

2H-06 A Code Clone Detection Technique for Object-Oriented

Programming Languages and Its Empirical Evaluation

Toshihiro Kamiya†, Shinji Kusumoto†, and Katsuro Inoue†‡
†Graduate School of Engineering Science, Osaka University

‡Graduate School of Information Science, Nara Institute of Science and Technology
{kamiya, kusumoto, inoue}@ics.es.osaka-u.ac.jp

1 Introduction

A code clone is a code portion in source
files that is identical or similar to another.
Clones are introduced because of various
reasons such as reusing code by

‘cut-and-paste’ or intentionally repeating a
code portion for performance
enhancement[2]. Clones make the source
files very hard to modify consistently. For
example, assume that a software system has
several clone subsystems created by
duplication with slight modific ation. When a
fault is found in one subsystem, the engineer
has to carefully modify all other subsystems.
For a large and complex system, there are
many engineers who take care of each
subsystem, and modification becomes very
difficult. Various clone detection tools have
been proposed and implemented
[1][2][5][6][7], and a number of algorithms

for finding clones have been used for them,
such as line-by-line matching for an
abstracted source program [1], and similarity
detection for metrics values of function
bodies [7].

1.1 Definition of clone and related
terms

 A clone-relation is defined as an
equivalence relation (i.e., reflexive, transitive,

and symmetric relation) on code portions. A
clone-relation holds between two code
portions if (and only if) they are the same
sequences. For a given clone-relation, a pair
of code portions is called clone-pair if the

clone-relation holds between the portions.
An equivalence class of clone-relation is
called clone-class. That is, a clone-class is a
maximal set of code-portions in which a
clone-relation holds between any pair of
code-portions.

For example, suppose a file has the
following 12 tokens:
a x y z b x y z c x y d
We get the following three
clone-classes:
C1) a x y z b x y z c x y d
C2) a x y z b x y z c x y d
C3) a x y z b x y z c x y d

Note that sub-portions of code portions in

each clone-class also make clone-classes (e.g.
Each of C3 is a sub-portion of C1). In this
paper, however we are interested only in
maximal portions of clone-classes so only the
latter are discussed.

2 Proposed clone-code detection
technique

Our approach presented in this paper
concerns the following issues in clone

detection.
• Identification of structures

Our pilot experiment has revealed that
certain types of clones seem difficult to be
rewritten as a shared code even if they are
found as clones. Examples are a code portion
that begins at the middle of a function
definition and ends at the middle of another
function definition, and a code portion that is
a part of a table initialization code. For
effective clone analysis, our clone detection
technique automatically identifies and
separates each function definition and each
table definition code. For comparison, in [1],
table initialization values have to be removed

by hand, whereas in [7], only an entire
function definition can become a candidate
for clone.
• Regularization of identifiers

Recent programming languages such as
C++ and Java provide name space and/or
generic type. As a result, identifiers often
appear with attributive identifiers of name
space and/or template arguments. In order to
treat each complex name as an equivalent
simple name, the clone detecting process has
a subprocess to transform complex names
into simple form. If source files are
represented as a string of tokens, structures in
source files (such as sentences or function

definitions) are represented as substrings of
tokens, and they can be compared
token-by-token to identify clones.
Identifying structures and transforming
names require knowledge of syntax rules of
the programming languages. Therefore, the
implementation of the clone detecting
technique depends on the input. The detail of
clone detecting process is described in
Section 2.1.

2.1 Clone-detecting process

Clone detecting is a process in which the
input is source files and the output is
clone-pairs. The entire process of our
token-based clone detecting technique is
shown in Figure 1. The process consists of
four steps:
(1)Lexical analysis

Each line of source files is divided into
tokens corresponding to a lexical rule of
the programming language. The tokens of
all source files are concatenated into a

single token sequence, so that finding
clones in multiple files is performed in the
same way as single file analysis. At this
step, the white spaces between tokens are
removed from the token sequence, but the
spaces are sent to the formatting step to
reconstruct the original source files.

(2)Transformation

Lexical Analysis

Transformation

Detection

Clones on Transformed
Sequence

Formatting

Mapping from
Transformed
Sequence into

Original

Transformed
Token Sequence

Source files

Clone-pairs

Token Sequence

Figure 1. Clone detecting process

The token sequence is transformed by
subprocesses (2-1) and (2-2) described
below. At the same time, the mapping
information from the transformed token
sequence into the original token sequences
is stored for the later formatting step.

