
Slicing Methods Using Static and Dynamic Analysis Information

Yoshiyuki Ashiday, Fumiaki Ohatay and Katsuro Inouey;yy
y Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

fasida, oohata, inoueg@ics.es.osaka-u.ac.jp
y y Graduate School of Information Science, Nana Institute of Science and Technology

Abstract

In this paper, we propose four slicing methods using both
static and dynamic analysis information. (1) Statement-
Mark Slice : removes the unnecessary statements using an
execution history of the statements. (2) Partial Program
Analysis : reduces the static analysis cost using invoca-
tion history of procedures. (3) Dynamic Data Dependence
Analysis : extracts precise data dependence relations using
dynamic data dependence analysis. (4) Array and Pointer
Analysis : improves the efficiency of (3) by dynamically an-
alyzing pointer and array variables only. Using both dy-
namic and static information, we will show that the preci-
sion of the slicing is improved with smaller run-time over-
head.

1. Introduction

Program slice[14] is a set of statements that affect the
value of variablev in a statements. In order to calculate
a program slice, we must know the dependence relations
between statements in the program.

Program slicing is very promising approach for pro-
gram debugging, testing, understanding, merging, and so
on[2, 3, 5, 7, 14]. We have empirically investigated effec-
tiveness of program slicing for program debugging and pro-
gram maintenance processes, and its significance was vali-
dated by several experiments [9, 10].

Program slicing techniques are roughly divided into two
categories, static slicing [14] and dynamic slicing [1]. The
former is based on static analysis of source program with-
out input data. The dependence of program statements is
investigated for all possible input data. The latter is based
on a specific input data, and the dependence of the program
statements is explored for the program execution with the
input data. The size of the static slice is larger in general,

since it considers all possible input data. The size of the
dynamic slice is smaller in general, but it requires a large
amount of CPU time and memory space to obtain it.

When we focus on the program debugging, we believe
that the dynamic slice is more effective for program debug-
ging than the static one, since the debugging process often
needs program executions. However, computing dynamic
slicing associated with program execution is very expen-
sive. We thought that using both static and dynamic infor-
mation might be better than using only dynamic informa-
tion.

In this paper, we propose four techniques using the static
and dynamic information.

(1) Statement-Mark Slicing makes a PDG from a source
program and its execution history.

(2) Partial Analysis uses a source program and invocation
history of call-statement.

(3) Dynamic Data Dependence Analysis gets data depen-
dences while execution and control dependences from
source program.

(4) Array and Pointer Analysis is similar to (3). This
method obtains data dependences of only array and
pointer variables while execution.

In section 2, we will briefly overview program slice. In
section 3, we will present Statement-Mark slice and eval-
uate it. In section 4, we will present Partial Analysis and
evaluate it. In section 5, we will present Dynamic Data
Dependence Analysis. In section 7, we will conclude our
discussions with a few remarks.

2. Program Slice

2.1. Static Slice

Consider statementss1 ands2 in the source programp.
When all of the following conditions are satisfied,a control
dependence, CD, froms1 to s2 exists :

� s1 is a conditional predicate, and

� the result ofs1 determines whethers2 is executed or
not.

This relation is written by ’CD(s1; s2)’.
When the following conditions are all satisfied,a data

dependence, DD, froms1 to s2 exists.

� s1 definesv, and

� s2 refersv, and

� at least one execution path froms1 to s2 without re-
definingv exists.

This relation is denoted by ’DD(s1; v; s2)’.
In order to slice the program, we commonly use ’Pro-

gram Dependence Graph(PDG)’. A PDG is a directed
graph whose nodes represent statements in a source pro-
gram, and whose edges denote dependence relations(DD or
CD) between statements(nodes). A DD edge is labeled with
a variable name ’a’ if it denote DD(� � �, a, � � �). An edge
drawn from nodeVs to nodeVt represents that ’nodeVt de-
pends on nodeVs’. Fig.2 shows PDG of Fig.1.

