
An Interaction Support Mechanism in Software Development

Makoto Matsushitay

matusita@ics.es.osaka-u.ac.jp

Hajimu Iidaz

iida@itc.aist-nara.ac.jp

Katsuro Inouey

inoue@ics.es.osaka-u.ac.jp

yOsaka University

Dept. of Information and Computer Sciences

Faculty of Engineering Science

1-3 Machikaneyama, Toyonaka

Osaka 560 JAPAN

zNara Institute of Science and Technology

Information Technology Center

8916-5 Takayama, Ikoma

Nara 630-01 JAPAN

Abstract

This paper proposes a new modeling method of inter-

actions in software development process, which focuses

on the interactions among the elements of the process,

and a new software development environment based on

the model.

In this method, interactions in software process is

modeled as a set of agents and communication chan-

nels. Agent acts interaction between other agents with

channels. Channels are classi�ed by their contents and

types of interaction.

A prototype of supporting environment for the soft-

ware development which stands on the model is also

developed. The environment consists of proxy program

for agent and integrated communication server, which

provides mechanism for interaction, execution of pro-

cess, and user navigation.

1 Introduction

Recently software is being developed in more and
more distributed ways, spreaded to the network[1]. In
this circumstance, understanding a progress of devel-
opment and establishing communications among devel-
opment workers are very important issues, which were
not problematic in the traditional centralized software
development environment.

Researches on the software process has emerged to
solve such problems. They clari�es the development
procedures, and identi�es the relation between the
procedures[3, 11, 2]. The software development pro-
cedures and associated development environments are
reorganized based on the software processes. There

are various �elds in research areas of software pro-
cess, including process programming[12] which pre-
cisely models and describes software development pro-
cedures, and process-centered software development
environment[4, 5, 13] which supports worker's tasks
based on the process de�nitions.

In a software process, there are lots of interactions,
including conversation between the users, using appli-
cation by the users and delivering products from a de-
veloper to a user. Software development will progress
while these interactions are made. To support in-
teractions among various tasks in software develop-
ment, however, the process models already proposed
and their process-centered development environments
are not adequate, since the models do not consider top-
ics of interaction, but only consider types or forms of
the interactions.

In this paper, we propose a new process model focus-
ing on the interaction with topics. Also, we will design
an environment supporting the interaction[9]. In this
model, the interactions in a software development are
modeled as a set of agents and communication channels
with the topic of interaction.

In Section 2, we discuss the interaction in the soft-
ware process. In Section 3, we introduce a new mod-
eling method of the interactions in a software process.
In Section 4, we describe a development environment
based on the model. Finally, in Section 5, we present
our conclusions.

2 Interactions in software process

This section discusses software developments on
software processes and interactions.

2.1 Background: Process support for soft-
ware development

There are many attempts of describing elements of
software development procedures as software processes.
Once the current development procedure is described
as a software process, de�ning organization's standard
process or applying the process to the development en-
vironment would be easily established. The process
descriptions can be also used to measure development
progress in the quantitative and visible ways.

Formallydescribed software processes would make it
possible to execute or enact automatically the descrip-
tion. Also, the formalized process could be the bases of
the simulation of software development environment.

In general, it is unrealistic to employ fully auto-
mated execution of the software process. Thus, we will
use partially automated execution method of the pro-
cess.

2.2 Interactions in software development

In software development, there are lots of types of
interactions, including \product send/receive", \noti-
�cation of start/end of a job", \query or reply", \con-
versation with co-developers", and so on. The contents
of interaction widely vary.

Consider following scenario of software development
environment (Figure 1).

An application is being developed at a single
site. It is composed of common libraries and
other parts using the common libraries.

There are three common libraries (libR, libS,
and libT) to develop. There are three develop-
ers (A, B, and C). Each library is developed
by two or more developers of the three. There
is a \responsible developer" for each library.
The responsible developer has to remember
what is done in the library development.

