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Abstract

When we try to debug a large program e�ectively, it is very important to
separate a suspicious program portion from the overall source program. Pro-
gram slicing is a promising technique to extract a program portion; however,
it remains diÆcult issues. Static slicing sometimes produces a large portion
of the source program, especially for a program with arrays and pointers.
Dynamic slicing requires unacceptably huge run-time overhead. In this pa-
per, we discuss intermediate semi-dynamic methods between static and dy-
namic slicing. We propose two slicing methods named call-mark slicing and
dependence-cache slicing. These algorithms have been implemented in our
experimental slicing system, and execution data for several sample programs
have been collected. The result shows that call-mark slicing reduces the slice
size by about 10{20% from the static slice size, with very little overhead
increase. Also, dependence-cache slice reduces by about 30{90%, even for
programs using arrays, with a�ordable run-time overhead increase. These
slicing methods will be important features for e�ective debugging environ-
ments.
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1 Introduction

Finding faults in source programs is a very time-consuming activity in soft-
ware testing and maintenance phases. Looking over all of the source programs
to �nd a fault is ineÆcient. We would like to focus our attention to a speci�c
portion of the source programs to improve eÆciency.

As a candidate of the focusing aids, program slicing techniques[27, 28]
have been studied. A program slice is intuitively a collection of program
statements which a�ect the value of a variable in a statement we are inter-
ested in. We can concentrate our attention only on the statements in the
slice so that we would be able to e�ectively debug the source program.

We have investigated the e�ectiveness of program slicing for program de-
bugging and maintenance processes using a controlled method[22]. The bug-
�nding time was measured and compared between two independent groups of
programmers, where one group of subjects used an ordinary debugging tool
and the other used the debugging tool with static slicing features. Each sub-
ject was given a fault-injected program and an associated test data set that
e�ectively detected the faults. The average bug-�nding times were 165 min-
utes without the slicing, and 122 minutes with the slicing. The e�ectiveness
of the slicing was con�rmed statistically.

A lot of researches and applications for program slicing have emerged[5,
6, 7, 10, 14] from the original work of Mark Weiser[27, 28]. These slicing
techniques are roughly categorized into two classes, static slicing and dynamic
slicing.

Static slicing was �rst proposed byWeiser[27]. A static slice is a collection
of program statements possibly a�ecting a variable's value at a particular
program point. The variable of interest and the program point of interest are
called the slicing criterion. Static slicing extracts portions from an original
program; however, the resulting portions are still large in many cases. In
extreme cases, there is no reduction after taking a static slice. This is due to
its analysis nature such that it must consider all possible input data and all
possible control 
ows.

Also, they remain many diÆcult issues on the analysis, i.e., aliasing of
variable names, separation of array and structure data elements, and tracking
of pointer variables. In addition, object oriented programs, recently prevalent
widely, cause the static analysis much harder, since those programs tend to
contain a lot of small methods (procedures or functions) with dynamically
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bind names.
Dynamic slicing was proposed by Agrawal et. al.[1, 2, 16, 17]. A dynamic

slice is a collection of executed program statements actually a�ecting a vari-
able's value at a particular program point. Since the dynamic slicing is based
on an execution instance for the source program with a speci�c input data,
non-executed parts of the source program are automatically excluded, result-
ing in a slice that is generally smaller than a static one. However, computing
a dynamic slice is costly, requiring signi�cant memory and time resources
because of dynamic variable dependences that must be tracked.

For the purpose of bug �nding, we would prefer the dynamic slicing, since
the dynamic slicing gives us a narrower focus on the source program.

There have been a few proposal of reducing overhead of dynamic slicing[1].
However, we do not know how e�ective those methods are in comparison with
dynamic and static methods.

There are various design space for choosing lightweight semi-dynamic
methods which use static analysis information with lightweight dynamic in-
formation. In this paper, we propose two methods in such design space.
One method focuses on collecting execution path information, and another
focuses on collecting data dependences.

The contributions of this paper are summarized as follows.

� Classi�cation and categorization of various algorithms between static
and dynamic slicing methods are presented.

� Two intermediate slicing algorithms, call-mark slicing[23] and dependence-
cache slicing are proposed, which are lightweight and semi-dynamic
methods. These algorithms require only limited size memory for record-
ing execution information.

� Various empirical data for slicing sizes, and analysis and execution
times are collected using our Osaka Slicing System. Through this ex-
periment, execution overhead and analysis cost are discussed.

The experiment result shows that the lightweight semi-dynamic methods
reduce the sizes of slices, compared to the static ones. Especially dependence-
cache slicing reduces the slice size greatly. The runtime overhead of these
methods are small one acceptable to practical use. Although these results are
based on our experimental slicing system, which limits the target language
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and the source programs, we would think that the lightweight semi-dynamic
slicing methods will be very useful to practical debugging environment.

In Section 2, we will brie
y overview static and dynamic slicing, and
will classify various analysis techniques between static and dynamic meth-
ods. Section 3 will present call-mark slicing, and Section 4 will propose
dependence-cache slicing. We will show our experiment using Osaka Slicing
System in Section 5. In Section 6, our �ndings will be discussed associated
with related works. We will conclude this paper with some remarks in Section
7.

2 Classi�cation of Slicing Methods

2.1 Overview of Static and Dynamic Slicing

In this section, we will brie
y show static slicing and dynamic slicing for
further discussions.