Then we calculate a static slice witha slicing criterion(a
pair (s; v), s is a statement andv is a variable used, defined
or referred ins).

In order to get a slice for slicing criterion(s; v), PDG
nodes are traversed inversely fromVs(node Vs denotes
statements.). The reached nodes fromVs with respect to
variablev and other transitive variables form a slice for
(s; v). Fig.3 shows a slice(underlined statements) of slic-
ing criterion(24; d) for the program shown in Fig.1.

2.2. Dynamic Slice

In a calculation of a static slice, we make a dependence
analysis in a source program. In a calculation of a dynamic
slice, we analyze a dependence from an execution history.
This history records the execution of statements as the pro-
gram executes. And one execution in an execution history
is called execution point.

Consider two execution pointsr1 andr2. When all of the
following conditions are satisfied,a dynamic control depen-
dence, DCD, fromr1 to r2 exists :

� r1 is a conditional predicate, and

1 program SquareCube(input,output);
2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin
5 Square := x�x
6 end;
7 function Cube(x : integer):integer;
8 begin
9 Cube := x�x�x
10 end;
11 begin
12 writeln(”Squared Value ?”);
13 readln(a);
14 writeln(”Cubed Value ?”);
15 readln(b);
16 writeln(”Select Feature! Square:0, Cube: 1”);
17 readln(c);
18 if(c = 0) then
19 d := Square(a)
20 else
21 d := Cube(b);
22 if (d< 0) then
23 d :=�1 � d;
24 writeln(d)
25 end.

Figure 1. Pascal Source Program

� the result ofr1 determines whetherr2 is executed or
not.

This relation is written by ’DCD(r1; r2)’.
When the following conditions are all satisfied,a dy-

namic data dependence, DDD, from r1 to r2 exists.

� r1 definesv, and

� r2 refersv, and

� no execution betweenr1 andr2 definesv.

This relation is denoted by ’DDD(r1; v; r2)’.
In dynamic slicing, we use ’Dynamic Dependence

Graph(DDG)’. A DDG is a directed graph whose nodes
represent execution points, and whose edges denote de-
pendence relations(DDD or DCD) between execution
points(nodes).

Then we specify an inputx, an execution pointr and
a variablev as a slicing criterion, and DDG nodes are tra-
versed inversely for slicing criterion(x; r; v). Finally, the
result on DDG is mapped onto the source list.

Fig.4 shows a slice of slicing criterion(x; 13; d) for the
program shown in Fig.1(input x isa = 2, b = 3, c = 0, and
at execution point13, statement24 is executed).

2.3. Features of Static and Dynamic Slice

When we calculate a static slice, we use PDG based on
the dependence analysis of source program. The cost of

writeln(d)

d:=Square(a)

d:=Cube(b)

if c = 0

readln(a)

readln(b)

readln(c)

x-para

Square-exit

x-para

Cube-exit

ax

a
b

c

b

x

d

d

Square:=x*x

Cube:=x*x*x

MainSquare

Cube

Cube

Square

Data
Dependence

Control
Dependence

Square

Cube

writeln("Sq ...

writeln("Cu ...

writeln("Sel...

if d < 0

d:= -1 * d

d

Figure 2. PDG

constructing PDG is relatively small[12, 13], but the size of
the slice is relatively large because of considering all possi-
ble inputs.

On the other hand, the dynamic slice is calculated from
DDG based on the dependence analysis of the execution
history. Thus, statements that have not executed is removed
from slice, and the size of dynamic slice is smaller than that
of static.

If a program fails in a specific input data, dynamic slice
is very useful to find the fault which causes the failure.

In order to calculate dynamic slice, while static analysis
before execution is not needed, we must know dynamic de-
pendence relations while execution, requiring large memory
space and execution overhead. This worsens the efficiency
of debugging process.

3. Statement-Mark Slice

In this section, we showStatement-Mark slicingwhich
uses the information of which statement has executed.

