
A Slicing Method for Object-Oriented Programs
Using Lightweight Dynamic Information

Fumiaki OHATA Kouya HIROSE Masato FUJII
Katsuro INOUE

Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

{oohata, k-hirose, m-fujii, inoue}@ics.es.osaka-u.ac.jp

Abstract

Program slicing has been used for efficient program de-
bugging activities. Program slice is computed by analyzing
dependence relations between program statements. We can
divide dependence analyses into two categories, static and
dynamic; the former requires little analysis costs, but the
resulting slices are large. The latter has opposite charac-
ters.

In this paper, we propose a program slicing method
for Object-Oriented programs and evaluate its effective-
ness with some JAVA programs. Since Object-Oriented lan-
guages have many dynamically determined elements, static
analysis could not compute practical analysis results. Our
method uses static and dynamic analyses appropriately and
computes accurate slices with lightweight costs.

1. Introduction

Program slicing is very promising approach for pro-
gram debugging, testing, understanding, merging, and so
on [3, 4, 7, 9, 17]. Given a source program p, program slice
is a collection of statements possibly affecting the value of
slicing criterion (a pair <s, v>, s is a statement in p and v
is a variable defined or referred at s). Also, we call program
slice simply slice. Slice computation is based on depen-
dence analysis between program statements in a source pro-
gram, and dependence analysis consists of two components,
data dependence analysis and control dependence analysis.
Many slice computation algorithms have been already pro-
posed, and they are roughly divided into two categories,
static slicing[17] and dynamic slicing[1]. The former an-
alyzes all dependence relations statically, in other words,
without program execution. The latter analyzes those re-

lations dynamically. Since dynamic slicing focuses on the
specific execution path and can grasp the values of all re-
ferred and defined variables on each execution point, its
analysis precision is better than that of static slicing.

In existing software development environments, not only
procedural languages like C and Pascal but also Object-
Oriented languages like JAVA[8] and C++[15] become to
be used. Since Object-Oriented languages have new con-
cepts such as class, inheritance, dynamic binding and poly-
morphism[5], we cannot adopt existing slicing methods for
procedural programs to Object-Oriented programs. Larsen
et al and Zhao proposed static and dynamic slicing methods
for Object-Oriented programs, respectively[11, 18]; how-
ever, since Object-Oriented languages have many dynam-
ically determined elements, static slicing cannot compute
practical (or precise) analysis results. On the other hand,
since dynamic slicing needs to record execution trace, it re-
quires too much computation time and memory space.

In this paper, we will adopt an intermediate slicing
method between static slicing and dynamic slicing named
Dependence-Cache (DC) slicing[2] to Object-Oriented pro-
grams. DC slicing method uses dynamic data dependence
analysis and static control dependence analysis, which com-
putes more precise analysis results than static slicing and
needs less analysis costs than dynamic slicing. We have
implemented this method as a slicing system, whose target
language is JAVA.

The structure of this paper is as follows:
In Section 2, we will briefly overview program slice and

DC slice. In Section 3, we propose extended DC slice for
Object-Oriented programs. In Section 4 and 5, we evaluate
the proposed method using our implementation with some
JAVA programs, and discuss experimental results, respec-
tively. In Section 6, we conclude our discussion with a few
remarks regarding plans for future work.

2. Dependence-Cache (DC) Slice

In this section, we will briefly explain the computation
process of program slice, and introduce DC slice on which
our proposed method is based.

2.1. Program Slice

[Slice Computation Process]
In general, slice computation process consists of the fol-

lowing four phases.

Phase 1: Defined and Referred Variables Extraction
We identify defined variables and referred ones for
each statement in a source program.

Phase 2: Data Dependence Analysis and Control Depen-
dence Analysis
We extract data dependence relations and control de-
pendence relations between program statements.

Phase 3: Program Dependence Graph Construction
We construct Program Dependence Graph (PDG) us-
ing dependence relations extracted on Phase 2.

Phase 4: Slice Extraction
We compute the slice for the slicing criterion speci-
fied by the user. In order to compute the slice for a
slicing criterion <s, v>, PDG nodes are traversed in
reverse order from Vs (node Vs denotes statement s.).
The corresponding statements to the reachable nodes
during this traversal form the slice for <s, v>.

[Dependence Relation]
Consider statements s1 and s2 in a source program p.

When all of the following conditions are satisfied, we say
that a control dependence (CD), from statement s1 to state-
ment s2 exists:

1. s1 is a conditional predicate, and

2. the result of s1 determines whether s2 is executed or
not.