2.1.1 Static Slicing

Consider statements s1 and s2 in a source program p. When all of the
following conditions are satis�ed, we say that a control dependence, CD ,
from statement s1 to statement s2 exists:

� s1 is a conditional predicate, and

� the result of s1 determines whether s2 is executed or not.

This relation is written by s1 -s2.
When the following conditions are all satis�ed, we say that a data depen-

dence, DD , from statement s1 to statement s2 by a variable v exists:

� s1 de�nes v, and

� s2 refers to v, and

� at least one execution path from s1 to s2 without re-de�ning v exists.
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This relation is denoted by s1 -
v s2.

A Program Dependence Graph(PDG) is a directed graph whose edges
denote dependences between statements, and whose nodes denote statements
in a program such as conditional predicates, assignment statements, and so
on. For a Pascal source program shown in Figure 1 (which computes an
absolute value of the squared or cubed value selected by an input), we have a
PDG presented in Figure 2. To handle function/procedure calls, we employed
additional nodes for input and output parameters.

A Static Slice with respect to a variable v on a statement s (this pair (v,
s) is called a slice criterion) in a program is a collection of statements corre-
sponding to the nodes which possibly reach s using v and other transitively
traversal CD and DD relations. The static slice of variable d at line 24 as
the slice criterion for the program shown in Figure 1 is all statements except
for the message output statements (lines 12, 14, 16) as shown in Figure 3.

2.1.2 Dynamic Slicing

Consider an execution trace e of a source program p for an input data d. si
is a program statement appearing in e, and it indicates a point during an
execution of p with d.

A dynamic slice p0 with respect to si, d, and a variable v is a syntactic
correct subset of p, which computes the same value of v for d at execution
point s0

i
that corresponds to si. A triple (d, s0

i
, v) is also called a slice criterion

of a dynamic slice.
A dynamic slice is computed �rst by analyzing and storing the actual

data and control dependences of variables in association with the program
execution. Using this dependence chain, all statements in e, which a�ect the
value of v at si, are extracted. Then p0, which generates the same execution
trace as this extracted trace, is reconstructed.

Figure 4 shows a dynamic slice of the program shown in Figure 1. The
slice criterion is input data (a = 2; b = 3; c = 0), line 24 (of the last instance),
and variable d.

Dynamic slicing is based on a single execution path, and it gives narrower
slices than static slices. This nature is preferable in the debugging situation,
since we could concentrate on our attention to the smaller slices.

5



1 program Square_Cube(input,output);

2 var a,b,c,d : integer;

3 function Square(x : integer):integer;

4 begin

5 Square := x*x

6 end;

7 function Cube(x : integer):integer;

8 begin

9 Cube := x*x*x

10 end;

11 begin

12 writeln(``Squared Value ?'');

13 readln(a);

14 writeln(``Cubed Value ?'');

15 readln(b);

16 writeln(``Select Feature! Square:0 Cube: 1'');

17 readln(c);

18 if(c = 0) then

19 d := Square(a)

20 else

21 d := Cube(b);

22 if (d < 0) then

23 d := -1 * d;

24 writeln(d)

25 end.

Figure 1: A Sample Source Program
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x-para

Square:=x*x

Square-exit

x-para

Cube:=x*x*x

Cube=exit
writeln(d)

if d<0
d:=-1*d

d:=Cube(b)

d:=Square(a)

if c=0

readln(c)

readln(b)

readln(a)
writeln("Sq...

writeln("Cu...

writeln("Sel...

Data Dependence Control Dependence

x

Square

a

x

Cube

Cube

d

d

d

b

c

a

Main

Square

Cube

b

Square

Figure 2: Program Dependence Graph (PDG) of Program Shown in Figure
1

7



1 program Square_Cube(input,output);

2 var a,b,c,d : integer;

3 function Square(x : integer):integer;

4 begin

5 Square := x*x

6 end;

7 function Cube(x : integer):integer;

8 begin

9 Cube := x*x*x

10 end;

11 begin

12

13 readln(a);

14

15 readln(b);

16

17 readln(c);

18 if(c = 0) then

19 d := Square(a)

20 else

21 d := Cube(b);

22 if (d < 0) then

23 d := -1 * d;

24 writeln(d)

25 end.

Figure 3: Static Slicing Result by d at Line 24
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1 program Square_Cube(input,output);

2 var a,b,c,d : integer;

3 function Square(x : integer):integer;

4 begin

5 Square := x*x

6 end;

7

8

9

10

11 begin

12

13 readln(a);

14

15

16

17 readln(c);

18 if(c = 0) then

19 d := Square(a)

20

21

22

23

24 writeln(d)

25 end.

Figure 4: Dynamic Slicing Result by d at Line 24 with input (a = 2; b =
3; c = 0)
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2.2 Classi�cation of Slicing Methods

As mentioned in Section 1, various kinds of slicing method have been pro-
posed and studied. However, there are little e�orts to categorize them. In
this section, we would try to sort out them from a view point of analysis
eÆciency and e�ectiveness under bug-�nding phase. In this viewpoint, we
are interested in narrower focus on the source program with smaller analysis
time.

2.2.1 Analysis Based on Statical Flow Prediction

At �rst, we explore static slicing methods. The diÆculties of the static
methods lie on �nding precise data dependencies, rather than control de-
pendencies. Control dependencies are relatively easily determined by simple
syntactic analyses of the source programs. On the other hand, data depen-
dencies are not easily determined since we cannot determine a single program
execution path statically (i.e., without input data).

