
   

 
 

コードクローン検出における新手法の提案および評価実験 
 
 

神谷 年洋†, 楠本 真二†, 井上 克郎†‡ 

 
†大阪大学大学院基礎工学研究科 

〒560-8531 大阪府豊中市待兼山町 1-3 

‡奈良先端科学技術大学院大学情報科学研究科 
〒630-0101 奈良県生駒市高山町 8916－5 

 
{kamiya,  kusumoto,  inoue}@ics.es .osaka-u.ac.jp 

 
 

 
コードクローンとは，ソースファイル中の，まったく同じあるいは類似したソースコード断片のこと

である．クローンは「カット＆ペースト」によるコードの再利用や，実行時の性能を向上させるための意図的な繰り返

しなど，さまざまな理由で作られる．クローンはソースファイルの首尾一貫した変更を困難にする．オブジェクト指向

プログラミング言語で記述されたソースコードから，より正確にクローンを検出するための手法を提案する．提案した
手法はツールに実装され，実験により，JDK のソースコードからクローンを抽出することができた．さらに，従来の検

出方法では見逃されてしまうようなクローンも発見できた． 
 
 

コードクローン, 重複コード，CASE ツール, メトリクス, 保守 
 
 
 
 

A Token-based Code Clone Detection Technique 
and Its Evaluation 

 
Toshihiro Kamiya†,  Shinji  Kusumoto† ,  and Katsuro Inoue †‡ 

†Graduate School of Engineering Science, Osaka University 

‡Graduate School of Information Science, Nara Institute of Science and Technology  
 

{kamiya,  kusumoto,  inoue}@ics.es .osaka-u.ac.jp 
 
 
 
 
 

A code clone is  a  code port ion in source f i les that  is  identical  or  similar  to another.  Since code 
clones generally reduce maintainabili ty of soft ware, several  code clone detection techniques  and tools  have been 
proposed.  This paper proposes a new clone detection technique,  which consists  of transformation of input source 
text and t o ken-by- token comparison.  Based on the proposed code clone detection technique,  we developed a tool  
named CC Finder,  which extracts code clones in C/C++ or Java source files. As well metrics for code  clones were 
developed.  In order to evaluate the usefulness of  the tool  and metrics,  we con ducted several  exper iments .  As the 
resul ts ,  the tool  found several  subsystems in two  operat ing sys tems,  namely FreeBSD and Linux,  that  could  be  
traced t o the same original.  As well,  the pro posed  met r ics  found interesting clones in a Java library, JDK. 
 
 

Code clone,  Duplicated code,  CASE tool,  Metrics,  Maintenan ce



   

 



   

 

1 Introduction 

A code clone is a code portion in source fi les that  is  

identical or similar to another.  Clones are introduced 

because of various reasons such as reusing code by 

‘cut - a n d-paste’ or intentionally repeating a code portion 

for  performance en hancemen t[ 2 ].  Clones make the 

source fi les very hard to modify consistently.  For 

example,  assume that  a  software system has several  

clone subsystems created by duplication with slight 

modif ication. When a fault  is  found in one subsystem, 

the  engin eer has to carefully modify all other sub sys tems.  

For a large and complex sys tem,  there  are  many 

engineers who take care of each subsys tem,  and 

modif icat ion becomes very diff icul t .  Various  c lone 

detect ion tools  have been proposed and implemented 

[1] [ 2 ]0[ 6 ] [7][ 8 ],  and a  number  of  algori thms for  f inding 

clones have been used for them, suc h as l ine-by- line 

matching for  an abstracted source program [ 1 ], and 

sim ilarity detection for metrics values of function bodies 

[8] .  

1.1 Definition of clone and related terms  

 A clone-relation is  defined as an equivalence relat ion 

(i .e. ,  reflexive,  transit ive,  and symmetric relation) on 

code port ions.   A clone- relat ion holds between two code 

portions if ( and only if)  they  are the same sequences 1. 