3.1. Call-Mark Slice

We have already proposed theCall-Mark Slicing[8, 11]
which is between the static slicing and the dynamic slicing.
A call-mark slice is obtained as follows:

1. In the same way of the static slicing, a PDG is con-
structed from a source program.

2. The program is executed with an input data, and each
call statements was marked whether they were exe-
cuted or not.

1 program SquareCube(input,output);
2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin
5 Square := x�x
6 end;
7 function Cube(x : integer):integer;
8 begin
9 Cube := x�x�x
10 end;
11 begin
12 writeln(”Squared Value ?”);
13 readln(a);
14 writeln(”Cubed Value ?”);
15 readln(b);
16 writeln(”Select Feature! Square:0, Cube: 1”);
17 readln(c);
18 if(c = 0) then
19 d := Square(a)
20 else
21 d := Cube(b);
22 if (d ¡ 0) then
23 d :=�1 � d;
24 writeln(d)
25 end.

Figure 3. Static Slicing Result by d at Line 24

3. Using marked call statements, we specify unexecuted
statements, and remove them from the static slice.

Since we need to mark only call statements, a call-mark
slice needs less execution time and memory space than the
dynamic slicing.

3.2. Statement-Mark Slice

In call-mark slicing, we need to mark call statements. If
we mark all statements, we would expect to get more pre-
cise slice than the call-mark slice.

The related idea has been introduced in [4], and we will
discuss the implementation and evaluation of this method in
this section.

Method of Statement-Mark Slicing

The basic way of statement-mark slicing is same as the
call-mark slicing:

1. A PDG is constructed from a source program.

2. The program is executed with an input data, and all the
statements were marked whether they were executed
or not.

3. PDG nodes are traversed inversely from slicing crite-
rion. If it reaches the unexecuted node, we remove

1 program SquareCube(input,output);
2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin
5 Square := x�x
6 end;
7 function Cube(x : integer):integer;
8 begin
9 Cube := x�x�x
10 end;
11 begin
12 writeln(”Squared Value ?”);
13 readln(a);
14 writeln(”Cubed Value ?”);
15 readln(b);
16 writeln(”Select Feature! Square:0, Cube: 1”);
17 readln(c);
18 if(c = 0) then
19 d := Square(a)
20 else
21 d := Cube(b);
22 if (d< 0) then
23 d :=�1 � d;
24 writeln(d)
25 end.

Figure 4. Dynamic Slicing Result by d at Line
24 with input (a = 2, b = 3, c = 0)

this node from slice, stop traversing, and find another
branch.

Fig.5 shows a slice of slicing criterion(24; d) for the pro-
gram shown in Fig.1(input isa = 2, b = 3, c = 0).

In this case, the statement-mark slice is same as the dy-
namic slice. A statement-mark slice becomes the superset
of the dynamic slice.

Evaluation of Statement-Mark Slicing

In order to validate the statement-mark slicing, we
have implemented this method within our Osaka Slicing
System(OSS)[12]. And then, we have measured the size
of slice and the execution time. Tab.1 and Tab.2 show the
results.

In comparison with the call-mark slice, the size of the
statement-mark slice is 10–30% smaller, and the execution
time is 15–30% longer.

In comparison with static slice, its size is 20–55%
smaller, and the execution time is 30–60% longer.

We would think that this approach is a very good com-
promise of slice precision and slice cost. The static slic-
ing is low precision and low cost, and the dynamic slicing
is high precision and high cost. The call-mark slicing and
statement-mark slicing are between them. The statement-
mark slicing produces more precise results but requires
more run-time overhead.

1 program SquareCube(input,output);
2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin
5 Square := x�x
6 end;
7 function Cube(x : integer):integer;
8 begin
9 Cube := x�x�x
10 end;
11 begin
12 writeln(”Squared Value ?”);
13 readln(a);
14 writeln(”Cubed Value ?”);
15 readln(b);
16 writeln(”Select Feature! Square:0, Cube: 1”);
17 readln(c);
18 if(c = 0) then
19 d := Square(a)
20 else
21 d := Cube(b);
22 if (d< 0) then
23 d :=�1 � d;
24 writeln(d)
25 end.