This relation is written by CD(s1, s2) or s1 �s2 . When
the following conditions are all satisfied, we say that a data
dependence (DD), from statement s1 to statement s2 by a
variable v exists:

1. s1 defines v, and

2. s2 refers v, and

3. at least one execution path from s1 to s2 without re-
defining v exists (we call this condition reachable).

1: b = 5;
2: a = b + b;
3: if (a > 0) {
4: c = a;
5: d = b;

}

b = 5;

if(a > 0)

c = a;

d = b;

a = b + b;

b

a

b

a

DD
CD

Figure 1. Sample C program and its PDG

b = 5;

if(a > 0)

c = a;

a = b + b;

b

a

b

a

d = b;

√
1: b = 5;√
2: a = b + b;√
3: if (a > 0) {
4: c = a;√
5: d = b;

}

Figure 2. Slice for <5, b> on Figure 1

This relation is denoted by DD(s1 , v, s2) or s1 �v s2.

[Program Dependence Graph (PDG)]
A PDG is a directed graph whose nodes represent state-

ments in a source program, and whose edges denote de-
pendence relations (DD or CD) between statements. A
DD edge is labeled with a variable name “a” if it denotes
DD(· · ·, a, · · ·). An edge drawn from node Vs to node Vt

represents that “node Vt depends on node Vs”.

[Example]
Figure 1 shows a sample C program and its PDG (Phase

1 – 3), and Figure 2 shows the slice (“
√

”-marked state-
ments) for <5, b> on Figure 1 (Phase 4).

2.2. Dependence-Cache (DC) Slice

When we statically analyze source programs that have
array variables, too many DD relations might be extracted.
This is because it is difficult for us to determine the values
of array indices without program execution if they are not
constant values but variables — array indices problem.

Also, in the case of analyzing source programs that have
pointer variables, aliases (an expression refers to the mem-
ory location which is also referred to by another expression)
resulting from pointer variables might generate implicit DD
relations. In order to analyze such relations, pointer analy-
sis should be needed. Many researchers have already pro-
posed static pointer analysis methods[6, 14, 13]; however, it
is difficult for static analyses to generate practical analysis
results — pointer alias problem.

DC slicing uses dynamic DD analysis, so that it can re-
solve above array indices problem and pointer alias prob-
lem. Since dynamic DD analysis is based on program ex-
ecution, we can extract the values of all variables on each
execution point. On the other hand, since DC slicing uses

static CD analysis, we need not record execution trace and
its analysis cost is much less then that of dynamic slicing
(dynamic slicing uses dynamic DD and CD analyses).

[DC Slice Computation Process]
Computation process for DC slice is as follows.

Phase 1: Defined and Referred Variables Extraction

Phase 2: Static Control Dependence Analysis and PDG
Construction
We extract CD relations statically between statements,
and construct PDG that has CD edges only.

Phase 3: Dynamic Data Dependence Analysis and PDG
Edge Addition
We execute a source program. On program execution,
we extract DD relations dynamically between state-
ments using the following method, and add DD edges
to PDG.

Phase 4: Slice Extraction

[Dynamic Data Dependence Analysis]
When variable v is referred at statement s, dynamic DD

relation about v from t to s can be extracted if we can
resolve v’s defined statement t. We create a table named
Cache Table that contains all variables in a source program
and most-recently defined statement information for each
variable. When variable v is referred, we extract dynamic
DD relation about v using the cache table. The following
shows the extraction algorithm for dynamic DD relations.

Step 1: We create cache C(v) for each variable v in a
source program.
C(v) represents the statement which most-recently de-
fined v.

Step 2: We execute a source program and proceed the fol-
lowing methods on each execution point.
On executing statement s,

• when variable v is referred, we draw an DD edge
from the node corresponding to C(v) to the node
corresponding to s about v, or

• when variable v is defined, we update C(v) to s.

[Comparison with Static Slice and Dynamic Slice]
Table 1 shows differences among static slice and dy-

namic slice and DC slice.
As an example, Figure 3 shows static, dynamic and DC

slices for slicing criterion <23, d>; for dynamic and DC
slices, we passed integer value “2” to scanf() statement on
program execution. “

√
” represents a sliced statement, and

“S”, “D” and “DC” represents static, dynamic and DC slices,
respectively. In this case, dynamic slicing and DC slicing
compute the same slices.