For a given clone- relation, a pair of code portions is 

called clone-pair i f  the clone- relat ion holds between the 

portions. An equivalence class of clone -relation is called 

clone-class. That is, a clone-class is  a  maximal set  of 
code -port ions in  which a  clone- relat ion holds  between 

any pair of code -port ions.  

For example,  suppose a f i le  has the fol lowing 12 

to kens: 

a x y z b x y z c x y d 

We get the following three clone-classes: 
C1)  a x y z b x y z c x y d 
C2) a x y z b x y z c x y d 
C3) a x y z b x y z c x y d 

Note that  sub-portions of code portions in each 

clone-class also make clone -classes (e.g. Each of C3 is a 

                                                                 
1 Sequences are sometimes original character strings, strings 
without white spaces, sequences of token type, and transformed 
token sequences. We will discusses how we deal with such 
sequences. 

sub-portion of C1).  In this paper,  however we are 

i n t er ested only in maximal port ions of clone-classes so 

only  the  latter are discussed.   

2 Proposed clone-code detection technique 

Our approach presented in  this  paper  concerns  the  

following issues in clone detection. 

• Identification of structures 
Our pilot experiment has revealed that certain types of 

clones seem difficult  to  be rewri t ten as  a  shared code 

even if they are found as clones. Examples are a code 

port ion that  begins at  the middle of  a  function defini t ion 

and ends at  the middle of  another  funct ion defini t ion,  and 

a code portion that is a part  of a table initialization code. 

For effective clone analysis,  our clone detection 

tech nique  automatically identif ies and separates each 

function definit ion and each table definit ion code.  For 

com parison,  in [1],  table initialization values have to be 

removed  by  hand, whereas in [8] , only an entire function 

definition can become a candidate for  clone. 

• Regularization of identifiers 
Recent  programming languages such as  C++ and Java 

provide name space and/or  generic type [3] . As a result,  

identifiers often appear with attr ibutive identifiers of 

Lexical Analysis

Transformation

Detection

Clones on Transformed
Sequence

Formatting

Mapping from
Transformed

Sequence
into Original

Transformed
Token Sequence

Source files

Clone-pairs

Token Sequence

Clone Detection

Measurement

Clone-classesMetric Values
 

Figure 1. Clone detecting process 



   

name space and/or te mplate arguments.  In order to treat  

each complex name as an equivalent simple name, the 

c lone detect ing process  has  a  subprocess  to  t ransform 

complex names into s imple form. If  source f i les  are 

repr esented as a string of tokens, structures in source 

files (such as sentences or function definitions) are 

rep resented as substr ings of  tokens,  and they can be 

com pared  token-by - token  to  iden t ify clones.  Identifying 

structures and transforming names require  knowledge of  

syntax rules  of  the programming languages.  Therefore,  

the implementat ion of  the clone detect ing technique 

depends on the input .  The detai l  of  clone detect ing 

process  is  descr ibed in Section 2 . 1. 

• Ranking clones by importance 
Large software systems often include many clones,  so 

a clone analysis method must disti nguish important  

clones from many ‘uninterest ing’ clones. The metrics  

presented in Section 3 . 3 enable to identify such 

impo rtant clones: clones that enable large code reduction 

by their  removal ,  or  clones that  have so widely spread in 

the system that are difficult  to find by hand and to 

maintain.   A certain metric value is  used to  es t imate  how 

many l ines of source fi les are reduced by mak ing a 

shared routine of  each clone,  and another  is  used to 

evaluate how each clone is spread over a soft ware 

system. 