There are four users (X, Y, Z and W), and
each user uses one or more libraries. The
users may want to know the announcement
of new releases of the libraries. They also ask
some questions to the library developers, and
exchange messages with other library users.

The following interactions may exist under this sce-
nario.

� A user may try to get a new library.
If a user wants to use a library which is not used
before, he or she must notify to the developer of
the library.

Developer A Developer B Developer C

libR libTlibS

develop

use

User
X

User
Y

User
Z

User
W

Figure 1. Library Development Example

� If bugs are found, they should be reported to the
developers.
The user who found the bug in the library should
notify to the developers of the library, and he or
she will receive the result of the bug �x.

� Users may send questions.
The user's questions on the functions or usages of
the library are sent to the developer of the library.

This example assumes a small development team;
however, we can see many types of interactions, in-
cluding �le transfer and conversations.

This paper proposes \Process-Centered Interaction
Model", for supporting message- or �le-based interac-
tions in software development environment, such as
\product send/receive", \noti�cation of start/end of
a job", \query and reply", \conversastion with co-
developers", and so on. This model is based on soft-
ware process description for interaction template. In
the model, we employ \WorkAgent" which represents
the subject of the interaction. The interaction is es-
tablished as a \Channel".

2.3 Related work

Process-centered development environments already
proposed and implemented mostly treat the interac-
tions as parameter passing or message passing. Un-
der these environments, we generally need, associated

with the interaction information such as \who is the
partner of the interaction". Otherwise, it is diÆcult
to be used as a framework of supporting interaction,
since abstraction level of interaction in already pro-
posed process-centered environments is too high.

On the other hand, if we consider to use some exist-
ing communication support tool for our purpose, fol-
lowing problems cannot be disregarded:

� With email based tools, there is diÆculty of en-
suring \to deliver to a person who should get the
email". Moreover, email is not suitable for imme-
diate conversations.

� With conversation tools such as talk/phone, it is
good for conversation of course. For sending large
amount of information such as �le, however, this
kind of tool is not suitable. Controlling and trac-
ing communication are also diÆcult.

� With groupware base tool such as [7, 6, 8, 10], it
would be useful as a distributed database. How-
ever, if it is an email-based environment, it is not
suitable for conversations. If it is a voice/video-
based communication tool, it would be hard to
trace contents of interaction.

3 Process-centered interaction model

In this section, we introduce the 'Process-Centered
Interaction Model'. The overview of the model is pre-
sented at �rst. Then we'll see the details of \Work-
Agent" and \Channel", that play important roles in
the model. We also show an example of description of
interactions schema and representation of interaction
based on the schema.

3.1 Required features

At �rst, we specify required feature of the model to
describe/support interactions in software development
processes as follows:

� Process-Centered:
The largest assumption for our model is that the
way of the work (process model) determines the
optimal way of the interaction, that is, the struc-
ture of the process must be directly reected to
the structure of interaction.

� Actor sensitive:
The model must be sensitive to the subject of in-
teraction (performers of interaction), because we
have to determine the concerning members of ev-
ery interaction.

� Information sensitive:
The model must be sensitive also to the content
of information treated during the interaction, be-
cause these kinds of information are quite impor-
tant product of the process to make e�ective man-
agement of the process.

� Simplicity:
We assume this model as one component of the
generic process model which totally supports the
whole activities of software development. There-
fore, interaction model should have �ne modular-
ity and simplicity to establish the integration with
other components.

3.2 Model de�nition

3.2.1 Overview

At �rst, we de�ne a software process as a set of tasks.
Every task is de�ned as a sequence of activities. An
activity is an atomic action in the software process,
and every task may communicate with other tasks by
sending messages.

To represent required feature listed in section 3.1, we
employ the object-oriented model as a base model. We
introduce two classes \WorkAgent" and \Channel" to
be used as components of interaction model construc-
tion.

WorkAgent is an entity which produces events
treated as interactions, and its instance may be a cer-
tain activity to be executed by a human, a program
tool, or some external systems.

