t
560-8531 1-3
i
630-0101 8916 5

{kamiya, kusumoto, inoue} @ics.es.osaka-u.ac.jp

JDK

, CASE , ,

A Token-based Code Clone Detection Technique
and Its Evaluation

Toshihiro KamiyaT, Shinji KusumotoT, and Katsuro InoueJrjc

T Graduate School of Engineering Science, Osaka University
T Graduate School of Information Science, Nara Institute of Science and Technology

{kamiya, kusumoto, inoue} @ics.es.osaka-u.ac.jp

A code cloneis acode portion in source files that isidentical or similar to another. Since code

clones generally reduce maintainability of soft ware, several code clone detection techniques and tools have been
proposed. This paper proposes a new clone detection technique, which consists of transformation of input source
text and t oken-by-token comparison. Based on the proposed code clone detection technique, we developed a tool
named CC Finder, which extracts code clonesin C/C++ or Java source files. As well metrics for code clones were
developed. In order to evaluate the usefulness of the tool and metrics, we conducted several experiments. As the
results, the tool found several subsystems in two operating systems, namely FreeBSD and Linux, that could be
traced to the same original. As well, the proposed metrics foundinteresting clones in a Java library, JDK.

Code clone, Duplicated code, CASE tool, Metrics, Maintenance

1 Introduction

A code clone is a code portion in source files that is
identical or similar to another. Clones are introduced
because of various reasons such as reusing code by
‘cut-and paste’ or intentionally repeating a code portion
for performance enhancement[2]. Clones make the
source files very hard to modify consistently. For
example, assume that a software system has several
clone subsystems created by duplication with slight

modification. When a fault is found in one subsystem,

the engineer has to carefully modify all other subsystems.

For a large and complex system, there are many
engineers who take care of each subsystem, and
modification becomes very difficult. Various clone
detection tools have been proposed and implemented
[1]1[2]10[6]1[7][8], and a number of algorithms for finding
clones have been used for them, such as line-by-line
matching for an abstracted source program [1], and
similarity detection for metrics values of function bodies
[8].
1.1 Definition of clone and related terms

A clone-relation is defined as an equivalence relation
(i.e., reflexive, transitive, and symmetric relation) on
code portions. A clone-relation holds between two code
portions if (and only if) they are the same sequencesl.
For a given clone-relation, a pair of code portions is
called clone-pair if the clone-relation holds between the
portions. An equivalence class of clone-relation is called
clone-dass. That is, a clone-class is a maximal set of
code -portions in which a clone-relation holds between
any pair of code-portions.

For example, suppose a file has the following 12
tokens:
axyzbxyzcxyd
We get the following three clone-classes:
c1) axyzbxyzcxyd
c2) axyzbxyzcxyd
c3) axyzbxyzcxyd

Note that sub-portions of code portions in each
clone-class also make clone-classes (e.g. Each of C3isa

! Sequences are sometimes original character strings, strings
without white spaces, sequences of token type, and transformed
token sequences. We will discusses how we deal with such
sequences.

Source files
.4 Clone Detection -
[Lexica Andyss |
I
Token Sequence

(| Transformation |

Transformed

Token Sequence Mapping from
Transformed
| Detection | Sequence

| into Qriginal

Clones on Transformed

Sequence

| Formatting |

Clone-pairs

Measurement |

MetricValues Clone-classes

Figure 1. Clone detecting process

sub-portion of C1). In this paper, however we are
interested only in maximal portions of clone-classes so

only thelatter are discussed.