2.1 Clone-detecting process 

Clone detecting is  a  process in which the in put is 

so urce f i les and the output is  clone-pairs.  The entire 

process  of  our  token-based clone detecting technique is 

shown in Figure 1 .  The process co n sists of four steps:  

(1) Lexical analysis 

Each l ine of  source f i les  is  divided into tokens 

corr esponding to a  lexical  rule  of  the programming 

language. The tokens of all  source fi les are 

concatenated in to  a  s ingle  token sequence,  so  that  

finding clones in multiple files is performed in the 

same way as single fi le analysis.  At this step,  the whit e  

s p a c e s  between tokens  a re  removed f rom the  token  

sequence,  but  the spaces are  sent  to  the formatt ing step 

to reconstruct the original source files.  

(2)Transformation 

The token sequence is  t ransformed by subprocesses  

( 2-1)  and (2-2) described below. At the same time, the 

mapping informat ion  f rom the  t ransformed token 

se quence into the original  token sequences is  stored 

for  the la ter  formatt ing s tep. 

( 2-1)Transformation by the transformation rules 

The token sequence is  transformed, i .e . ,  to kens are 

added, r emoved,  or  changed based on the 

t ransformation rules.   Table 1 s h o ws the  

t ransformation rules for  Java source code(For C++ 

source  code,  another  t ransformat ion rules  are  

adapted) . 

( 2-2)Parameter  replacement   

After step 2 -1 each identif ier  related to types,  

va r iables, and constants is replaced with a sp ecial 

token (this replacement is a pr eprocess  of  the  

‘parameterized match’ proposed in  [ 1 ]) .  This  

r eplacement makes code -portions in which variables 

are r ename d to be equivalent  token sequences.   

(3)Detec t ion 

From al l  the  subst r ings  on the  t ransformed token 

se quence, equivalent pairs are detected as clone-pairs.  

Each clone -pair  is  rep resented as  a  quadruplet  ( cp,  cl , 

op, ol),  where cp and op are, respectively,  t he po sition 

of  the  f i rs t  and second port ion,  and cl  and ol  are  their  

respective lengths. 

(4)Formatt ing  

Each locat ion of  clone-pair is co n verted into l ine 

numbers on the original  source f i les.    

Table 1. Transformation rules for Java 

# Rule  

R
J1

 

( PackageName ‘.’ )+ ClassName  
à  ClassName 

Here,  PackageName is  a  word that  begins with 
a small letter and ClassName is a capita l ized 
word. 

R
J2

 

NDotOrNew NClassName ‘(‘ 
à  NDotOrNew CalleeID ‘.’ NClassName ‘(‘ 
Here ,  NDotOrNew is  a  token except ‘ . ’  or  
‘new’.  NClassName is  an uncapital ized word.  
CalleeID is  a  token for  an omitted cal lee. 

R
J3

 

'=' '{' InitalizationList, '}'  
à  '='  '{' UniqueID '}' 

']' '{' InitalizationList, '}'  
à  ']'  '{' UniqueID '}' 

Here,  Ini tal izat ionList  is  a  sequence of Name,  
N um ber, String, Operators, ', ',  '( ',  ') ',  '{', and 
'}'. 

R
J4

 Insert  UniqueID a t  each  end  of  the  top- level 
definit ions and declarat ion. 

 



   

Here, a clone- relation is specified with the 

t ransformation rules and the parameter - replacement  

described above .  Other clone- relat ions are  derived with a 

subset  of the transformation rules and neglection of the 

paramet e r -replacement .  In  the  exper iments  described in 

Sect ion 3,  a  c lone- relat ion with a l l  the  t ransformation 

rules  is  compared to a clone-relation with a subset of the 

t ransform ation rules.  

2.2 The implementation techniques of tool 
CCFinder 

Tool CCFinder  was implemented in  C++ and runs 

under Windows 95/NT 4.0 or later .  CCFinder  extracts  

clone-pairs from C, C++ and Java source fi les.  The tool 

r eceives the paths of  source f i les  from the command- line 

(or text files in which the paths are listed), and writes the 

locations of the extracted clone -pairs  to  the s ta n dard 

output.  The straightforward clone-detecting algorithm 

for  n  to kens with matrix requires  the t ime complexi ty of  

O(n2).  A data structure called suf fix -tree is devised to 

detect  c lone-pairs and it requires O(n)  t ime 
complex i t y[1] [ 5 ].  CCFinder  employs  a  r elaxed 

algorithm of O(n  log n)  t ime  
using a suf fix-tree,  which is 

not   only easi ly  implemented 

but also practically eff icient.   