Channel is a virtual path of interactions classi�ed
based on their contents and types. Its instance may be
generated to represent some topics in the software pro-
cess, such as \library information" or \testing results".

WorkAgent acts interaction between other WorkA-
gents with Channels, achieved by connecting to Chan-
nels. WorkAgent can send/receive information to/from
Channels.

Formally, we de�ne our process-centered interaction
model as follows:

Interaction ::= [set of WorkAgents, set of Channels,
 ConnectionInfo]
WorkAgent ::= finite state machine
Channel ::= Communication channel for WorkAgent
ConnectionInfo ::= Mapping function from Channel
 to set of WorkAgents

In following sections, we explain the details of Work-
Agent and Channel.

3.2.2 WorkAgent

From the aspect of interaction modeling, every task can
be regarded as a producer of interactions. Therefore,

we model a task as an object called WorkAgent. In
other words, WorkAgent produces a series of messages
during its execution.

The de�nition of WorkAgent is as follows:

WorkAgent ::= [Name, a set of Attribute, a set of Taskbody]
Name ::= string
Attribute ::= [Attrname, Attrvalue]
Attrname ::= string
(value of Attrname is defined by each process)
Attrvalue ::= scalar value
(range of Attrvalue is defined by each process)
Taskbody ::= [Precondition, Activity]
Precondition ::= A boolean function (domain is input data)
Activity ::= A sequence of procedure for WorkAgent
(Human work, Tool invocation, Message passing, etc)

WorkAgent has several properties such as Name, At-
tributes, and Taskbody.

Name is used to identify WorkAgent. Attributes are
set of enumerate-type variables. Attributes are used
to specify the characteristic of the role of WorkAgent.
Therefore, every enumerate ranges are de�ned accord-
ing to every process to be modeled. Taskbody is a se-
quence of atomic activities, and it is guarded by a Pre-
condition to be satis�ed before execution. Atomic ac-
tivities are determined according to every process and
WorkAgent.

3.2.3 Channel

The interaction is de�ned as a series of messages which
are generated by WorkAgents in the software process.
These interactions can be categorized based on the type
of information and concerning WorkAgents.

Therefore, there are some relations among tasks to
specify such category of the messages they exchange.
Since several attributes associate to these relations, we
model it as a class called Channel.

The de�nition of Channel is as follows:

Channel ::= [Name, a set of Attribute, Closure, a set of Infotype]
Name ::= string
Attribute ::= [Attrname, Attrvalue]
Attrname ::= string
(value of Attrname is defined by each process)
Attrvalue ::= scalar value
(range of Attrvalue is defined by each process)
Closure ::= [Inclosure, Exclosure]
Inclosure ::= a pair of Attributes of WorkAgent
(Definition of Exclosure is the same as above)
Infotype ::= [Typename, a set of FieldDecl]
Typename ::= string
FieldDecl ::= [Fieldid, Fieldtype]
Fieldid ::= string
Fieldtype ::= string, file, bool, etc.

Like WorkAgent, Channel has several properties
such as Name, Attributes, Closure, Infotype. Name
and Attribute have same utilization as WorkAgent's
ones.

Closure de�nes the range of message distribution in
the form of WorkAgent type in order to control in-
teractions. Closure consists of Inclosure and Exclo-
sure: Inclosure speci�es the WorkAgents which must

be connected to this channel, and Exclosure speci�es
the WorkAgents which must not be connected to this
channel. Infotype de�nes types of the messages in the
Channel. Infotype consists of Typename and a set of
FieldDecl: Typename speci�es name of the message
type, and FieldDecl declares the contents of the mes-
sages.

Connecting or disconnecting action must be made
before or after use of a channel by WorkAgents to per-
form interaction each other through the channel.

3.3 Example of interaction expressed by
model

This section describes how interaction schema is ex-
pressed by the model, and how WorkAgents and Chan-
nels work, by using an example case of library develop-
ment visited before. Figure 2 is an image of interaction
model representation for the library development.

libR

libTlibS

Developer A

Developer C

Developer B
User X

User Y

User W User Z

Figure 2. Library Development Example: model

mapping

Rectangles which round o� the corner represent
WorkAgents, and double circles represent Channels.
Dotted lines show connectivity among Channel and
WorkAgent. There are seven WorkAgents and three
Channels in this �gure. Now, we show the detailed
steps of the description.