2 Proposed clone-code detection technique

Our approach presented in this paper concerns the
following issues in clone detection.
I dentification of structures
Our pilot experiment has revealed that certain types of
clones seem difficult to be rewritten as a shared code
even if they are found as clones. Examples are a code
portion that begins at the middle of a function definition
and ends at the middle of another function definition, and
a code portion that is a part of a table initialization code.
For effective clone analysis, our clone detection
technique automatically identifies and separates each
function definition and each table definition code. For
comparison, in [1], table initialization values have to be
removed by hand, whereas in [8], only an entire function
definition can become a candidate for clone.
Regularization of identifiers
Recent programming languages such as C++ and Java
provide Name spaceand/or generic type[3]. As aresult,
identifiers often appear with atributive identifiers of

name space and/or template arguments. In order to treat
each complex name as an equivalent simple name, the
clone detecting process has a subprocess to transform
complex names into simple form. If source files are
repr esented as a string of tokens, structures in source
files (such as sentences or function definitions) are
represented as substrings of tokens, and they can be
compared token-by-token to identify clones. Identifying
structures and transforming names require knowledge of
syntax rules of the programming languages. Therefore,
the implementation of the clone detecting technique
depends on the input. The detail of clone detecting
process is describedin Section 2.1
Ranking clones by importance

Large software systems often include many clones, so
a clone analysis method must disti nguish important
clones from many ‘uninteresting’ clones. The metrics
presented in Section 3.3 enable to identify such
impo rtant clones: clones that enable large code reduction
by their removal, or clones that have so widely spread in
the system that are difficult to find by hand and to
maintain. A certain metric value is usedto estimate how
many lines of source files are reduced by making a
shared routine of each clone, and another is used to
evaluate how each clone is spread over a software

system.

2.1 Clone-detecting process

Clone detecting is a process in which the input is
source files and the output is clone-pairs. The entire
process of our token-based clone detecting technique is
shown in Figure 1. The process consists of four steps:
(1)Lexical analysis

Each line of source files is divided into tokens

corresponding to a lexical rule of the programming

language. The tokens of all source files are
concatenated into a single token ®quence, so that
finding clones in multiple files is performed in the
same way as single file analysis. At this step, the white
spaces ketween tokens are removed from the token
sequence, but the spaces are sent to the formatting step
to reconstruct the original source files.

(2)Transformation

The token sequence is transformed by subprocesses

(2-1) and (2-2) described below. At the same time, the

mapping information from the transformed token

sequence into the original token sequences is stored
for the later formatting step.

(2-1)Transformation by the transformation rules
The token sequence is transformed, i.e., tokens are
added,

transformation rules. Table 1

removed, or changed based on the

shows the
transformation rules for Java source code(For C++
source code, another transformation rules are
adapted).

(2-2)Parameter replacement
After step 2-1 each identifier related to types,
variables, and constants is replaced with a special
token (this replacement is a preprocess of the
‘parameterized match’ proposed in [1]). This
replacement makes code-portions in which variables
arerenamed to be equivalent token sequences.

(3)Detection
From all the substrings on the transformed token
sequence, equivalent pairs are detected as clone-pairs.
Each clone-pair is represented as a quadruplet (CpP, cl,
op, ol), where cp and op are, repectively, the position
of the first and second portion, and cl and ol are their
respective lengths.

(4)Formatting
Each location of clone-pair is converted into line

numbers on the original source files.

Tablel. Transformation rulesfor Java

| Rule
(PackageName*.")+ ClassName
o - ClassName
E’ Here, PackageName is a word that begins with

a small letter and ClassName is a capitalized
word.

NDotOrNew NClassName ‘(
- NDotOrNew Calleel D ‘. NClassName ‘('

% Here, NDotOrNew is a token except ‘." or
‘new’. NClassName is an uncapitalized word.
Calleel D is atoken for an omitted callee.
'="'{" InitalizationLigt, '}'

> '= {" UniquelD'}'

o | 1 {' InitalizationList, '}’

2| =7 '{ UniqueiD}

Here, InitalizationList is a sequence of Name,
Number, String, Operators, ',', ‘(,)", '{', and
1.

Insert UniquelD at each end of the top-level
definitions and declaration.