The optimizat ions 

employed by CCFinder  for  

large source f i les  are the  

following:  

• Filtering by header 
tokens 

We would like to extract the 

code port ions that  make real  

sense as a clone-pair. As a 

simple f i l tering for this  

p urpose, the clone -detect ion 

algorithm distin guishes  

"header"  tokens .  A header  

token is  def ined  as  the  token  

that  can be the f i rs t  token of  

code por tions of code -pairs .  

For  example ,  on  d etec t ing  

clone-pairs  in  C/C++ source 

f i les ,  tokens,  “#” ,  “{” ,  and  

“(”  are  header  tokens  by 

themselves .  Also,  the  

successors of “:” ,  “; ”, “)” ,  “}”, and ends-o f- line of a 

p reprocessor direct ive become header  tokens.  This  

f i l te r ing  reduced the  number  of  to kens inserted into 

suf fix -tree by factor 3 in ei ther C/C++ or Java source f i le,  

in the experiments described in Sect ion 4. 

• Integer token 
A token is represented by a serial number, not as a string 

or a hash -value. This optimization is enabled by 

parameter -replacement ,  which causes  a  token sequence 

to co nsis t  of  only l imited kinds of  tokens.  Otherwise,  a  

set  of  tokens is  infinite in general ,  thus the tool  should 

use str ing or  hash-value as a  represent at ion of  a  token,  

which would cost  higher  t ime and space in  clone 

detection.  

3 Experiment 

The purpose of  the  exper iment  was to  eval uate  our  

token-based clone-detect ing technique and the metrics.  

The target  source f i les have ‘ in dustr ial’  s ize and are 

widely avai lable.  The person who per formed the  analys is  

did not have preliminary knowledge about the source 

 

0 500

500

0
400300200100

k LOC

400

300

200

100

k LOC

A

B

 

Figure 2. Scatter plot of clones over 20 lines in JDK 



   

f i les ;  consequent ly  the  following resul ts  are obtained 

purely by the analysis  with the tool  and metrics.  In al l  the 

follo wing experiments,  tool CCFinder  was executed on a 

PC wi th  Pent ium I I I  650MHz and 1GB RAM.  

3.1 4.1 Clones in a Java library, JDK 

JDK 1.2.2  is  a  commonly used Java li brary  and the  

source fi les are publicly available.  Tool CCFinder  has 

been applied to all  source f i les of JDK excluding 

examples and demo programs,  which are about  500k 

lines in total,  in 1648 files. It  takes about 3 min utes for 

execution on the PC. Figure 2  shows a scatter plot of the 

clone-pairs  hav ing at  least  20 l ines  of  code (LOC).  Both 

the vertical  and horizontal  axes represent l ines of source 

fi les.  The fi les are sorted in alphabet ical order of the fi le 

paths,  so fi les in the same directory are also l ocated near 

on the axis.  A clone -pa i r  i s  shown as  a  diagonal  l ine  

s egmen t.  Only l ines below the main diagonal  are plotted 

as  mentioned in  Sect ion 2 . 1.  In Figure 2 , each line 

se g ment looks like a dot because each clone-pair is small 

(several  decades l ines)  in co m par ison to  the  scale  of  the 

axis.  Most l ine segments are located near the main 

dia gonal l ine,  and this means that  most of the clones 

occur within a file or among source files at the near 

direct o ries.  

Crowded c lones  marked A i n  the  g raph  

corr espond to 29 files of javax/ 
swing/ plaf/ multi/ *.java.  