Table 1. Comparison with static slice and dy-
namic slice

Static Slice Dynamic Slice DC Slice
CD static dynamic static
DD static dynamic dynamic

PDG node statement execution point statement

3. Object-Oriented
Dependence-Cache (OODC) Slice

In this section, we will propose Object-Oriented
Dependence-Cache (OODC) Slice, which is an extended
DC slice for Object-Oriented programs.

[Analysis Policy]
Object-Oriented languages have the following charac-

ters.

Chr.1: Object is a collection of attributes and methods that
operate attributes.

Chr.2: Dynamic binding feature exists.
Dynamic binding – based on the class type of an object,
an appropriate override method is selected and invoked

For Chr.1, at the same time that a variable is created,
the corresponding cache is also created. Using this rule,
we can analyze each object independently even if they are
instantiated from the same class.

For Chr.2, static analysis cannot always identify invoked
methods without program execution (it is difficult for static
pointer or alias analysis to identify the unique class type of
each object that is referred to by pointer or reference vari-
ables; in general, two or more candidates exist). OODC
slice also dynamically analyses CD relations about method
invocation for more precise analysis results.

[Algorithm]
Figure 4 shows OODC slicing algorithm.
On Step 1, we construct PDG with no edge. On Step 2,

we statically

• extract CD relations except those about method invo-
cation, and add CD edges to PDG.

On Step 3, we dynamically

• extract DD relations and add DD edges to PDG, and

• extract CD relations about method invocation and add
CD edge to PDG,

respectively; algorithm for dynamic DD analysis is shown
in Figure 5.

S D DC√ √ √
1: #include<stdio.h>√ √ √
2: #defineSIZE 5

√ √ √
3: int cube(int x) {√ √ √
4: return (x * x * x);√ √ √
5: }

√ √ √
6: void main(void)√ √ √
7: {√ √ √
8: int a[SIZE];√ √ √
9: int b[SIZE];√ √ √
10: int c, d, i;

√
11: a[0] = 0;√
12: a[1] = −1;√ √ √
13: a[2] = 2;√
14: a[3] = −3;√
15: a[4] = 4;

√ √ √
16: for (i = 0; i < SIZE; i++) {√ √ √
17: b[i] = a[i];√ √ √
18: }

√ √ √
19: scanf(”%d”, &c);√ √ √
20: d = cube(b[c]);√ √ √
21: if (d < 0)√
22: d = −1 * d;√ √ √
23: printf (”%d”, d);√ √ √
24: }

Figure 3. Static, Dynamic and DC slices for
slicing criterion <23, d>

On Step 4 – 6, we start PDG traversal in reverse order
from the slicing criterion node, so that OODC slice would
be extracted.

[Example]
Figure 6 shows a sample program and OODC slice (“

√
”-

marked statements) for slicing criterion <16, c>. Since
OODC slice needs program execution, we have executed
this program as follows1:

% javac Main.java

% java Main -1

Table 2 shows a cache history for Figure 6. Cache C(v)
represents a statement on which variable v is defined using
assignment expressions, parameter passing, and so on. “-”
means “not defined yet”. For example, at statement 16, vari-
able c is referred and C(c) is “14”, so that we can extract
DD(14, c, 16).

On program execution, we need not to record all cache
history. In order to extract dynamic DD relations, we have
only to focus on the values of caches at the executed state-

1We have passed “−1” to the first parameter.

INPUTS

p: Program

I: Inputs for p’s execution

<sc, vc>: Slicing criterion

OUTPUTS

PDG(p,I) : PDG for (p, I)

S: OODC slice for <sc , vc>

ALGORITHM

Step 1: [Create each PDG(p,I)’s node V (s) for statement s in
p]

Step 2: foreachs ∈ p do
if s is a conditional (or loop) statement then

s1 := s’s conditional expression
s2 := s’s branch statement (or loop body)
[Add “V (s1) �V (s2)” to PDG(p,I)]

fi
done

Step 3: until p with I terminates do
s := next execution statement
[Analyze dynamic DD relations for s (see Figure 5)]
if s is a method invocation statement then

C := V (s)
elif s is a method declare statement then

[Add “C �V (s)” to PDG(p,I)]
fi
[Execute s]

done

Step 4: S := {V (sc)}, N := φ

Step 5: N := { n | n �v sc } ∪ { m | m �sc }
Step 6: whileN �= φ do

{n} ∪ N ′ := N
S := S ∪ { n }
N = N ′ ∪ { m | m /∈ S ∧

(∃w(m �w n) ∨ m �n)}
done

Figure 4. Algorithm for OODC slicing

ment. About implementation of caches, we will describe
later.