RJ4

0 100

200

300

400 500

algorithm of O(n log N) time
using a suffix-tree, which is

100

kLOC A
not only easily implemented

but also practically efficient.
The optimizations

employed by CCFinder for

large source files are the
following:
Filtering by header

200

300

tokens
We would like to extract the
code portions that make real

sense as a clone-pair. As a

400 |-

simple filtering for this
purpose, the clone-detection
algorithm distinguishes

"header" tokens. A header

500

token is defined as the token
that can be the first token of

u code portions of code-pairs.

oy For example, on detecting

kLOC

Figure 2. Scatter plot of clonesover 20 linesin JDK

Here, a clone-relation is specified with the
transformation rules and the parameter-replacement
described above. Other clone-relations are derived with a
subset of the transformation rules and neglection of the
parameter-replacement. In the experiments cescribed in
Section 3, a clone-relation with all the transformation
rules is compared to a clone-relation with a subset of the

transformation rules.

2.2 The implementation techniques of tool
CCFinder

Tool CCFinder was implemented in C++ and runs
under Windows 95/NT 4.0 or later. CCFinder extracts
clone-pairs from C, C++ and Java source files. Thetool
receives the paths of source files from the command-line
(or text files in which the paths are listed), and writes the
locations of the extracted clone-pairs to the standard
output. The straightforward clone-detecting algorithm
for N tokens with matrix requires the time complexity of
O(nz). A data structure called sufix-tree is devised to
requires O(n) time
employs a relaxed

detect
complexity[1][5].

clone-pairs and it
CCFinder

clone-pairs in C/C++ source
files, tokens, “#", “{”, and
“(" are header tokens by
themselves. Also, the
successors of “: ", “; ", “) ", “}", and ends-of-line of a
preprocessor directive become header tokens. This
filtering reduced the number of bkens inserted into
suffix-tree by factor 3 in either C/C++ or Java sourcefile,
in the experiments described in Section 4.
Integer token

A token is represented by a serial nhumber, not as a string
or a hash-value. This optimization is enabled by
parameter-replacement, which causes a token sequence
to consist of only limited kinds of tokens. Otherwise, a
set of tokens is infinite in general, thus the tool should
use string or hash-value as a representation of a token,
which would cost higher time and space in clone

detection.

3 Experiment

The purpose of the experiment was to eval uate our
token-based clone-detecting technique and the metrics.
The target source files have ‘industrial’ size and are
widely available. The person who performed the analysis
did not have preliminary knowledge about the source

Figure 3 shows a part of a file

1400 . . _
- Miul tiButtonUl .java. This
1200 B PR+1234 file contains same to a file
1000 j] OIPR+124 Mul ti Col or Chooser Ul . j ava,
g 800 H HPR+34 except lines 32, 161, and 163.
) B Exact Match .
§ 600 According to the comments of the
400 source files, a code generator named
Aut oMul ti creates the files. To
200 1 I Jlﬂ modify these files, the developer
U S A should obtain the tool (the tool is not
R &€ 8 8 ¢ & BB 88 R K 8 8 8 8 S
—

Length of clones (LOC)

included in JDK), edit, and apply it
correctly. If the developer does not

use the tool, he/she has to update all

Figure4. Occurences against length of clone-pairsin JDK

files; consequently the following results are obtained
purely by the analysis with the tool and metrics. In all the
follo wing experiments, tool CCFinder was executed on a
PC with Pentium Il 650MHz and 1GB RAM.

3.1 4.1 Clones in a Java library, JDK

JDK 1.2.2 is a commonly used Java library and the
source files are publicly available. Tool CCFinder has
been applied to all source files of JDK excluding
examples and demo programs, which are about 500k
lines in total, in 1648 files. It takes about 3 minutes for
execution on the PC. Figure 2 shows a scatter plot of the
clone-pairs having at least 20 lines of code (LOC). Both
the vertical and horizontal axes represent lines of source
files. The files are sorted in alphabetical order of the file
paths, so files in the same directory are also | ocated near
on the axis. A clone-pair is shown as a dagonal line
segment. Only lines below the main diagonal are plotted
as mentioned in Section 2.1 In Figure 2, each line
segment looks like a dot because each clone-pair is small
(several decades lines) in comparison to the scale of the
axis. Most line segments are located near the main
diagonal line, and this means that most of the clones

occur within a file or among source files at the near

the files carefully by hand. As the

example shows, the modification of

clones needs extra work. In this case, these clones are

easily rewritten with a shared code if the programming
language would support generic type [3].