These files are very sim ilar  to  each other  

and some of them contain an identical  

class definition except for their different 

pa rent classes.  

Figure 3  shows a  part of a  file 

MultiButtonUI.java.  This 

file contains same to a file 

MultiColorChooserUI.java,  

except l ines 32, 161, and 163. 

Accord ing  to  the  com ments  of  the  

source files, a code generator nam e d  

AutoMulti c reates the fi les.  To 

modify these f i les ,  the develope r  

should obtain  the  tool  ( the  tool  is  not  

in cluded in JDK), edit ,  and apply it  

correctly. If the deve loper  does  not  

use the tool ,  he/she has to  update al l  

the fi les carefully by hand. As the  

example shows,  the  modif icat ion of  

clones needs extra work. In this case, these clones are 

easily rewritten with a shared code if  the program ming 

language would support  generic type [ 3 ]. 

The longest clone (349 lines) is found within java/ 
util/ Arrays.java (marked B in Figure 2 ). 

Methods  named “sort”  have  18 variations for 

sign atures  (number  and  types of  arguments) ,  and they 

use identical algorithm/routine for sort ing.  

3.2 Evaluation of transformation rules for JDK 

In Section  2.1,  we also proposed the transformation 

rules for Java. To evaluate effectiveness of the 

t ransformation rules ,  we have applied CCFinder  with 

some of  their  t ransformat ion rules  disabled.  Figure 4  

shows the  h is togram of  detected clone-pairs  when some 

of  rules  are  appl ied.  PR+1234 means that  the 

paramet e r -replacement and al l  rules (RJ1,  RJ2, RJ3, and 

RJ4) are applied (i.e. original CCFinder ) .  Exact  Match 

means that  no parameter - replacement  or  no 

t ransformation is  applied.  This  f igure shows that  the 

longer the clone length is,  the smaller i ts  occurrence 

becomes.  A not iceable  peak around 80 LOC is a set of 

clone-pairs found in files generated by AutoMulti, 

which  cannot  be  detected by Exact  Match by the reason 

 31| */ 
 32|public class MultiButtonUI extends ButtonUI { 
 33| 
 
160|  public static ComponentUI createUI(JComponent a) { 
161|    ComponentUI mui = new MultiButtonUI(); 
162|    return MultiLookAndFeel.createUIs(mui, 
163|           ((MultiButtonUI) mui).uis, 
164|           a); 
165|    } 

Figure 3. A clone file MuitiButtonUI.java found in JDK 

0

200

400

600

800

1000

1200

1400
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

10
0.

.

Length of clones (LOC)

O
cc

ur
en

ce

PR+1234

PR+124
PR+34
Exact Match

 

Figure 4. Occurences against length of clone-pairs in JDK 



   

mentioned above. In this ex per iment ,  the  c lone-pairs 

found by PR+1234 are  much fewer  than wi th  PR+124.  

This means that  rule RJ3 r emoves  many table  

initialization codes.  

The case PR+1234 extracted 2111 clone-pairs and 

P R + 3 4  extracted 2093 c lone-pairs.  There are several 

clone-pairs that can be detected by intro ducing RJ1 and 

RJ2. In the case of Exact Match,  only  a small  number of  

clone-pairs a re  found.  The  “exact”  c lone-pairs are 

o bvious candidates  to be rewri t ten as  a  shared code.  

However,  our t ransformation and parameter  replacement  

approach f inds more subtle  clone-pa i rs  so  tha t  the  

chances to rewrite and reorganize overall  structures of 

so ftware systems become  higher. 

3.3 Analysis using clone metrics 

We define several metrics for clone -classes in 

order to find important clone-classes,  which enable 

us  to  per form large  code  re duction.  Also,  we use 

metrics to find clone-classes that are widely spread 

over a system.  