4. Implementation

We have implemented the proposed method as a slicing
system for JAVA, which consists of two components, analy-
sis libraries and Graphical User Interface (GUI). They are
also written in JAVA.

Figure 7(a) shows the design of our implementation. In
Figure 7(a), Objects that have gray background represent
the components we have developed.

[Implementation of Analysis Libraries]
We have adopted preprocessor style for implementation

of analysis libraries. Preprocessor style means that be-
fore program execution, we add some JAVA codes to target

INPUTS

p: Program

I: Inputs for p’s execution

s: Statement

C: Cache set

PDG(p,I) : PDG for (p, I)

OUTPUTS

PDG(p,I) : PDG for (p, I)

C: Cache set

ALGORITHM
if variable v is declared at s then

[Create C(v)]
C(v) := V (s)
C := C ∪ { C(v) }

elif variable v is defined at s then
C(v) := V (s)

elif variable v is referred at s then
[Add “C(v) �v V (s)” to PDG(p,I)]

fi

Figure 5. Algorithm for dynamic DD analysis

source program p, and on program execution, such codes
dynamically analyze dependence relations between state-
ments in p.

Interpreter style would also be a candidate for their im-
plementation; however, we have to customize an existing
JAVA Virtual Machine (JavaVM) or develop a JAVA inter-
preter, and too much execution time would be required.

Since it is easy to develop a preprocessing
environment[10] and we can use existing Just-in-Time
(JIT) compilers to optimize preprocessed programs,
preprocessor style would be a more promising approach.

[Implementation of Caches]
We have used the following rules to implement caches:

• On each class, we consider cache C(v) for instance
variable v as an instance variable.

• On each class, we consider cache C(v) for class vari-
able v as a class variable.

• On each scope, we consider cache C(v) for local vari-
able v as a local variable.

Using above rules, when two objects a and b are instanti-
ated from the same class, we can independently trace caches
C(a.v) and C(b.v) for instance variables a.v and b.v. When
instance variable v is inherited, C(v) is also inherited.

[Implementation of Graphical User Interface (GUI)]
GUI has the following features:

• Edit source programs

√
1: import java.util.*;√
2: import java.io.*;
3:√
4: classMain {√
5: static Base b1;√
6: public static void main(String[] args)

throws IOException {√
7: int c;
8: Base b2 = new Derived();√
9: int i = Integer.parseInt(args[0]);√
10: if (i < 0)√
11: b1 = newBase();
12: else
13: b1 = newDerived();√
14: c = b1.m(i);
15: b2.set(c);√
16: System.out.println(c);
17: System.out.println(b1.a);√
18: }√
19: }√
20:√
21: classBase {√
22: public int a = 10;√
23: public int m(int i) {√
24: return (a − i);√
25: }
26: public void set(int i) {
27: a = i;
28: }√
29: }
30:
31: classDerived extendsBase {
32: public int m(int i) {
33: return (a + i);
34: }
35: }

Figure 6. OODC slice for slicing criterion <16,
c>

• Control analysis libraries (PDG construction, slice
computation, program execution, and so on)

• Show slice results.

Figure 7(b) shows a screenshot of GUI part.
The following shows an example of slice computation

using our GUI.

1. open JAVA source program p :
Open File List Window shows p’s name,
Text Window shows the source text of p, and File
Information Window shows p’s status.

2. translate p to preprocessed JAVA source program p′ :
p′ contains additional JAVA codes in order to analyze
dependence relations dynamically between statements
in p.

3. construct PDGp for p:
PDGp has CD edges only (all DD edges and CD

Program

Java
Compiler

Java
Virtual

Machine

Slice

PDG

GUI (Graphical User Interface)

Program +
Analysis Code

[Source]

Program +
Analysis Code

[Bytecode]

Preprocessor

Slicing Criterion

Slicer

Analysis Libraries

(a) Design (b) Screenshot of GUI

Figure 7. Slicing system for JAVA

edges about method invocation will be added on the
next step).

4. execute p′ :
We collect dynamic DD relations and add the corre-
sponding DD edges to PDGp. Also, we collect CD
relations about method invocation and add the corre-
sponding CD edges to PDGp. Console & Sta-
tus Window shows p′’s execution results and some
debugging messages.