(2-1)Transformation by the transformation
rules

The token sequence is transformed, i.e.,
tokens are added, removed, or changed
based on the transformation rules. Table 1
shows the transformation rules for Java
source code(For C++ source code, another
transformation rules are adapted).

(2-2)Parameter replacement

After step 2-1 each identifier related to
types, variables, and constants is replaced
with a special token (this replacement is a
preprocess of the ‘parameterized match’
proposed in [1]). This replacement makes
code-portions in which variables are
renamed to be equivalent token sequences.

(3)Detection
From all the substrings on the transformed
token sequence, equivalent pairs are
detected as clone-pairs. Each clone-pair is
represented as a quadruplet (cp, cl, op, ol),
where cp and op are, respectively, the
position of the first and second portion,
and cl and ol are their respective lengths.

(4)Formatting
Each location of clone-pair is converted
into line numbers on the original source
files.

Here, a clone-relation is specified with the
transformation rules and the
parameter-replacement described above.
Other clone-relations are derived with a
subset of the transformation rules and
neglection of the parameter-replacement. In

the experiments described in Section 3, a
clone-relation with all the transformation
rules is compared to a clone-relation with a
subset of the transformation rules.

2.2 The implementation techniques of
tool CCFinder

Tool CCFinder was implemented in C++
and runs under Windows 95/NT 4.0 or later.
CCFinder extracts clone-pairs from C, C++
and Java source files. The tool receives the
paths of source files from the command-line
(or text files in which the paths are listed),
and writes the locations of the extracted
clone-pairs to the standard output. The

straightforward clone-detecting algorithm for
n tokens with matrix requires the time
complexity of O(n2). A data structure called

Table 1. Transformation rules for Java

Rule
RJ1 (PackageName '.')+ ClassName
→ ClassName
Here, PackageName is a word that
begins with a small letter and
ClassName is a capitalized word.

RJ2 NDotOrNew NClassName '('
→ NDotOrNew CalleeID '.'
NClassName '('
Here, NDotOrNew is a token except
'.' or 'new'. NClassName is an
uncapitalized word. CalleeID is a
token for an omitted callee.

RJ3 '=' '{' InitalizationList, '}'
→ '=' '{' UniqueID '}'
']' '{' InitalizationList, '}'
→ ']' '{' UniqueID '}'
Here, InitalizationList is a sequence
of Name, Number, String, Operators,
',', '(', ') ', '{', and '}'.

RJ4 Insert UniqueID at each end of the
top-level definitions and declaration.

suffix-tree is devised to detect clone-pairs
and it requires O(n) time complexity[4].
CCFinder employs a relaxed algorithm of
O(n log n) time using a suffix-tree, which is
not only easily implemented but also
practically efficient.

As the other optimization for large source
files, CCFinder uses a filtering for tokens:
The clone-detection algorithm distinguishes
"header" tokens. A header token is defined as

the token that can be the first token of code
portions of code-pairs. For example, on
detecting clone-pairs in C/C++ source files,
tokens, “#”, “{”, and “(” are header tokens
by themselves. Also, the successors of “:”,
“; ”, “)”, “}”, and ends-of-line of a

preprocessor directive become header tokens.
This filtering reduced the number of tokens
inserted into suffix-tree by factor 3 in either

C/C++ or Java source file, in the experiments
described in Section 4.

3 Experiment

The purpose of the experiment was to
evaluate our token-based clone-detecting
technique and the metrics. The target source
files have ‘industrial’ size and are widely
available. The person who performed the
analysis did not have preliminary knowledge
about the source files; consequently the

following results are obtained purely by the
analysis with the tool and metrics. In all the
following experiments, tool CCFinder was
executed on a PC with Pentium III 650MHz
and 1GB RAM.

3.1 4.1 Clones in a Java library, JDK

JDK 1.2.2 is a commonly used Java
library and the source files are publicly

0 500

500

0
400300200100

k LOC

400

300

200

100

k
L

O
C

A

B

Figure 2. Scatter plot of clones over 20 lines in JDK

available. Tool CCFinder has been applied to
all source files of JDK excluding examples
and demo programs, which are about 500k
lines in total, in 1648 files. It takes about 3

minutes for execution on the PC. Figure 2
shows a scatter plot of the clone-pairs having
at least 20 lines of code (LOC). Both the
vertical and horizontal axes represent lines of
source files. The files are sorted in
alphabetical order of the file paths, so files in
the same directory are also located near on
the axis. A clone-pair is shown as a diagonal
line segment. Only lines below the main
diagonal are plotted as mentioned in Section
2.1. In Figure 2, each line segment looks like
a dot because each clone-pair is small
(several decades lines) in comparison to the
scale of the axis. Most line segments are
located near the main diagonal line, and this

means that most of the clones occur within a
file or among source files at the near
directories.