If we are able to know the execution order of statements, we would pre-
dict which statement assigns the value of a variable and which statement
refers to that value, and thus we can determine data dependencies (Def-Use
relation[3]). There are roughly two issues of execution path prediction in the
static approach[9].

� Flow Sensitiveness

In most static slicing algorithms, the control 
ow is �rst analyzed, and
the results are used by the following data 
ow analysis, as various
compiler optimization techniques[3]. This type of slicing algorithm is
called 
ow sensitive method, and it is commonly used.

An extreme method of reducing the overhead of this control 
ow anal-
ysis, is proposed, in which we do not analyse the control 
ow at all.
We assume all possible data dependencies between the de�nition state-
ments of a variable and its reference statements. This method, called

ow insensitive method, simpli�es the analysis process, although the
resulting slice size would be increased due to the increase of spurious
data dependencies.

� Context Sensitiveness
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For the analysis of multiple procedures and functions in target source
programs, there are two di�erent methods proposed and implemented.
For each instance of procedure/function activation statement, the body
of the procedure/function is analyzed along with its actual parameters
and global variable information at caller statements. This method is
called, context sensitive analysis[14]. In this method, we might have to
repeat the analysis of a procedure/function with multiple caller state-
ments.

Another method, in which procedures and functions are analyzed in-
dependently from actual call statements, is called context insensitive
analysis. This method would be much simpler than the context sensi-
tive method; however, the precision of analysis results is limited and
we would get generally larger slice results than the context sensitive
method.

As a basis of our discussion, we assume here static slicing algorithm
with 
ow sensitive and context insensitive ones, without explicit note. This
method is fairly straightforward and practically eÆcient one[25].

In this method, control 
ow of the program is computed through the
syntax analysis of the source program. However, since the analysis is static
one, we cannot generally determine which one of branches of an if statement
statement is selected at execution time. Therefore, we have to assume all
possible control 
ows, and this would increase the number of data depen-
dencies, and then the resulting slice will be enlarged. This is a fundamental
limitation of static slicing method.

2.2.2 Dynamic Execution Path and Data Dependence Analyses

In debugging environment we assume, program slicing techniques are used
to identify faulty statements. In such cases, there are test cases and they
specify execution paths of the program for speci�c input data. Thus, we are
able to use information of the program execution for getting more narrower
slices more eÆciently.

As examples of this approach, dynamic slicing methods have been proposed[1,
2, 16, 17], although its overhead at program execution is fairly large. This
type of dynamic slicing algorithm basically requires all history of program
execution including its execution path and status of variables. To do this, we
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would have to prepare history space proportional to the program execution
length.

The following is a list of intermediate semi-dynamic methods which add
some dynamic information to static one for improving slicing precision and
eÆciency.

� Collecting Execution Path

We collect information of the program execution path (
ow). The point
is that we would e�ectively get information of the execution path with
very lightweight run-time overhead.

{ Pro�ling Method

This approach is proposed as a simpli�ed method of dynamic slic-
ing by Agrawal and et. al[1]. We delete nodes in PDG (which is
made statically), when those statements (nodes) are not executed.
This method can be implemented by checking whether each pro-
gram statement is executed or not, and it does not require long
history of program execution.

{ Call Mark Slicing Method

We propose this method which will be described in Section 3 in
detail. This method is intended to reduce the runtime overhead
compared to the pro�ling method. Call-mark method only checks
if each procedure/function call statement is executed or not. Us-
ing this information, portions of a source program which are not
executed are determined and deleted from the slices. Candidate
statements for the possible deletion with respect to each proce-
dure/function call statements are statically analyzed.

{ Hybrid Slicing Method (Partial Trace by break point and call his-
tory)

This method record execution history of break points which users
have set or call history of each procedure/function activations[12].
Using this history, an execution path is predicted. To get e�ective
execution path information, the users have to set break points
at e�ective points in the program. Or we would have to record
activation history of procedure and function activations.
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� Collecting Data Flow Information

If we could statically predict an execution path of a program, data
dependencies of scalar type variables are easily determined. However,
those of array and pointer type variables are not determined by simple
knowing it.

Consider the following a program portion. In this program, it is easy to
know that the execution path is straightforward. However, we cannot
determine that statement 4 depends on 1 or 2.

1: a[0]=0

2: a[1]=1

3: input(i) % Assume integer 0 or 1 as an input

4: c=a[i]

In order to resolve this, we need full execution history by which the
array indices are restored and data dependencies are determined. In
usual, DDG (Dynamic Dependence Graph) is used for it. This DDG
keeps all of variable dependencies in its structure[1]. This method is
easily established, although the overhead of constructing full DDG is
extremely expensive.

There are a few proposal to compromise between data dependence pre-
cision and run-time overhead.

{ Reduced DDG Method

As an optimization method for constructing DDG, a reduced DDG
has been proposed also in [1]. In this method, the same sub-
structure of DDG has been identi�ed and shared with one struc-
ture, so that the overall size of the reduced DDG is bounded not by
the program execution length, but by the program size. However,
the execution overhead for the construction would be increased
due to checking the structure similarity, and thus, the practicabil-
ity of this method is unknown. Also the size of the reduced DDG
is bounded but still large.

{ Dependence-Cache Method
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We propose this method in Section 4. This method uses a sim-
ple memorization technique to determine each Def-Use relation at
execution time. Each data dependence found is added to partial
PDG which is statically constructed with nodes and their control
dependence relations. This method is easily applicable, and it is
e�ective for non-scalar variables such as array and pointer vari-
ables. Only we need is a cache for recording last de�nition of each
variable, and the cache size is bounded by the number of variables
used by the program.

