416, 2013.

[51] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slicing. In
Proceedings of the 28th Conference on Programming Language Design and
Implementation, pp. 112–122, 2007.

[52] Xiaoran Wang, Lori Pollock, and K. Vijay-Shanker. Automatic segmentation
of method code into meaningful blocks to improve readability. Proceedings
of the 18th Working Conference on Reverse Engineering, pp. 35–44, 2011.

[53] Judit Jász, Árpad Beszédes, Tibor Gyimóthy, and Václav Rajlich. Static ex-
ecute after/before as a replacement of traditional software dependencies. In
Proceedings of the 24th International Conference on Software Maintenance,
pp. 137–146, 2008.

[54] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing
using dependence graphs. ACM SIGPLAN Notices, Vol. 23, No. 7, pp. 35–
46, 1988.

[55] Shinji Kusumoto, Akira Nishimatsu, Keisuke Nishie, and Katsuro Inoue. Ex-
perimental evaluation of program slicing for fault localization. Empirical
Software Engingeering, Vol. 7, No. 1, pp. 49–76, 2002.

[56] David Binkley, Mark Harman, and Jens Krinke. Empirical study of opti-
mization techniques for massive slicing. ACM Transactions on Programming
Languages and Systems, Vol. 30, No. 1, pp. 3–es, 2007.

[57] Yu Kashima. Study on Licensing and Program Understanding for Reuse Sup-
port. PhD thesis, 2015.

[58] Christian Hammer and Gregor Snelting. An improved slicer for Java. In
Proceedings of the ACM-SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering - PASTE ’04, pp. 17–22, 2004.

62

[59] Vijay Sundaresan and Laurie Hendren. Practical virtual method call reso-
lution for Java. In Proceedings of the 15th Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 264–280, 2000.

[60] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Transactions on Software
Engineering and Methodology, Vol. 14, No. 1, pp. 1–41, 2005.

[61] Lars O. Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, University of Copenhagen, 1994.

[62] Takashi Ishio, Shogo Etsuda, and Katsuro Inoue. A lightweight visualization
of interprocedural data-flow paths for source code reading. In Proceedings
of the 20th International Conference on Program Comprehension, pp. 37–46,
2012.

[63] Karl Wiegers and Joy Beatty. Software Requirements. Miscrosoft press, 2013.

[64] Harry M. Sneed. Extracting business logic from existing COBOL programs
as a basis for redevelopment. In Proceedings 9th International Workshop on
Program Comprehension, pp. 167–175, 2001.

[65] Keith Brian Gallagher and James R. Lyle. Using Program Slicing in Software
Maintenance. IEEE Transactions on Software Engineering, Vol. 17, No. 8,
pp. 751–761, 1991.

[66] Mark Harman, David Binkley, and Sebastian Danicic. Amorphous program
slicing. Journal of Systems and Software, Vol. 68, No. 1, pp. 45–64, 2003.

[67] Yael Dubinsky, Yishai Feldman, and Maayan Goldstein. Where is the busi-
ness logic? In Proceedings of the 9th Joint Meeting on Foundations of Soft-
ware Engineering, pp. 667–670, 2013.

[68] Josef Pichler. Specification extraction by symbolic execution. In Proceedings
of the 20th Working Conference on Reverse Engineering, pp. 462–466. Ieee,
2013.

[69] Joxan Jaffar and Vijayaraghavan Murali. A path-sensitively sliced control
flow graph. In Proceedings of the 22nd International Symposium on Founda-
tions of Software Engineering, pp. 133–143, 2014.

[70] Frances E. Allen. Control flow analysis. ACM Sigplan Notices, Vol. 5, No. 7,
pp. 1–19, 1970.

63

[71] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating non-interfering ver-
sions of programs. ACM Transactions on Programming Languages and Sys-
tems, Vol. 11, No. 3, pp. 345–387, 1989.

[72] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal ques-
tions. Psychological Bulletin, Vol. 114, No. 3, pp. 494–509, 1993.

[73] Jeanine Romano, Jeffrey D. Kromrey, Jesse Coraggio, and Jeff Skowronek.
Appropriate Statistics for Ordinal Level Data: Should We Really Be Using T-
Test and Cohen’Sd for Evaluating Group Differences on the NSSE and Other
Surveys? In Proceedings of the 2006 Annual Meeting of the Florida Associ-
ation of Institutional Research, pp. 1–33, 2006.

[74] Baroni Aline, Lucia and Abreu O Brito, E. An OCL-based formalization of
the MOOSE metric suite. In Proceedings of the 7th ECOOP Workshop on
Quantative Approaches in Object-Oriented Software Engineering, 2003.

[75] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. Soot - a java bytecode optimization framework. In
Proceedings of the 1999 Conference of the Centre for Advanced Studies on
Collaborative Research, pp. 13–23, 1999.

[76] WALA Project. WALA: T. J. Watson Libraries for Analysis. http://
wala.sourceforge.net/wiki/index.php/Main Page.

[77] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In Proceedings of
the 9th European Conference on Object-Oriented Programming, pp. 77–101,
1995.

[78] Yu Kashima, Takashi Ishio, Shogo Etsuda, and Katsuro Inoue. Variable
Data-Flow Graph for Lightweight Program Slicing and Visualization. IEICE
Transactions on Information and Systems, Vol. E98-D, No. 6, pp. 1194–1205,
2015.

[79] Yu Kashima, Takashi Ishio, and Katsuro Inoue. Comparison of Backward
Slicing Techniques for Java. IEICE Transactions on Information and Systems,
Vol. E98-D, No. 1, pp. 119–130, 2015.

[80] Toshinori Matsumura, Takashi Ishio, Yu Kashima, and Katsuro Inoue.
Repeatedly-executed-method viewer for efficient visualization of execution
paths and states in java. In Proceedings of the 22nd International Conference
on Program Comprehension, pp. 253–257, 2014.

64

[81] Yuki Kashiwabara, Takashi Ishio, and Katsuro Inoue. Improvement in
Method Verb Recommendation Technique using Association Rule Mining.
IEICE Transactions on Information and Systems, Vol. E98-D, No. 11, pp.
1982–1985, 2015.

[82] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump,
Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas
VanDrunen, Daniel von Dincklage, and BenWiedermann. The dacapo bench-
marks: Java benchmarking development and analysis. In Proceedings of the
21st Conference on Object-oriented Programming Systems, Languages, and
Applications, pp. 169–190, 2006.

65

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