Crowded clones marked A in the graph
correspond to 29 files of javax/ swing/
plaf/ multi/ *.java. These files are

very similar to each other and some of them
contain an identical class definition except
for their different parent classes. According

to the comments of the source files, a code
generator named AutoMulti creates the

files. To modify these files, the developer
should obtain the tool (the tool is not

included in JDK), edit, and apply it correctly.
If the developer does not use the tool, he/she
has to update all the files carefully by hand.
As the example shows, the modific ation of
clones needs extra work. In this case, these
clones are easily rewritten with a shared code
if the programming language would support
generic types.

The longest clone (349 lines) is found
within java/ util/ Arrays.java
(marked B in Figure 2). Methods named
“sort” have 18 variations for signatures

(number and types of arguments), and they
use identical algorithm/routine for sorting.

3.2 Evaluation of transformation rules

for JDK

In Section 2.1, we also proposed the
transformation rules for Java. To evaluate
effectiveness of the transformation rules, we
have applied CCFinder with some of their
transformation rules disabled. Figure 3
shows the histogram of detected clone-pairs
when some of rules are applied. PR+1234

0
200
400
600

800
1000
1200
1400

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

10
0.

.

Length of clones (LOC)

O
cc

ur
en

ce
PR+1234

PR+124

PR+34

Exact Match

Figure 3. Occurences against length of clone-pairs in JDK

means that the parameter-replacement and all
rules (RJ1, RJ2, RJ3, and RJ4) are applied
(i.e. original CCFinder). Exact Match means
that no parameter-replacement or no
transformation is applied. This figure shows
that the longer the clone length is, the smaller
its occurrence becomes. A noticeable peak
around 80 LOC is a set of clone-pairs found
in files generated by AutoMulti, which

cannot be detected by Exact Match by the
reason mentioned above. In this experiment,
the clone-pairs found by PR+1234 are much
fewer than with PR+124. This means that
rule RJ3 removes many table initializ ation
codes.

The case PR+1234 extracted 2111
clone-pairs and PR+34 extracted 2093
clone-pairs. There are several clone-pairs that
can be detected by introducing RJ1 and RJ2.
In the case of Exact Match, only a small
number of clone-pairs are found. The “exact”
clone-pairs are obvious candidates to be
rewritten as a shared code. However, our
transformation and parameter replacement
approach finds more subtle clone-pairs so
that the chances to rewrite and reorganize
overall structures of software systems
become higher.

4 Conclusion

In this paper, we presented a clone detecting

technique with transformation rules and a
token-based comparison. The technique is
implemented and applied to a library of JDK
in the experiment, and successfully extracted
code-clones.

References

[1] B. S. Baker, “On finding Duplic ation and
Near-Duplication in Large Software
System”, Proc. IEEE WCRE ’95., pp.

86-95 Jul. 1995
[2] I. D. Baxter et. al. “Clone Detection

Using Abstract Syntax Trees”, Proc.
ICSM ’98, pp. 368-377, Bethesda,
Maryland, Nov. 1998.

[3] S. Ducasse et. al. “A Language
Independent Approach for Detecting
Duplicated Code”, Proc. IEEE ICSM ’99,
pp. 109-118. Oxford, England. Aug.
1999.

[4] D. Gusfield, Algorithms on Strings,
Trees, and Sequences, pp. 89-180.
Cambridge University Press 1997.

[5] J. H. Johnson, “Identifying Redundancy
in Source Code using Fingerprints”,

Proc. of IBM CAS CON ’93, pp. 171-183,
Toronto, Ontario. Oct. 1993.

[6] B. Laguë et. al “Assessing the Benefits
of Incorporating Function Clone
Detection in a Development Process”,
Proc. IEEE ICSM ’97, pp. 314-321, Bari,
Italy. Oct. 1997.

[7] J. Mayland et. al. “Experiment on the
Automatic Detection of Function Clones
in a Software System Using Metrics”,
Proc. IEEE ICSM ’96, pp. 244-253,
Monterey, California, Nov. 1996.