Figure 5. Statement-Mark Slicing Result by d

at Line 24 with input (a = 2, b = 3, c = 0)

Table 1. Size of Various Slicing Results(LOC)
program static call-mark statement dynamic

-Mark

P1 27 19 15 14
P2 176 155 141 139
P3 324 166 148 50

(Pentium-II 300MHz with 256MB Memory)

4. Partial Analysis of Source Program

The static slicing does not consider of the input data.
However, if we execute a source program with an input data,
we would get information for improvement of static analy-
sis.

We need not to analyze unexecuted statements, and will
reduce both the size of slice and the cost of constructing
PDG.

Here, we propose thePartial Analysis methodas the im-
provement on the call-mark slicing.

4.1. Partial Analysis Method

A static slicing algorithm proposal in [13] is divided two
phases:

Table 2. Execution Time(ms)
program static call-mark statement dynamic

-Mark

P1 38 47 62 87
P2 48 53 62 903
P3 4,064 4,104 5,318 31,635

(Pentium-II 300MHz with 256MB Memory)

Table 3. Analysis Time(ms)
program static call-mark partial analysis

P1 21 22 13
P2 1,602 1,625 1,142
P3 8,125 8,207 3,957

(Pentium-II 300MHz with 256MB Memory)

(A) Intraprocedural analysis

(B) Interprocedural analysis

The partial analysis is a method improved on the above
algorithm as follows:

1. Execute the program with an input data, and mark call
statements whether they were executed or not.

2. Make an intraprocedural analysis. On that occasion,
uncalled procedures are not analyzed.

3. Make an interprocedural analysis. Unexecuted call
statements are not analyzed.

This partial analysis uses the call-mark information. If
we use statement-mark information, we can expect more
precise slice with extra cost. To perform the partial analysis
using statement-mark information, the execution time and
the size of slice will be almost the same as the statement-
mark slice.

4.2. Evaluation of Partial Analysis

Like the Statement-Mark slicing, we have implemented
this method within our OSS. And then, we have measured
the analysis time. Tab.3 shows the result.

Not analyzing the unexecuted call statements and the un-
called procedures, the analysis time reduced 30–50% from
the static and the call-mark analysis.

5. Dynamic Data Dependence Analysis

5.1. Array and Pointer Analysis

When we make data dependence analysis in an array
variable, it is very difficult to know the value of array in-

1 a[0]:=0;
2 a[1]:=1;
3 a[2]:=2;
4 readln(c);
5 b:=a[c]+5;
6 writeln(b);

Figure 6. Pascal Program Including An Array
Variable

1 a=2;
2 b=1;
3 c=&a;
4 d=&c;
5 *c=5;
6 **d=b;
7 printf("%d",a);
8 printf("%d",**d);

Figure 7. C Program Using Pointers

dices, and we get a lot of unwilling data dependence rela-
tion.

Fig.6 is a simple program including an array variable.
In the static analysis, we can not get the input value(toc)
at statement4, and therefore we conclude that statement5
depends on all of statements 1–3.

In the case of presence of pointer, implicit data depen-
dences emerge because of aliases by the pointers. We need
high cost to compute safe approximation of the data depen-
dences, it is impractical to analyze the dependence relations
statically.

Fig.7 is a simple program using pointers. Variablea at
statement7 is defined at statement6, although analyzing
this dependence relation is very difficult.

5.2. Overview of Analysis

Static analyses of array and pointer variables need much
cost and produces results of low precision. Then we pro-
poseDynamic Data Dependence Analysis. This method has
following features.

1. Data dependence analysis is made dynamically.

2. Control dependences are computed statically(not
DCD).

3. Nodes in the graph represent statements in a source
program (The dependence graph is a PDG, not DDG).

Because of 1, the slice size will be close to that of the
dynamic slice, and due to 2 and 3, the execution time is
shorter than that of dynamic.