As candidates of promising approaches of practical slicing methods using
both static and dynamic information, we propose, in this paper, call-mark
slicing and dependence-cache slicing.

3 Call-Mark Slice

3.1 Execution Dependence and CED

Here, we introduce an execution dependence of two statements s1 and s2.
Consider a case where s1 cannot be executed if s2 is not executed. We

say that s1 is executionally dependent on s2.
Finding all of the execution dependences in a program would require

dynamic information of the program behavior which is known to be very
expensive to compute. Thus, we choose a practical and safe approximation;
namely, we use a subset obtained by static analysis of the program(with
assumption of program termination).

If both s1 and s2 are contained in the same basic block of the control

ow graph[3], i.e., there is no outgoing or incoming path on the control 
ow
between the two statements, s1 is executionally dependent on s2 and vice
versa. Also, if s2 is contained in a dominant basic block of s1's block, s1 is
executionally dependent on s2. The control 
ow associated with the basic
block structure and the domination relation of the basic blocks are easily
obtained by static analysis[3].

Now we de�ne a set of caller statements with execution dependence,
CED(s), as follow.

CED(s) � ft j t is a function/procedure call
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statement and s is executionally

dependent on tg

The execution of s is dominated by the call statements in CED(s). If
CED(s) contains at least a non-executed call statement at the end of the
execution, we can conclude that s was never executed.

Consider a small portion of a program such that,

...

s1: callA ;

s2: if a=1 then begin

s3: b:= c ;

s4: callB ;

...

In this program, s1 is executionally dependent on s2, and vice versa, and
also s3 and s4 are executionally dependent on each other. In addition, s3 and
s4 are executionally dependent on s1 and also on s2. Thus CED(s2) = fs1g
and CED(s3) = fs1; s4g.

3.2 Computation of Call-Mark Slice

A call-mark slice is de�ned as a subset of a static slice of the original program
with respect to an execution e of the program and a slice criterion (sc, v)
where sc is a statement and v is a variable. Each statement s in the call-
mark slice is such that all of the call statements in CED(s) are executed
at least once in the execution e. This means that statements appearing in
the static slice but not in the call-mark slice are not executed in e. The
execution of each statement is determined by the record of activation of each
call statement in the program.

In the following, a process of computing the call-mark slice is described.

Step 1 Pre-Execution Analysis

Similar to the computing a static slice, we construct the PDG (Program
Dependence Graph) by analyzing the data dependences and control
dependences among the statements. Also, the execution dependences
and CED(s) for each statement s are computed at the same time.
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Step 2 Execution-Time Marking

The target program is executed with an input data set. Each time
a call statement of a function/procedure is executed, that statement
name (i.e., a pointer to the node in PDG) is marked as \executed".
We refer to the set of marked call statements as CM .

Step 3 Post-Execution Slice Construction

By performing the algorithm shown in Figure 5, the call-mark slice is
collected.

For the program shown in Figure 1, we have a static slice for the slicing
criterion of (line 24, d) as shown in Figure 3. Consider an execution of this
program with input data (a = 2; b = 3; c = 0). In this case, CM = f19g. For
line 19 of this program, CED(19) = f19g; thus CED(19) � CM and line
19 is not deleted. For line 21, CED(21) = f21g; therefore CED(21) 6� CM

and line 21 (and associated line 20) is deleted. Since line 21 is deleted, the
statement de�ning b at line 15 is also deleted. The resulting call-mark slice
for that execution and the same criterion, (line 24, d) is as shown in Figure
6.

4 Dependence-Cache Slice

4.1 Overview

As we have discussed in Section 2.2.2, getting precise data dependences of
variables with static methods are diÆcult in general, although the control
dependences are fairly easily collected statically. Furthermore, data depen-
dencies of pointer variables and array elements are more diÆcult to obtain
statically than scalar variables, since analyses of those non-scalar variables
require complicated prediction of the content values of pointer variables and
array indices[13, 15, 18]. If we would fail to predict possible contents of a
pointer variable v, we have to use a safe assumption such that a statement s
which indirectly refers to a variable u via v depends on all statements which
possibly de�ne u directly or indirectly. (Similar cases could happen for ar-
ray variables.) Thus, precision of resulting slice would be low, i.e., a lot of
spurious statements which do not a�ect the slice criteria are included.
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Input

PDG: Program Dependence Graph (statically constructed)

CM : Set of nodes which are call statements executed

(sc, v): Slice criterion where sc is a node (a statement) and v is a
variable name

Temporary

M;N : Sets of nodes

m;n: nodes

Output

M : Set of nodes of call-mark slice

Algorithm Body

1. M := sc

2. N := fn j n -
v scg [fm j m -scg

3. While N 6= � then execute the following steps

(a) choose a node n 2 N

(b) N := N � n

(c) if CED(n) 6� CM then goto (a)

(d) M :=M [ n

(e) N := N[ fm j m 62M ^ (m -
w n _m -n)g

where w is any variable name.

Figure 5: Algorithm of Post-Execution Collection for Call-Mark Slicing
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1 program Square_Cube(input,output);

2 var a,b,c,d : integer;

3 function Square(x : integer):integer;

4 begin

5 Square := x*x

6 end;

7

8

9

10

11 begin

12

13 readln(a);

14

15

16

17 readln(c);

18 if(c = 0) then

19 d := Square(a)

20

21

22 if (d < 0) then

23 d := -1 * d;

24 writeln(d)

25 end.