Radius of clone-class; RAD(C) 
For a given clone-class C, let F is a set of files which 

include each code po r tion of C.  Define RAD(C) as 

the  maximum length of  path  f rom each f i le  F  t o  t h e  

lowest common ancestor directory of all  f i les in F.  

F o r  example, a clone class C conta ins  two code 

port ions and one of  them exis ts in  

‘ abc/def/ghi/source1.c ’  and the other in a f i le 

‘ abc/def/xyz/source2.c ’ ,  then  RAD(C), i.e. the 
length  of  the  common path  ‘ abc/def/’ ,  is  equal  to 2.  

If all  code portions of C are included in one file, 

define RAD(C)  = 0.   

If  a clone-class  has a  large RAD, the code 

p ort ions  widely spread over  a  sof tware system,  and 

it  would become difficult  to find those clones and 

maintain their  consistency correctly,  since such 

different  subsystems are l ikely to be maintained by 

different e n gineers. 

Length; LEN(C), LEN(p) 
LEN(p)  is  the number of l ines of a code portion p.  

LEN(C) for clone -class C i s  t he  max imum LEN(p)  

for  each p  in  C. 

Population of clone-class; POP (C) 
POP (C) is the number of ele ments of a given 

clone-class C. 
A clone class with a large POP means that  s imilar  code 

portions appear in many places.  

Deflation by clone-class; DFL(C) 
Combina t ion  of  LEN and  POP g ives  an  es t imation of 

how many l ines would be removed from source fi les 

by rewri t ing each c lone-class  as  a  shared code .  

Suppose that all  code -port ions of  a  clone-class C are 
r eplaced with caller statements of a new identical 

routine (function,  method,  template fun ction,  or  so)  

and that this caller statement is one line.  In this case 

LEN(C)  Î POP (C) lines of code are occ upied in the 

original source files. In the newly restructured source 

f i les ,  they occupy POP (C) lines for caller statements 

and LEN(T ) for a callee routine. Now let us define a 

1

10

100

1000

10 100 1000
ＬＥＮ (LOC)

PO
P

Clone-classes of the
top 30 in DFL
values
The other clone-
classes

 

Figure 5. Population and length of clone-classes in JDK 
 

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8
RAD

LE
N

 (L
O

C
)

 

Figure 6. Length and Radius of clone-classes in JDK 



   

met r ic  DFL2 as  a rough est imator of  re duced source 

lines: 

DFL(C)  =  (o ld  LOC o f  C) –  (new LOC o f  C)  

=LEN(C)ÎPOP (C) –  (POP (C) +LEN(C) )   

= (LEN(C)  – 1 )  Î (POP (C)  – 1) –  1, 

Note that  DFL(C) >= 0, for all clone -classes C that 

satisfy LEN(C) >= 2 and POP (C)  >= 2 . 

4 Applying Metrics to JDK 

The data of  JDK were analyzed using the me trics.  

Figure 5 shows  the  LEN and  POP p arameters  of  each 
clone-class. The set of clone -classes with the highest  30 

DFL values is  obviously di fferent from the set with the 

highest LEN va l ues or  the set  with the highest  POP 

values. By invest igat ion of source fi les,  the clone-classes 

of the top 30 DFL values are classified into the following 

four types:   

・Source files generated by AutoMulti (10 clone -pairs)  

・Part of a switch/case stat ement which seems to be easi ly  

rewritten by an ar ray (3 clone-pairs) 

・Routines to apply one algo r i thm to  many data  types ,  

that  could be rewrit ten by generic type (5 clone-pair s) 

・ Instantiations of definitional computations (e.g. 

met hods in order to put or get a value of an in stance 

value and methods in order to change signature or 

p r ivate/public accessi bi l i ty of  the other methods) (12 

clone-pairs) 

Figure 6 shows the  RAD and LEN parameters  of  each 

clone-class. Except for clone-classes  whose RAD values  

are 7,  most clone-classes with high LEN have small  

RAD value.  That  is ,  in  most  cases ,  a  c lone occurs  

between fi les at  near directories.  One of the reasons 

woul d be that copying a code portion from a distant fi le 

is  a t ime consuming job because developer  needs to 

search for  the target  code port ion through many fi les.  