3.3.1 De�ning WorkAgents and Channels

In this example, it seems that developers and users of
libraries interact with each other. In �gure 2, develop-

ers and users are mapped to WorkAgents. Since the
contents of interactions will be related to the libraries
which is developed/used, library names are mapped to
Channels.

Every WorkAgent has connections to the Channels
which may concern, i.e., developers' WorkAgents con-
nect to library Channel of which they develop, users'
WorkAgents connect to library Channel of which they
use.

3.3.2 Describeing WorkAgents

Figure 3 shows a sample description of WorkAgent for
Developer A.

de�ne workagent Developer_A
begin

attribute begin
role: develop;
primary: S;

end
vars begin

bugbu�er: array of bug-report;
qbu�er: array of question;
res: bool;

end
initaction begin

join(libS);
join(libT);

end
primitive add consult, debugging, makeans;
action begin

channel libS begin
bug-report:

push(bugbu�er, info);
res = consult(info);
if (res == True) {

send(libS, debugging(info));
}

question:
push(qbu�er, info);
send(libS, makeans(info));

end
channel libT begin

bug-report:
res = consult(info);
if (res == True) {

send(libS, debugging(info));
}

question:
send(libS, makeans(info));

end
end

end

Figure 3. Description of WorkAgent

As attribute values of Developer A, two attributes
\role" and \primary" are de�ned. \Role" means \role
of this WorkAgent in a process", and \developer" or
\user" is valid for its value. \Primary" means \most
important library for this agent", i.e., responsible li-
brary for developers or most concerned library for
users, and a name of the library is valid.

In order to specify several factors establishing the
control of Agent's behavior, sections for \control vari-
able de�nition", \initial action de�nition", and \exter-
nal (primitive) activity declaration" are introduced to
our syntax.

Variable de�nition is for de�ning variable which is
used in the description to keep values of information,
interaction, etc. Initialization section describes which
actions are needed when this WorkAgent begins to
work. In this example, joining two channels are spec-
i�ed. Primitive tasks associated to the Agent is also
declared, however, its speci�c actions are not described
since it is out of our model's scope.

3.3.3 Describeing Channels

Figure 4 shows a sample description of Channel libS.

de�ne channel libS
begin

attribute begin
libname: S;

end
restriction

in: (develop, S)
infotype begin

announce:
(topic: string, contents: �le);

bug-report:
(topic: string, contents: �le);

question:
(topic: string, body: �le, keyword: string);

answer:
(topic: string, body: string);

end
end

Figure 4. Description of WorkAgent

Same as WorkAgent, attributes of Channel must be
de�ned. In this example, only one attribute \libname"
is de�ned. Attribute \libname" is used for the library
name which is focused by this Channel. Closure of this
Channel is de�ned in \restriction" section.

This example shows that this channel has an In-
closure restriction of \developer of libS must be con-
nected to this Channel". There is four Typename
in this Channel, announcement, bug-report, question,
and answer. Each Typename has several �eld, i.e.,
topic string, message �le, and keyword strings of mes-
sage, however, its implementation of information type
are not described, since out model is not intended to
describe such information.

3.3.4 Behavior of WorkAgents and Channels

We have de�ned all WorkAgents, Channels, and their
connectivity. Now we will see how these description

work in the library development with following scenar-
ios.

Scenario 1: Get a new library Suppose user Y

is going to use new library libR. User Y's WorkA-
gent simply acts \join(libR)". Channel connectivity of
user Y's WorkAgent is which libraries are used by user
Y. Of course, if User Y decided not to use libT, do
\leave(libT)" to disconnect Channel libT.