Figure 6: Call-Mark Slicing Result by d at Line 24 with input (a = 2; b =
3; c = 0)
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Once we execute the program with an input data, we are able to collect
actual dependence relations between statements, although the penalty of
collecting precise dependences is fairly large overhead for program execution.

Here, we introduce Dependence-Cache Slicing method, for a good com-
promise between slice precision and execution overhead. The following are
major steps of computing dependence-cache slices.

Step 1 Pre-Execution Analysis

We statically construct a part of program dependence graph, named
PDGDS for dependence-cache slicing. We prepare at �rst nodes for
each statement or predicate statement, and draw control dependence
edges between nodes, as we do for constructing a program dependence
graph PDG for static slicing. No data dependence relations are added
to the graph.

Step 2 Execution-Time Data Dependence Collection

The target program is executed with an input data. Along the exe-
cution, dynamic data dependence relation is collected by using data
dependency collection algorithm shown in the next section, and data
dependence relation edges are added to the graph. When the program
execution terminates, PDGDS has been completed.

Step 3 Post-Execution Slice Construction

The completed PDGDS is traversed backwardly, as we do for static
slicing, from a slice criterion (sc, v) where sc is a statement and v is a
variable. A dependence-cache slice is a collection of all reachable nodes
by this traversal.

Since data dependences are analyzed dynamically, we would expect smaller
slice size, close to that of the dynamic slice.

4.2 Data Dependence Collection Algorithm

Figure 7 shows the data dependence collection algorithm used at Step 2 in
Section 4.1. For each variable v used in a program, we prepare a cache,
denoted by C(v), which contains the line number of a program statement
(i.e., a node in PDGDS ). For each point of program execution, C(v) always
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Input

PDGDS : Partially constructed Program Dependence Graph for de-
pendence cache slicing

P : Target Program

I: Inputs for P

Temporary

Data Dependence Caches C(v) for each variable v in P

Output

OUT : Output of execution of P for I

PDGDS : Completely constructed Program Dependence Graph for de-
pendence cache slicing

Algorithm Body

1. For each variable v in P , C(v) := ?
f Initialize with not assigned marks. Note that if we use a dynam-
ically allocated variable, we prepare also a cache initialized with
the not-assigned mark g

2. Repeat following untile execution of P terminates
f Execute P with I from the beginning to the termination, state-
ment by statement g

(a) Execute a next single statement s of P associated with I

(b) For each variable u used (referred) at s, if C(u) 6= ?, then
add a data dependence edge C(u) -u s to PDGDS unless the
edge exists

(c) For each variable w de�ned at s, C(w) := s

Figure 7: Data Dependence Collection Algorithm
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keeps the line number of a statement which most recently de�ned v. When
v is used (referred) by execution of a statement s, a data dependence edge is
drawn from a node for C(v) to a node for s, if it does not exist yet. When v
is de�ned at s, C(v) is updated with the line number of s.

We do this for all types of variables, including arrays, dynamically allo-
cated variables, pointer variables, and so on.

We prepare caches for each element of an array. For example, for array
A of ten elements A[1], A[2], . . . , A[10], we have caches C(A[1]), C(A[2]),
. . . , C(A[10]). For dynamic allocated variables, we prepare caches for each
variable also dynamically. When a pointer variable p is used at statement
s, we have to know that not only p itself is used, but an indirectly accessed
variable p " is also treated as a variable to be used. Thus, we have to
include the edges of both direct and indirect references ; i.e., C(p) -p s and
C(p ") -p" s. Also, in the case of indirect assignment with a pointer variable
q such as q ":= : : : at statement t, we have to know that cache C(q ") is
updated with t, and also that q is used at t.

This algorithm requires cache space proportional to variable usage of the
program execution, and runtime overhead corresponding to variable access
by the program execution.

The result of dependence-cache slicing for program shown in Figure 1 is
the same as the dynamic slice shown in Figure 4 for the same input data
(a = 2; b = 3; c = 0).

5 Experiments

5.1 Overview of Osaka Slicing System

In order to validate various slicing algorithms, we have developed a software
development and debugging environment called Osaka Slicing System[24].
Figure 8 shows the architecture, and the target language is Pascal.

The system contains slicers, as well as a program executor and debugger.
The slicing algorithms used by the system are interprocedural 
ow-sensitive
context-insensitive static slicing and fully traced dynamic slicing. These algo-
rithms are sometimes replaced with call-mark slicing and dependence-cache
slicing for experimental data collection.

In the system, the source program in Pascal is parsed into an abstract
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syntax tree that is stored in the system. The user can view and modify the
source program interactively using a visual editor.

Figure 9 shows the user interface of the system. The left window displays
the target source program. The statement of the slice criteria is shaded
darkly, and the statements in the slice result are shaded lightly. We can
also edit the source program on this window. The right upper window gives
system status such as loaded �le name, program size, slice size and so on.
The right lower window works for the standard input and output during the
execution of the target program.

The source program is analyzed and transformed into a PDG by a user
request. A static slice may be computed from the PDG by specifying a slice
criterion.