The longest clone (349 lines) is found within | ava/

util/ Arrays.java (marked B

Methods “sort” have 18 variations

signatures (number and types of arguments), and they

in Figure 2).

named for

use identical algorithm/routine for sorting.
3.2 Evaluation of transformation rules for JDK

In Section 2.1, we also proposed the transformation
the
with

rules for Java. To evaluate effectiveness of

transformation rules, we have @plied CCFinder
some of their transformation rules disabled. Figure 4
shows the histogram of detected clone-pairs when some
of rules are applied. PR+1234 means that the
parameter-replacement and all rules (RJ1, RJ2, RJ3, and
RJ4) are applied (i.e. original CCFinder). Exact Match
that

transformation is applied. This figure shows that the

means no parameter-replacement or no

longer the clone length is, the smaller its occurrence
becomes. A noticeable peak around 80 LOC is a set of

clone-pairs found in files generated by Aut oMul ti ,
which cannot be detected by Exact Match by the reason

public class MiltiButtonU

public static ConponentU createU (JConponent a) {
nponent Ul
return Mul ti LookAndFeel . createU s(mui,

Co

directories.

Crowded clones marked A in the graph 31 %/
correspond to 29 files of | avax/ §§|
swing/ plaf/ multi/ *.java.

. S 160]|

These files are very similar to each other 161

and some of them contain an identical %ggl

class definition except for their different 164
165 }

extends ButtonU {
mui = new Mul tiButtonU ();

((MiltiButtonU) nui).uis,
a);

parent classes.

Figure 3. A clonefile MuitiButtonUl .java found in JDK

1000
P ® Clone-classes of the|
top 30in DFL
100 values]
§ X The other clone-

10

*e Lo

DRSENREREEROBITIOBMK X XX [}
1 1
10 100 1000

(LOO)

Figure5. Population and length of clone-classesin JDK

400

350

300

250

200 -

LEN (LOC)

150 ;

100

50‘ + 1 1
N

Figure6. Length and Radius of clone-classesin JDK

mentioned above. In this experiment, the clone-pairs
found by PR+1234 are much fewer than with PR+124.
This means that rule RJ3 removes many table
initialization codes.

The case PR+1234 extracted 2111 clone-pairs and
PR+34 tracted 2093 clone-pairs. There are several
clone-pairs that can be detected by introducing RJ1 and
RJ2. In the case of Exact Match, only a small humber of
clone-pairs are found. The “exact” clone-pairs are
obvious candidates to be rewritten as a shared code.
However, our transformation and parameter replacement
approach finds more subtle clone-pairs so that the

chances to rewrite and reorganize overall structures of

software systems become higher.

3.3 Analysis using clone metrics

We define several metrics for clone-classes in
order to find important clone-classes, which enable
us to perform large code reduction. Also, we use
metrics to find clone-classes that are widely spread
over a system.
Radius of clone-class, RAD(C)
For agiven clone-class C, let Fis aset of files which
include each code portion of C. Define RAD(C) as
the maximum length of path from each file F to the
lowest common ancestor directory of all filesin F.
For eample, a clone class C contains two code
portions and one of them exists in
‘abc/def/ghi/sourcel.c’ and the other in a file
“abc/def/xyz/source2.c’, then RAD(C), i.e. the

length of the common path ‘ abc/def/’, is equal to 2.

If all code portions of C are included in one file,
define RAD(CO) = 0.

If a clone-class has a large RAD, the code
portions widely spread over a software system, and
it would become difficult to find those clones and
maintain their consistency correctly, since such
different subsystems are likely to be maintained by
different engineers.

Length; LEN(C),LEN(p)

LEN(p) is the number of lines of a code portion p.
LEN(Q for clone-class C is the maximum LEN(p)
for eachp inC.