An other  reason would be that  the nearer  f i les  are  more 

l ike ly  to  imple ment similar functionalit ies. 

As for al l  clone-classes whose RAD values are 7, 6, or 

                                                                 
2 A similar metric is used in [1], which estimates how many lines 
are removed in total by rewriting all clone-classes. 

5,  we investigated all  the corresponding source fi les.  All  

code port ions of  7  are  found in ‘swing’  subsystem, 

which has source files located at distant directories, 

com/ sun/ java/ swing and javax/ swing.  I f  the 

all  fi les and subdirectories in the former are moved to the 

latter,  the RAD values must be 3.  The clone -classes of 6 

and 5 are classified as access methods. We inve st igated 

clone-classes of 4 and found a clone -pair created in 

cut- and-paste style,  within javax/ swing/ event/ 
SwingPropertyChangeSupport.java and 

java/ beans/ PropertyChangeSupport.java.  

A class SwingPrpertyChangeSupport  is directly 

der ived from a parent class 

PropertyChangeSupport,  and i t  contains methods 

to override those of the parent,  but each overridden 

method is  equivalent to the original .  The reason for 

c loning is  performance enhancement (the detail  is  

descr ibed  in  the  comment  of  

SwingPropertyChangeSupport) .  Therefore, a 

careful modification process would be required for each 

of  them.   

4.1 Application of CCFinder  to Linux and 
FreeBSD systems 

CCFinder  was applied to million lines of code from 

two operat ing systems,  Linux 2.2 .14 and FreeBSD 3.4 .  

The purpose of  this  ex periment was to investigate where 

and  how s imilar  codes are  used between two operat ing 

sys tems.  Linux and FreeBSD are  wel l  known Unix 

systems and have independent  kernels  wri t ten in C.  The 

target  i s  the  source  f i les  of  kernel  and device - dr ivers,  

2095  .c files of 1.6 million lines in Linux, and 2906 .c 

f i les of 1.3 mill ion l ines in FreeBSD. Clone-pairs with 20 

L O C  o r  m o r e  between two systems are  extracted.  This  

operat ion takes about  40 minutes on the PC.  

By invest igat ion of  source codes corresponding to  the  

clone-classes of top 30 lengths,  such clones belong to 5 

files or subsystems, shown in Table 2 .  The 3 subsystems, 

Table 2. Subsystems cloned between operating systems 

Subsystem Linux files FreeBSD files 
zlib arch/ppc/coffboot/zlib.c,  

drivers/net/zlib.c 
lib/libz/adler32.c, lib/libz/deflate.c, lib/libz/infblock.c, 
lib/libz/infcodes.c, lib/libz/inffast.c, lib/libz/inflate.c 
lib/libz/inftrees.c, lib/libz/trees.c, sys/net/zlib.c 

rocket drivers/char/rocket.c sys/i386/isa/rp.c 
awe_wave drivers/sound/lowlevel/awe_wave.c sys/gnu/i386/isa/sound/awe_wave.c 
mpu401 drivers/sound/mpu401.c sys/i386/isa/sound/mpu401.c 
sequencer drivers/sound/sequencer.c sys/i386/isa/sound/sequencer.c 
 



   

awe_wave, mpu401, and sequencer contain fi les 

with ident ical  names between two OS’s;  therefore the 

mapping of  the two OS’s for  the subsystems could be 

identified by analysis of fi le names. On the other hand, 

‘rocket’ files have different names, rocket.c and 

rp.c,  so that the identification of the map ping is  more 

difficult. 

In  case  of  subsystem zlib,  the s ituat ion is  more 

com plex. Linux has two different fi les with the same 

name.  FreeBSD has  9  f i les .   