Scenario 2: Finding a bug Suppose developer B

�nd a bug in libS. Developer B sends a bug-report to
Channel libS. This bug-report will be sent to all Work-
Agents connected with Channel libS, i.e., user Z, user
W, and developer A. Since developer A has responsi-
bility to the development of libS, he or she stores this
bug-report to bu�er, and consults if this is a true bug.
If developer A recognizes that it is a true bug, he or
she will do debugging and sends its result to Channel
libS.

Not only developer B, but also all WorkAgents con-
nected to Channel libS can send a bug-report, and it
will be accepted to responsible person (WorkAgents)
of libS. Moreover, developer A's reply will be received
by all WorkAgents connected to Channel libS.

Scenario 3: Sending a question Like \�nding a
bug" scenario, any questions should be received to all
developers, and all answers should be correctly sent
to the users. These questions and answers are shared
with WorkAgents connected to the Channel, therefore,
we can avoid to send duplicated questions.

4 Development environment based on

interaction model

This section describes a supporting environment for
the software development. Based on the interaction
model described in section 3, at the beginning, an
overview of the supporting environment is described.
Then we will show an implementation of the environ-
ment.

4.1 Overview

The environment based on our model provides the
following features.

� Interaction services between WorkAgents
WorkAgents and Channels de�ned by the model
are actually implemented under a networked envi-
ronment.

� Execution support for WorkAgent
If WorkAgent jobs is executable, it is automati-
cally performed by the environment.

� Navigation or tool invocation for user
If the user is responsible for the job progress of
a WorkAgent, the environment invokes the tools
needed for the jobs. Also the environment navi-
gates the job schedules by merging information of
WorkAgents.

4.2 Environment architecture

Figure 5 illustrates the overview of the supporting
environment.

Channel Server

WorkAgent manager

TCP/IP
Network

WorkAgents
(WorkAgents also run)

connects to server

for
user

Figure 5. Overview of supporting environment

We assume that the environment is used under a
small networking environment. The environment is
composed of the following parts.

� WorkAgent program

� Channel server

� TCP/IP network connection

� WorkAgent manager

Each WorkAgent is built with a WorkAgent pro-
gram. The WorkAgent program reads a WorkAgent
de�nition before it starts. All Channels are controlled
by the Channel server. The WorkAgent program is
connected to the Channel server by the TCP/IP con-
nection over the network.

There is a program called WorkAgent manager,
which controls one or more WorkAgent programs. It
also has an interface to the users. The WorkAgent

manager shows statistics of the WorkAgent program,
and supports execution of the WorkAgent tasks for
users, such as tool invocations.

The WorkAgents which are not managed by the
WorkAgent manager act themselves. They would work
with some product management tool or project man-
agement tool, which will invoke another (external) pro-
grams, execute pre-de�ned jobs, and return job results
to the Channel server.

The Channel server manages channel connectivity
between WorkAgents, sends information to appropriate
WorkAgents, and records an interaction history. The
Recorded history is used to analyze and check progress
of development. An experimental implementation of
the WorkAgent program and the Channel server has
been already completed.

4.3 Experimental implementation

The experimental implementation of the WorkA-
gent program runs on BSD UNIX, written in C. This
WorkAgent program simply reads de�nition, connects
the Channel server, and performs the interaction; thus
porting this program to other environments such as X
Window System or to other languages such as Perl and
Tcl/Tk is easy.

The current WorkAgent program has a feature of
sending/receiving simple data (�le and short state-
ment), and has terminal{oriented user interface (user
can operate with some commands) since WorkAgent
manager to support navigation and tool invocation for
users is not yet implemented. If a WorkAgent program
receives a �le from a Channel, it will automatically
store the �le to the disk and inform the user of the
data arrival. When it receives a short statement, it
will display the statement on the screen.

The Channel server is experimentally implemented
on BSD UNIX also. This Channel server program con-
sists several parts; socket processing engine, Channel
management table, socket management table, and an
interface for maintenance.

Following example is actually applied to the exper-
imental system of the WorkAgent program and the
Channel server. In this example, we use the same sce-
nario of software development environment which is
considered in section 3.