When a variablev is referred at statements during an
execution, if we know statementt definesv just before, we
say thatDD(t; v; s) exists.

Then, if we save the information for all the variables
which statement defined their values, we can obtain the pre-
cise data dependence relation even if there are array and
pointer variables.

5.3. Analysis

A statements has the set namedDDS(s). An element of
DDS(s) is a tuple: (“a variable referred ats”, “a statement
on whichs depends”).

At a certain execution pointp, we denoteDefS(v) as
the statement which definedv just beforep.

(1) Before execution, assign� toDDS(s) for all statement
s.

(2) Execute the program with an input data. Assume thats

is now executed.

� if v has referred ats, (v;DefS(v)) is added to
DDS(s).

� if v has defined ats, s is assigned toDefs(v).

After all, DDS(s) is equal to the data dependence re-
lation to s, it meansDDS(s) = f(v; t)jDD(t; v; s)
holds.g.

(3) Constructing the PDG fromDDS. In the analysis ofs,

� While DDS(s) 6= �, repeat the following two
operations.

1. DDS(s) DDS(s)� f(v; t)g.

2. Draw a DD edge fromt to s with v.

� If s is a conditional predicate, draw CD edges
from s to predicatet.

Tab.4 shows the transition at each execution point for the
program shown Fig6.

The statement1 defines variablea[0], and it causes
DefS(a[0]) = 1. At the statement2, 3, 4 and5, DefS

is assigned as well as statement1.
Since statement5 refers a[0], (a[0]; DefS(a[0])) is

added toDDS(5). Finally it becomesDDS(5) =
f(a[0]; 1), (c; 4)g.

6. Dynamic Analysis for Arrays and Pointers

Since the former method needs to be considerDefS for
all variables, there is a high possibility to need a large mem-
ory space and a long execution time.

Table 4. Transition of DefS at Each Execution
Point in Program Fig.6

statement a[0] a[1] a[2] b c

1 1 – – – –
2 1 2 – – –
3 1 2 3 – –
4 1 2 3 – 4
5 1 2 3 5 4
6 1 2 3 5 4

Originally, that method aims at reducing slice size with
precise array and pointer analysis. Therefore, there is an-
other option such that the dynamic analysis is applied to
arrays and pointers only, and the static analysis is used for
other variables.

In this approach, we must consider all array variables
and also variables that can be pointed by the pointer. Here,
we consider languages whose pointers can point to limited
objects such as dynamically created variables.

We describe only the difference between this approach
and the former method.

� ConsiderDefS, for each elements of arrays and the
variables that can be pointed.

� During execution, if array and pointer reference oc-
curs, defineDDS usingDefS.

� After execution, static analysis is made. Arrays and
pointers are analyzed usingDDS, and an normal static
analysis is done for other variables.

7. Conclusion and Future Work

We have presented four slicing methods using static and
dynamic information.

In statement-mark slice, we have implemented this
method and have evaluated it. As a result, we have noticed
that the statement-mark slice is 20–55% smaller, and the ex-
ecution time is 30–60% longer than those of the static slice.

In partial analysis, we have also implemented and evalu-
ated it, and we know that the analysis time was reduced by
30–50% from the static analysis.

In dynamic data dependence analysis, we have presented
the overviews of the approach. The implementation is a
future theme.

By combining the static information and the dynamic in-
formation, we have shown that we can obtain suitable com-
promises of slice precision and slicing performance. The
methods presented here are very useful and promising ap-
proach to construct practical slicing tools.

Also, we have extended the idea of using dynamic in-
formation to the non-scalar type variables such as array and
pointer variables.

Guputa et al. proposed Hybrid Slicing[6], where they
use both static and dynamic information. In the hybrid slic-
ing, trace history of break points and procedure call/return is
used. On the other hand, we use only one bit flag for execu-
tion of each statement, which is more simply implemented
in the slicing system.