Population of clone-class, POP(C)

POP(C is the number of elements of a given

clone-class C.
A clone class with alarge POP means that similar code

portions appear in many places.
Deflation by clone-class, DFL (C)

Combination of LEN and POP gives an estimation of
how many lines would be removed from source files
by rewriting each clone-class as a shared code.
Suppose that all code-portions of a clone-class Care
replaced with caller statements of a new identical
routine (function, method, template function, or so)
and that this caller statement is one line. In this case
LEN(C) X POP(C) lines of code are occupied in the
original source files. In the newly restructured source
files, they occupy POP (C) lines for caller statements

and LEN(T) for a callee routine. Now let us define a

metric DFL2 as a rough estimator of reduced source

lines:

DFL(C) = (old LOC of C)- (new LOC of C)
=LEN(C) XPOP(C) - (POP(C)+LEN(C))
= (LEN(C) - 1) X (POP(C) -1) - 1,
Note that DFL(C) >= 0, for all clone-classes C that
satisfy LEN(C >= 2 and POP(Q >= 2.

4 Applying Metrics to JDK

The data of JDK were analyzed using the metrics.

Figure 5 shows the LEN and POP p arameters of each
clone-class. The set of clone-classes with the highest 30
DFL values is obviously different from the set with the
highest LEN values or the set with the highest POP
values. By investigation of source files, the clone-classes
of the top 30 DFL values are classified into the following
four types:

Source files generated by Aut oMUl ti (10 clone-pairs)

Part of a switch/case stat ement which seems to be easily

rewritten by an array (3 clone-pairs)

Routines to apply one algorithm to many data types,

that could be rewritten by generic type (5 clone-pairs)

Instantiations of definitional computations (e.g.

methods in order to put or get a value of an instance
value and methods in order to change signature or
private/public access bility of the other methods) (12
clone-pairs)

Figure 6 shows the RAD and LEN parameters of each
clone-class. Except for clone-classes whose RAD values
are 7, most clone-classes with high LEN have small
RAD value. That is, in most cases, a clone occurs
between files at near directories. One of the reasons
woul d be that copying a code portion from a distant file
is a time consuming job because developer needs to
search for the target code portion through many files.
Another reason would be that the nearer files are more
likely to implement similar functionalities.

As for all clone-classes whose RAD values are 7, 6, or

5, we investigated all the corresponding source files. All
code portions of 7 are found in ‘SW Ng subsystem,
which has source files located at distant directories,
com sun/ java/ swi ngand j avax/ sw ng. If the
all files and subdirectories in the former are moved to the
latter, the RAD values must be 3. The clone-classes of 6
and 5 are classified as access methods. We investigated
clone-classes of 4 and found a clone-pair created in
cut-and-paste style, within j avax/ swi ng/ event/
Swi ngPr oper t yChangeSupport. j ava and
j aval beans/ PropertyChangeSupport.java
A class Swi ngPr per t yChangeSupport is directly
derived from a parent class
Pr opert yChangeSupport , and it contains methods
to override those of the parent, but each overridden
method is equivalent to the original. The reason for
cloning is performance enhancement (the detail is

described in the comment of

Swi ngPr opert y(hangeSupport). Therefore, a
careful modification process would be required for each
of them.

4.1 Application of CCFinder to Linux and
FreeBSD systems

CCFinder was applied to million lines of code from
two operating systems, Linux 2.2.14 and FreeBSD 3.4.
The purpose of this experiment was to investigate where
and how similar codes are used between two operating
systems. Linux and FreeBSD are well known Unix
systems and have independent kernels written in C. The
target is the source files of kernel and evice-drivers,
2095 . C files of 1.6 million lines in Linux, and 2906 . C
filesof 1.3 million linesin FreeBSD. Clone-pairs with 20
LOC or more between two systems are extracted. This
operation takes about 40 minutes on the PC.

By investigation of source codes corresponding to the
clone-classes of top 30 lengths, such clones belong to 5
files or subsystems, shown in Table 2. The 3 subsystems,

Table 2. Subsystems cloned between operating systems

Subsystem | Linux files

FreeBSD files

zlib arch/ppc/coffboot/zlib.c,
drivers/net/zlib.c

lib/libz/adler32.g lib/libz/deflate.c, lib/libz/infblock.c,
lib/libz/infcodes., libflibz/inffast.c, lib/libz/inflate.c
lib/libz/inftrees.q, lib/libz/trees.c, sys/net/zlib.c

racket drivers/char/rocket.c Sys/i386/isajrp_c
2 A similar YR YRYe il Y PrelARr AW Vel I8 MY Pifngs YT 9N/ 386/isalsound/awe, wave.c
are removed impoeDby retlitirgysiotionisnciadSisc sy</i386/isa/sound/mpu401.c
|_sequencer drivers/sound/sequencer.c sy</i 386/isa/sound/sequencer.c

FreeBSD, as shown by C.