Both the whole source program and a computed static slice can be exe-
cuted by the executor. The debugger associated with the executor contains
features of ordinary runtime debuggers such as tracing, setting breakpoints,
viewing and modifying variable values, and so on. Various levels of the dy-
namic information are recorded during execution based on the selection of
slicing algorithms; dynamic slice, call-mark slice, or dependence-cache slice
can be computed using this information. The total size of the system is about
19,000 lines of C code.

To handle inter-procedural dependences including recursive functions/
procedures, we have introduced auxiliary types of nodes in PDG for passing
parameters and global variables. Using these nodes, the data dependences are
examined inter-procedurally. In the case of self or mutual recursive structures
of function/ procedure calls, the dependences become cyclic. This cyclic
dependence is eÆciently solved by analyzing the structure of the dependences,
and a suitable solution is found[25].

The implementation of the call-mark slicing is based on the method pre-
sented in previous section. For Step 2, we need only one bit of information
for each function/ procedure call statement in the program. This bit is not
necessarily marked at the caller context, but rather at the callee context.
At the entry of each function/ procedure, the pointer to the return context
is collected as CM . By doing so, we do not need to �nd out all function/
procedure calls in the program, but we simply modify the entry part of each
function/procedure slightly.
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Figure 9: Snapshot of Osaka Slicing System
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5.2 Execution of Sample Programs

Using this experimental system, we have executed various programs and ob-
tained several metrics values. Program P1 is a calender calculation program.
P2 is an inventory management program for a whole seller. P3 is also an
extended version of the inventory management program of P2.

Table 1 shows the slice sizes of three sample programs. These values
can vary with di�erent slice criteria and input data. Here, we show average
values for several criteria and inputs for a typical debugging situation. (The
criteria are mostly program output variables, and the output statements are
placed almost at the end part of program execution.)

Table 2 shows the time needed for the analysis before the execution. In
the case of static slicing, the value is the time to construct a PDG. The time
for computing both the PDG and the CED is counted for in the call-mark
slicing. For the dependence-cache slicing, it is time for constructing an initial
PDGDS . In the case of dynamic slicing, the analysis is not necessary.

In Table 3, the execution time is shown. In the case of static slicing, the
original program is executed without any extra runtime overhead; thus this
value means the execution time of the original program. The execution for
the dynamic slicing is performed in association with the construction of the
dynamic dependence graph. Therefore, the execution time contains the time
for this construction. The time for the dependence-cache slicing includes
the time for caching dependencies and constructing PDGDS . In the case of
call-mark slicing, the time to mark callers is included.

Table 4 shows the time needed for collecting statements to be included
in the resulting slices. In the case of static slicing, this could be done before
execution. For dynamic slicing, the time for traversing the dynamic depen-
dences is counted. For call-mark slicing and dependence-cache slicing, these
are the time for Step 3, respectively.

We discuss these tables in detail in the next section.

6 Discussion

6.1 Interpretation of Experiment Data

� Slice Size
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Table 1: Size of Slice (lines)
program static call-mark dependence-cache dynamic

P1(85 lines) 21 17 15 5
P2(387 lines) 182 162 16 5
P3(871 lines) 187 166 61 8

Table 2: Pre-execution Analysis Time (ms)
program static call-mark dependence-cache dynamic

P1 11 14 5 N/A
P2 213 215 19 N/A
P3 710 698 48 N/A

(Celeron-450MHz CPU with 128MB Memory)

Table 1 shows the sizes of slices. Those of the call-mark slicing are
80{89% of static slicing. Also, those of dependence-cache slicing are
9{71% of static slicing.

The slice sizes of the call-mark and dependence-cache slices are between
the static and dynamic slices. It is always smaller and better than the
static slice and bigger and worse than the dynamic slice. Also, we can
say that the dependence-cache slices are much better (smaller) than the
call-mark slices. This is because dependence-cache slicing re
ects data
dependences on a particular execution path, while call-mark slicing
only cuts out unexecuted parts of the statically detected data depen-
dences based on a calling sequence. Reduction of the slice size with the
dependence-cache slicing is large for programs P2 and P3, compared
with P1. This is because P1 uses only scalar variables and P2 and P3
employ array variables whose element-wise data dependencies are only
analyzed by dependence-cache slicing or dynamic slicing.

� Pre-Execution Analysis:

As shown in Table 2, call-mark slicing needs a little extra time com-
pared to the static slicing. This is natural since we have to construct a
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Table 3: Execution Time (ms)
program static call-mark dependence-cache dynamic

P1 47 47 51 174
P2 43 43 45 4,540
P3 4,700 4,731 4,834 206,464

(Celeron-450MHz CPU with 128MB Memory)

Table 4: Slice Construction Time (ms)
program static call-mark dependence-cache dynamic

P1 0.4 0.6 0.3 76.0
P2 1.9 1.8 0.7 101.0
P3 3.0 3.0 1.2 24,969.3

(Celeron-450MHz CPU with 128MB Memory)

PDG as in static slicing, and additionally we have to analyze the execu-
tion dependences. For dependence-cache slicing, we need a lightweight
pre-execution analysis only for control dependences, which is fairly
smaller overhead than the data dependence analysis for static and call-
mark slicing.

� Execution Time

The execution time shown in Table 3 indicates that the overhead of
the dynamic slicing is extremely big. If the program execution be-
comes longer by say, repeated execution of loops, this overhead would
cause serious decline of performance so that the programmer can hardly
use this facility. On the other hand, the call-mark slicing can be exe-
cuted with very little overhead increase compared to the execution of
the static slicing (i.e., the execution of the original source program).
It shows that the marking of the caller names during execution is a
lightweight task, requiring little execution time.