Suppose developer B �nds bugs in libS. He or
she operates his or her WorkAgent program
to send a �le of bug-report to a Channel libS.
As soon as WorkAgents for user Z, W, and
developer A receive the �le, the WorkAgent
program stores the received �le to a disk, and
noti�es the receipt to the user.

The WorkAgent program for developer A also
stores the �le to the bug-report bu�er. De-
veloper A examines the bug-report, decides
this is a bug or not, and sends an answer to
the Channel libS using his or her WorkAgent
program. The answer will be received by all
WorkAgent program connected to the Chan-
nel, and it will be displayed to the users of
libS.

We found that the scenario works completely on the
experimental system.

5 Conclusion

In this paper, we propose \Process-Centered Inter-
action Model", for supporting interactions in software
development environment. The model consists of two
components, \WorkAgent" and \Channel", to estab-
lish the interaction. In this model, the interactions
are treated as event sequences which are produced by
WorkAgents and sent through Channels. With this
model, we see that the interactions among the users
are clearly identi�ed and described.

Also we have designed an experimental environment
for the software development which is based on the
model. The environment provides interaction service,
execution support, navigation and tool invocation to
the users. Using the experimental implementation of
the environment, the users easily interact each other,
i.e., sending/receiving messages or �les.

As a further work, validation of our model and en-
vironment though experiments, and veri�cation, con-
sistency, and error detection mechanism of our model
is needed. Integrity of the whole described model is
possibly done by checking Channels required by Work-
Agents'. Also, we plan to design an improved commu-
nication model with more intelligent interaction.

References

[1] M. Aoyama. Distributed development environment: A
new paradigm of software development environments.
Journal of IPSJ, 33(1):2{13, 1992. in Japanese.

[2] Information Processing Society of Japan. Proceedings
of Software Process Symposium, 1994.

[3] K. Inoue. Trends of research area about software pro-
cess. Japan Society for Software Science and Tech-

nology Technical Report, 95(SP-2-1):1{10, 1995. in
Japanese.

[4] G. Kaiser, P. Feiler, and S. Popovich. Intelligent as-
sistance for software development maintenance. IEEE
Software, pages 40{49, May 1988.

[5] T. Katayama. A hierarchical and functional software
process description and its enaction. In Proceedings of

11th International Conference on Software Engineer-

ing, pages 343{352, 1989.
[6] K. Lai and T. Malone. Object lens: A \spreadsheet

" for cooperative work. In Proceedings of Computer

Supported Communication Work '88, pages 115{124,
1988.

[7] T. Malone, K. Grant, K. Lai, R. Rao, and D. Rosen-
blitt. Semistructured messages are surprisingly useful
for computer-supported coordination. ACM Trans-

actions on OÆce Information Systems, 5(2):115{131,
1987.

[8] T. Malone, K. Lai, and C. Fry. Experiments with
oval: A radically tailorable tool for cooperative work.
In Proceedings of Computer Supported Communication
Work '92, pages 289{297, 1992.

[9] M. Matsushita, H. Iida, K. Inoue, and K. Torii. An
interaction support mechanism in software develop-
ment processes. Information Processing Society of

Japan Technical Report, 95(SE-102):165{170, 1995. in
Japanese.

[10] Y. Matsushita. To realize human-oriented groupware.
Journal of Information Processing Society of Japan,
34(8):984{993, 1993.

[11] K. Ochimizu. Current status of research on software
process. Japan Society for Software Science and Tech-

nology Technical Report, 93(SP-1-1):1{11, 1993. in
Japanese.

[12] L. Osterweil. Software processes are software too. In
Proceedings of 9th International Conference on Soft-

ware Engineering, pages 2{13, 1987.
[13] S. Sutton, D. Heimbigner, and L. Osterweil. Language

constructs for managing change in proces-centered en-
vironments. In Proceedings of 9th International Con-

ference on Software Engineering, pages 328{338, 1987.