5. slice computation:
The user specifies a slicing criterion, and we start PDG
traversal in reverse order from the node correspond-
ing to the slicing criterion. Statements in the result-
ing slice are highlighted with colored background on
Text Window(s). In the case of Figure 7(a), they
are distributed on two source files.

5. Evaluation

5.1. Metrics

Using our slicing system, we have evaluated the pro-
posed method. Table 3 shows the features of sample pro-
grams we have used; P1 loads some data from text files
and generates HTML files, P2 is a paint application using a
mouse.

Also, we have used the following metrics:

Slice Size: Comparison with static slice and dynamic slice
[Table 4]
Since we have implemented OODC slicing method
only, we compute static slice and dynamic slice by
hand.

Execution Time: Comparison between before and after
preprocessing (adding analysis codes) [Table 5]
Since P2 is a dialogue application, we could not record
its execution time.

Memory Use: Comparison between before and after pre-
processing [Table 6]

Table 2. Cache history for Figure 6
St. C(b1) C(b2) C(c) C(i) C(b1.a) C(b2.a) C(args) C(args[0])
4 - - - - - - - -
5 5 - - - - - - -
6 5 - - - - - 6 6
7 5 - 7 - - - 6 6
8 5 8 7 - - - 6 6

31 5 8 7 - - - 6 6
21 5 8 7 - - - 6 6
22 5 8 7 - - 22 6 6
9 5 8 7 9 - 22 6 6

10 5 8 7 9 - 22 6 6
11 11 8 7 9 - 22 6 6
21 11 8 7 9 - 22 6 6
22 11 8 7 9 22 22 6 6
14 11 8 14 9 22 22 6 6
23 11 8 14 9 22 22 6 6
24 11 8 14 9 22 22 6 6
15 11 8 14 9 22 22 6 6
26 11 8 14 9 22 22 6 6
27 11 8 14 9 22 27 6 6
16 11 8 14 9 22 27 6 6
17 11 8 14 9 22 27 6 6

Table 3. Target programs
Program Classes Override Methods Lines

P1 2 0 223
P2 3 7 226

5.2. Discussions

The size of OODC slice is 20–70% as large as that of
static slice, so that we can say that OODC slice is more pre-
cise than static slice [Table 4]. Since target programs are
small, their precision difference are also small; however,
we guess that precision difference would become wider
for larger programs on which class inheritance and method
overriding occur frequently.

On the other hand, additional costs for dynamic depen-
dence analyses are small and practical [Table 5, Table 6].

Since we have not implemented dynamic slicing method
and static slicing method for JAVA yet, we could not com-
pare analysis costs among them; however, about analysis
costs and precision, the following characteristics had been

Table 4. Slice size [lines (slice/total)]
Slicing Criterion Static Dynamic OODC

P1(1) 26(11.7%) 15(6.7%) 15(6.7%)

P1(2) 83(37.2%) 27(12.1%) 27(12.1%)

P1(3) 37(16.6%) 24(10.8%) 24(10.8%)

P2(1) 48(21.2%) 14(6.2%) 14(6.2%)

P2(2) 45(19.9%) 12(5.3%) 12(5.3%)

P2(3) 25(11.1%) 17(7.5%) 17(7.5%)

Table 5. Execution time [ms]
Program Before(TA) After(TB) TB / TA

P1 138 582 4.22
Celeron-500MHz(128MB) / Windows98SE /

JDK 1.3.0 01(HotSpot)

Table 6. Memory use [KByte]
Program Before(TA) After(TB) TB / TA

P1 478 645 1.35
P2 836 920 1.10

indicated by experimental results for programs written in
procedural language Pascal[2]. These characteristics would
be also satisfied on JAVA programs.

Analysis Time (Costs): Dynamic � DC > Static

Slice Size (Precision):Static ≥ DC ≥ Dynamic

5.3. Related Works

Larsen et al and Liang et al proposed static slicing
methods for Object-Oriented programs[11, 12]. Since static
analysis need not program execution, analysis costs might
be small; however, Object-Oriented languages have many
dynamically determined elements, such as polymorphism,
dynamic binding, exceptions, and so on. Furthermore, we
also have to analyze alias relations with pointer variables
and reference variables for C++ and JAVA programs, respec-
tively; alias relations should be resolved before DD analy-
sis. Although Steensgaard and Tonella et al proposed static
alias analysis methods[14, 16], it is difficult for us to com-
pute practical analysis results statically.