For dependence-cache slicing, it requires extra execution time to call-
mark slicing; however, the values are much smaller than those of dy-
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namic slicing. The execution time presented here is based on our inter-
pretive system; therefore, the run-time overhead for these slicing might
be masked by the overhead of the interpretive execution. This issue
will be discussed in Section 6.3.

� Slice Construction Time

As shown in Table 4, dynamic slicing requires a long time to collect
the slice result. The time for collecting a call-mark slice is almost
the same as the time to collect a static slice. For a dependence-cache
slice, it is better than the static one. This is because dependence-cache
slicing construct PDGDS smaller than PDG, so that the searching
space within the PDGDS is smaller than that for static slicing. For
dependence-cache slicing, it is evident that traversing a large dynamic
dependence graph (DDG) is very costly.

6.2 Application Domain and Limitation of Call-Mark

Slice

The pre-execution analysis, execution, and slice construction times are almost
the same as those for static slicing, and the sizes of slices are about 12-20%
smaller than static slices.

The reduction rate might not be so signi�cant. However, call-mark slic-
ing method can be easily implemented if we have already a static slicing tool
and a program execution environment in which we can steal return addresses
in the activation records of a system stack. Also, there is very little over-
head increase. Thus we consider that this method would be a very handy
improvement method of static slicing.

One of main targets of call-mark slicing method is a debugging environ-
ment. Dynamic information is considered to be essential for eÆcient fault
detection. A call-mark slice can be directly associated with a speci�c test
data which exposes faults in the source program, although static slice would
generally include various portions which do not relate to the execution with
the test data.

Programs which consist of independent function/procedure components
may also be eÆciently debugged with our approach. In such cases, there
would be many function/procedure invocation statements, and also many
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function/procedure de�nitions. Activation of selected functions/procedures
using a speci�c input data will clearly reduce the slice size.

On the other hand, if the target programs contain a small number of func-
tion/procedure invocation statements or the function/procedures are tightly
interleaved, the e�ect of our approach will be limited.

6.3 Application Domain and Limitation of Dependence-

Cache Slicing

As we can see in Table 1, the size of dependence-cache slicing is much smaller
than that of static and call-mark slicing, although it is bigger than that of
dynamic slicing. It is worth noticing that programs using arrays, such as P2
and P3, are well analyzed with dependence-cache slicing, producing smaller
slices. Thus, we can say that this approach is very e�ective to compute
slices for programs using arrays and pointers, whose statical analysis would
be complicated and impractical.

To implement dependence-cache slicing under a practical compiler-based
environment, we have to consider the following.

� Control dependences has to be analyzed statically, and PDG with only
control dependence edges is to be built. This might be performed by a
compiler and its optimizer.

� Execution environments has to be changed to include the dependence
caches for each variable. The size of the caches is proportional to the
number of variables used in the program. If the program uses dynamic
variables, we have to prepare their caches dynamically also. Run-time
memory requirement will be increased, say, doubled by this. However,
the cost of memory would not be a critical issue at program debugging
phase.

� Compiler-generated codes must contain instructions for updating the
dependence caches and adding dependence edges to PDG.

The experiment shown in Section 5 has been made under our interpre-
tive execution system. We would think that the characteristics of analyses
and execution times for various slicing will hold for compiler-based execu-
tion environment, although the run-time overhead needed for semi-dynamic
methods would become clearer.
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For example, we have written a merge sort program in C. This program
has been modi�ed to collect data dependences with the dependence caches
during execution of the merge sort. The execution speed of its compiled code
was 8.6 times slower than the original code. This would indicate that the
run-time overhead of the dependence-cache slicing is large under a compiler-
based environment�. However, this speed down can be minimized if we col-
lect the data dependence information only for array and pointer variables.
Data dependences through scalar variables are fairly easily determined stat-
ically. Thus, statically diÆcult analysis is only performed at execution time.
Based on this idea, we have modi�ed the C merge sort program again, so
that the data dependences only for array elements were collected dynami-
cally. The execution-time ratio between the original program and the partial
dependence-cache program became 1 to 3.4, and we would think that this is
practically acceptable.

As we can see with Table 1, the dependence slices are always larger than
the dynamic slices. This di�erence is based on the rationale such that the
dependence slicing does not distinguish repeated occurrences of a single state-
ment and that it only holds the latest Def-Use relations in caches. Consider
the following simple example.

1: a[0]:=10 ;

2: a[1]:=20 ;

3: for i:=0 to 1

4: b[i]:= a[i] ;

5: writeln(b[0]) ;

Execution of this program will create a DDG (Dynamic Dependence
Graph) as shown in Figure 10. Nodes 3 and 4 appear twice and lower nodes
mean the second occurrences of statement 3 and 4. If we compute a slice
with a criterion (statement 5, b[0]), the result of the dynamic slicing is a set
of statements 1, 3, 4 and 5.

On the other hand, the dependence caches contain the last de�nition
statements as shown in Table 5. PDGDS created by this execution is shown
in Figure 11, and resulting slice with the same criterion (statement 5, b[0])
is a set of statements 1, 2, 3, 4, and 5.