Fi gure 7 shows a scatter  plot  among the fi les that  have 

any clones in ‘ zlib’ fi les.  A in  the  graph shows,  Linux 

has two files named zlib.c, an d  

drivers/net/zlib.c includes all lines of 

arch/ppc/coffboot/zlib.c.  In  FreeBSD sys tem,  

sys/net/zlib.c is equal to a co n catenation of eight 

lib/libz/*.c f i les,  as shown by B in  the  graph.  In  

both operating sy stems (OS’s),  the largest  zlib.c files 

cont ain complete source for ‘zlib’  subsystem while the 

other files contain part of the subsystem. The two largest 

zlib.c files are almost identica l  be tween Linux and 

FreeBSD, as  shown by C. 

5 Conclusions 

 In this paper, we presented 

a clone detecting technique 

wi th  t ransformat ion  ru les  

and a  token-based  

com parison. We also 

proposed metrics to select 

i n t er esting clones. They 

were ap plied to several 

industrial - size software 

systems in the experiments .  

An exper iment  to  compare  

two OS’s found several 

subsystems that  would 

come from a same original.  

Some of  them have dis t inct  

file names between OS’s, 

and some are duplicated 

with in a system.  

References 

[1]  B. S. Baker,  “On  

finding Duplicat ion  

and Near -Duplicat ion 

in Large Software Sy st e m”,  Proc. IEEE WCRE ’95., 
pp.  86-95 Jul .  1995 

[2] I .  D. Baxter et. al. “Clone Detect ion Using Abstract  

Syntax Trees”, Proc. ICSM ’98, pp. 368 -377, 

Bethesda,  Mary land, Nov. 1998.  

[3] M.  G. Bracha et. al. “GJ Specificat ion”.  

http://cm.bell- labs .com/cm/cs/who/wadler /pizza/gj /  

[4] S.  Ducasse et. al. “A Language Independent  

Ap proach for Detecting Duplica ted  Code” , Proc. 
IEEE ICSM ’99,  pp. 109-118. Oxford, En gland. Aug. 

1999 . 

[5] D.  Gusfield,  Algorithms on Strings, Trees, and 
Sequences,  pp.  89-180.  Cambridge Universi ty Press  
1997 . 

[6] J.  H. Johnson, “Ident ifying Redundancy in Source 

Code using Fin gerprints”, Proc. of IBM CAS 
CON ’93,  pp.  171-183,  Toronto,  On tario. Oct. 1993. 

[7] B .  L a guë  et. al “Assessing the Benefi ts  of  

Incorporat ing Funct ion  Clone  Detection in a 

Development  Process” ,  Proc. IEEE ICSM ’97, pp. 

3 1 4-321, Bari, Italy. Oct. 1997.  

arch/ppc/coffboot/
zlib.c

drivers/net/
zlib.c

lib/libz/
{adler.c, deflate.c,

infblock.c,
infcodes.c,

inffast.c, inflate.c,
inftrees.c, trees.c}

sys/net/zlib.c

ar
ch

/p
pc

/c
of

fb
oo

t/
zl

ib
.c

dr
iv

er
s/

ne
t/

zl
ib

.c

lib
/li

bz
/

{a
dl

er
.c

, d
ef

la
te

.c
,

in
fb

lo
ck

.c
, i

nf
co

de
s.

c,
in

ff
as

t.c
, i

nf
la

te
.c

,
in

ftr
ee

s.
c,

 tr
ee

s.
c}

sy
s/

ne
t/z

lib
.c

Linux

FreeBSD

Linux FreeBSD

A

BC

 

Fi g ure 7  Clones among zl ib subsystems. 



   

[8]  J .  Mayland et. al. “Experiment  on the Automatic  

Detection of Fun ction Clones in a Software System 

Using Metrics”,  Proc. IEEE ICSM ’96,  pp. 244-253, 
Monterey, California, Nov. 1996.  

 