The statement-mark slicing corresponds to a simplified
approach of the dynamic slicing proposed by Agrawal and
Horgan[1]. We have here presented a practical implemen-
tation method and also shown the effectiveness of this ap-
proach with comparison to the static and dynamic slicing.

We are planning as follows:

� Implementation of the dynamic data dependence anal-
ysis

� Evaluation of our methods for large programs

8. Acknowledgements

This work is partly supported by Ministry of Education,
Science, Sports, and Culture, grant-in-aid for priority ar-
eas “Principles for Constructing Evolutionary Software”,
#09245106.

References

[1] Agrawal, H. and Horgan, J. : “Dynamic Program Slic-
ing”, SIGPLAN Notices, Vol.25, No.6, pp. 246–256,
1990.

[2] Bates, S. and Horwitz, S. : “Incremental Program
Testing Using Program Dependence Graphs”,Con-
ference Record of the Twentieth ACM Symposium on
Principles of Programming Languages, 1993.

[3] Beck, J. and Eichmann, D. : “Program and Interface
Slicing for Reverse Engineering”,Proceedings of the
15th International Conference on Software Engineer-
ing, pp. 509–518, 1993.

[4] Binkley, D.W. and Gallagher, K.B. : “Program Slic-
ing”, Advances in Computers, Volume 43, Marvin
Zelkowitz, Editor, Academic Press San Diego, CA,
1996.

[5] Gallagher, K.B. and Lyle, J.R. : “Using Program Slic-
ing in Software Maintenance”,IEEE Transactions on
Software Engineering, 17(8), pp. 751–761, 1991.

[6] Gupta, R., Soffa, M.L., and Howard, J. : “Hybrid
Slicing: Integrating Dynamic Information with Static

Analysis”,ACM Transaction on Software Engineering
and Methodology, Vol. 6, No. 4, pp. 370–397, 1997.

[7] Horwitz, S. and Reps, T. : “The Use of Program De-
pendence Graphs in Software Engineering”,Proceed-
ings of the 14th International Conference on Software
Engineering, pp. 392–411, 1992.

[8] Jihira, M., Nishimatsu, A., Kusumoto, S. and Inoue,
K. : “Program Slicing Technique Using Function Call
History”, Technical Report of IEICE, SS98-7, pp. 9–
15, 1998.(in Japanese)

[9] Nishie, K., Kamiya, T., Kusumoto, S. and Inoue, K.
: “Experimental Evaluation of Usefulness of Debug-
ging Support System Based on Program Slicing”,Pro-
ceedings of Software Symposium ’97, pp. 142–147,
Japan, 1997(in Japanese).

[10] Nishimatsu, A., Kusumoto, S. and Inoue, K. : “An Ex-
perimental Evaluation of Program Slicing on Fault Lo-
calization Process”,Technical Report of IEICE, SS98-
3, pp. 17–24, Japan, 1998(in Japanese).

[11] Nishimatsu, A., Jihira, M., Kusumoto, S. and Inoue,
K. : “Call-Mark Slicing: An Efficient and Economical
Way of Reducing Slice”,Proceedings of The 21st In-
ternational Conference on Software Engineering, Los
Angeles, CA, USA, 1999.

[12] Sato, S., Iida, H., and Inoue, K. : “Software Debug
Supporting Tool Based on Program Dependence Anal-
ysis”, Transaction on IPSJ, Vol. 37, No. 4, pp. 536–
545, Japan, 1996(in Japanese).

[13] Ueda, R., Ren, R., Inoue, K. and Torii, K. : “An Al-
gorithm of Computing Slices for Recursive Program”,
Transaction on IEICE, Vol. J78-D-I, No. 1, pp. 11–22,
1995(in Japanese).

[14] Weiser, M. : “Program Slicing”,Proceedings of the
Fifth International Conference on Software Engineer-
ing, pp. 439–449, 1981.