Linux FreeBSD
I 5 | 5 Conclusions
§ 3 é 8 £ 1) In this paper, we presented
g B =828 = _ _
% o =S E BEE B < a clone detecting technique
o35 ? 5 =° %0 B , :
o = o= 8 3 909 g b with transformation rules
g~ =>7 =5%8% 8 3
= 5 =88 = o and a token-based
S B8sEE _
® —EeT T comparison. We also
S | proposed metrics to select
arch/pp?/tc;c::ffboot/ interesting clones. They
Zlib.
— were applied to several
Linux) industrial -size software
driverg/net/ . .
ib.c A systems in the experiments.
An experiment to compare
L lib/libz/ two OS's found several
{adler.c, deflate.c, subsystems that would
infblock.c, come from a same original.
infcodes.c, o
inffast.c. inflate.c C Some of them have distinct
FreeBSD inftrees.c, trees.c} ' file names between OS's,
and some are duplicated
sys/inet/zlib.c with in a system.
References
o [1] B. S. Baker, “On
Figure 7 Clones among zlib subsystems. finding Duplication

awe_wave, npu401, and sequencer contain files
with identical names between two OS’s; therefore the
mapping of the two OS’'s for the subsystems could be
identified by analysis of file names. On the other hand,
‘rocket’ files have different names, r ocket. c and
I'p. C, so that the identification of the mapping is more
difficult.
In case of subsystem zlib, the situation is more
complex. Linux has two different files with the same
name. FreeBSD has 9 files.

Figure 7 shows a scatter plot among the files that have
any clonesin‘ zl i b’ files. Ain the graph shows, Linux
zlib.c,

all

has two files named and

drivers/net/zlib.c
arch/ ppc/ cof f boot/ zl i b. C. In FreeBSD system,

includes lines of
sys/ net/ zlib. cisequal to aconcatenation of eight
lib/libz/*.c tiles, as shown by Bin the graph. In
both operating systems (OS's), the largest z| i b. Cfiles
cont ain complete source for ‘Zl i b’ subsystem while the
other files contain part of the subsystem. The two largest

zl i b. c files are almost identical between Linux and

(2]

(3]

(4]

(6]

(7]

and Near-Duplication
in Large Software System”, Proc. IEEE WCRE ' 95,,
pp. 86-95 Jul. 1995
I. D. Baxter et. al. “Clone Detection Using Abstract
Syntax Trees’, Proc. ICSM '98 pp. 368-377,
Bethesda, Maryland, Nov. 1998.

M. G. Bracha et. al. “GJ Specification”.
http://cm.bell-labs.com/cm/cs/who/wadler/pizza/gj/
S. Ducasse et. a. “A Language Independent

Approach for Detecting Duplicated Code”, Proc.
IEEE ICSM ’99, pp. 109-118. Oxford, En gland. Aug.
1999.
D. Gusfield, Algorithms on Srings, Trees, and
Saquences pp. 89-180. Cambridge University Press
1997.

J. H. Johnson, “ldentifying Redundancy in Source

Code using Fingerprints”, Proc. of IBM CAS
CON 93 pp. 171-183, Toronto, Ontario. Oct. 1993.
B. Lagué et. a “Assessing the Benefits of

Incorporating Function Clone Detection in

Development Process”, Proc. IEEE ICSM '97, pp.
314-321, Bari, Italy. Oct. 1997.

a

[8] J. Mayland et. al. “Experiment on the Automatic
Detection of Function Clones in a Software System

Using Metrics”, Proc. IEEE IC3M *96, pp. 244-253,
Monterey, California, Nov. 1996.