�Also, this result suggests that the execution overhead for dynamic slicing would be
unacceptably huge.
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Table 5: Change of Cache Contents for Simple Sample Program
statement Cache Contents
executed a[0] a[1] b[0] b[1] i

1 1 - - - -
2 1 2 - - -
3 1 2 - - 3
4 1 2 4 - 3
3 1 2 4 - 3
4 1 2 4 4 3
5 1 2 4 4 3

Underlines show that the variable is used and the cache is referred to

Dependence-cache slicing includes statement 2 as its result. This is be-
cause the dependence-cache slicing method cannot distinguish the �rst and
second occurrences of statement 4 execution, and dependences both from
statement 1 and 2 are targeted to a single node for statement 4.

This limitation increases the slice size for dependence-cache slicing, com-
pared to dynamic slicing; however, it is fairly smaller than the static slice,
and we think that this approach is a practical and promising method com-
promising between e�ectiveness and overhead.

6.4 Relation to Other Methods

Others have worked on combining static and dynamic information for slicing.
Hybrid slicing[12] targets a similar goal as call-mark slicing. It reduces the

static slice by using two types of dynamic information: breakpoint informa-
tion and call history information. The former is supplied by the programmer
and that information is used to infer the executed control 
ow. The latter
is used to compute portions of dynamic slices for the periods between every
function/procedure call and return. The result is closer to the dynamic slice
than our approach since it gathers more dynamic information. The weakness
of the hybrid slicing would be that we have to specify appropriate breakpoints
to get a better slice. On the other hand, our approach performs everything
automatically except for giving the input data and slice criterion. Also, the
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hybrid slicing requires a fairly large amount of memory space for recording
the call history. The space required is roughly proportional to the program
execution length. Our call-mark slicing, however, needs only the memory
for the call marks, which is of a pre-determined size and is roughly propor-
tional to the program text size. The di�erence is signi�cant if the program
execution becomes long. The execution method of the hybrid slicing mainly
contributes to determine an execution path of the program. However, this
execution path information does not always help to determine data depen-
dences of pointer and array variables, as our dependence-cache slicing.

Our approach, call-mark slicing, uses information of whether or not each
function/procedure call statement in the program is executed. The precision
of slices can be improved if we take such information of all statements in the
program. This approach, mentioned in [1] as type 1 method, can be imple-
mented using a similar method to computing pro�ling and program coverage
information. For each statement, we employ one bit 
ag of whether it is
executed or not. The mechanism would be simple; however, it requires more
run-time overhead and signi�cant modi�cation of the executable program.
The call-mark slicing information can be obtained by minor modi�cation of
the function/procedure entry routine to collect caller statements.

We could also take a simpler context-insensitive approach than the call-
mark slice, where each context of function/ procedure activation is recorded.
We could only gather information about whether or not each function/procedure
is activated without recording which call statement actually activated it. This
approach reduces run-time overhead for collecting caller statements; however
it would increase the resulting slice size.

There are little researches which collect dynamical data dependencies eÆ-
ciently. In [1], an optimization method of constructing a dynamic dependence
graph for dynamic slicing, where same substructures of the graph are reduced
into a single one. This approach keeps the precision of dynamic slices and
reduces the space for the graph; however, its execution overhead would not
be reduced or might be increased by checking the duplicates.

There are researches in which pointer and array variables are statically
analyzed[13, 15]. Many of these try to statically determine possible aliases
of pointer variables and array elements, and they still remain uncertain
cases[29]. Since our dependence-cache slicing is dynamic one and there is
no complicated static analyses. It is easily applicable to any type of vari-
ables, and we can get reasonable slice precision with a�ordable execution
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overhead.
In [8], a method to extract various slice algorithms from semantic speci�-

cations is presented. They propose a constrained slice, which is a generaliza-
tion of static and dynamic slices, and which takes a subset of the inputs of
the program as symbolic program execution. Using this input constraint, the
program is rewritten and dependences are computed. Their approach con-
tains very important notions of generalization of static and dynamic slicing,
and also it covers the partial evaluation and program simpli�cation meth-
ods. However, it is not known whether such a generalized approach may be
implemented eÆciently and whether it is useful practically.

In terms of building analysis systems, several interesting approaches have
been proposed. Various ways of analyzing large programs and extracting
abstracted information of the target software have been studied[4, 11, 19].
A generalized environment for developing analysis algorithm is proposed in
[26]. It uses denotational frameworks to specify analysis algorithms; however,
practicability of the generated algorithms for analysis tools is not known.
In [20], a more practical environment for understanding Cobol programs is
presented, where various slicing and program localization features are uni�ed.
Our aim is to construct an eÆcient and e�ective environment for structured
languages with functions and procedures calls.

7 Conclusions

Localizing a programmer's attention to a small portion of software is very im-
portant for improving the eÆciency of program debugging and maintenance.
Traditional program slicing methods do not provide adequate trade-o�s of
e�ectiveness and eÆciency.

We have proposed two lightweight semi-dynamic slicing methods, call-
mark slicing and dependence-cache slicing. These methods use lightweight
run-time execution, and have a similar or smaller analysis overhead with
respect to static analysis as static slicing. The resulting slices are smaller
than corresponding static ones, but larger than corresponding dynamic ones.
We have implemented these slice algorithms on our experimental interpreter
system. Also we have executed various sample programs, and con�rmed our
approach.

We are planning to design a debugging environment based on compiler-

34



based system, rather than the current interpreter-based system. The system
will be able to compute dependence-cache slices, associated with various
debugging features. This compiler generates a run-time environment with
dependence caches, and the generated codes automatically collect dynamic
data dependences. This information is displayed as a slice or other debugging
aids when requested by users, and it gives more fruitful suggesting for fault
localization.
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