Zhao proposed a dynamic slicing method for Object-
Oriented programs[18]. Dynamic slicing methods would
generate more practical results than static slicing methods;
however, since it requires too much computation time and
memory space to record execution trace, we cannot analyze
large programs dynamically. Also, [18]’s method is pro-
posed only and have not been implemented yet.

Asida et al proposed DC slice that was originally named
Dynamic Data Dependence (D3) slice, and they imple-
mented a slice system for Pascal[2]. Our slicing method is
based on their work; however, [2] focuses on ordinary pro-
cedural languages only, and their implementation is not for
practical use, but a prototype only. Our proposed method
takes Object-Oriented languages into account, and we have
implemented a slicing system for JAVA that is used by many
software developers.

6. Summary and Future Work

In this paper, we have proposed a slicing method
for Object-Oriented programs, which is an intermediate
method between static slicing and dynamic slicing. Since
proposed method dynamically analyzes all DD relations
and CD relations about method invocations, its analysis pre-
cision is better than that of static slicing. On the other hand,
since it statically analyzes CD relations except method invo-
cations, its analysis costs is less than that of dynamic slic-
ing. Also, we have implemented our method as a slicing
system for JAVA, and we have evaluated its effectiveness.

Since JAVA has other dynamically determined elements
such as multi-thread and exception, we are planning to an-
alyze CD relations about them dynamically. Also, we are
going to evaluate our method for large programs.

Acknowledgments

This work is partly supported by Ministry of Education,
Science, Sports, and Culture, grant-in-aid for priority ar-
eas “Principles for Constructing Evolutionary Software”,
#10139223.

References

[1] Agrawal, H., and Horgan, J. : “Dynamic Program
Slicing”, SIGPLAN Notices, vol. 25, no. 6, pp. 246–
256, 1990.

[2] Ashida, Y., Ohata, F. and Inoue, K. : “Slicing Meth-
ods Using Static and Dynamic Information”, Proceed-
ings of the 6th Asia Pacific Software Engineering Con-
ference, pp. 344–350, Takamatsu, Japan, December
1999.

[3] Beck, J. and D, Eichmann. : “Program and interface
slicing for reverse engineering”, Proceedings of the
15th International Conference on Software Engineer-
ing, pp. 509–518, Baltimore, Maryland, May 1993.

[4] Bates, S. and Horwitz, S. : “Incremental program
testing using program dependence graphs”, Confer-
ence Record of the Twentieth ACM Symposium on
Principles of Programming Languages, pp. 384–396,
Charleston, South Carolina, January 1993.

[5] Booch, G. : “Object-Oriented Design with Applica-
tion”, The Benjamin/Cummings Publishing Company,
Inc, 1991.

[6] Enami, M., Ghiya, R., and Hendren, L. J. : “Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers”, Proceedings of the ACM

SIGPLAN’94 Conference on Programming Language
Design and Implementation, pp. 242–256, Orlando,
Florida, June 1994.

[7] Gallagher, K. B. and Lyle, J. R. : “Using program
slicing in software maintenance”, IEEE Transactions
on Software Engineering, vol. 17, no. 8, pp. 751–761,
1991.

[8] Gosling, J., Joy, B. and Steele, G. : “The JAVATM Lan-
guage Specification”, Addison-Weseley, 1996.

[9] Horwitz, S. and Reps, T. : “The Use of Program
Dependence Graphs in Software Engineering”, Pro-
ceedings of the 14th International Conference on Soft-
ware Engineering, pp. 392–411, Melbourne, Aus-
tralia, May 1992.

[10] “JavaCC”,
http://www.webgain.com/products/
metamata/java doc.html

[11] Larsen L. D. and Harrold, M. J. : “Slicing Object-
Oriented Software”, Proceedings of the 18th Interna-
tional Conference on Software Engineering, pp. 495–
505, Berlin, Germany, March 1996.

[12] Liang, D. and Harrold, M. J. : “Slicing Objects Us-
ing System Dependence Graphs”, Proceedings of the
IEEE International Conference on Software Mainte-
nance, pp. 358–367, Bethesda, Maryland, November
1998.

[13] Shapiro, M. and Horwitz, S. : “Fast and accurate flow-
insensitive point-to analysis”, Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 1–14, Paris, France, Jan-
uary 1997.

[14] Steensgaard, B. : “Points-to analysis in almost lin-
ear time”, Technical Report MSR-TR-95-08, Microsoft
Research, 1995

[15] Stroustrup, B. : “The C++ Programming Language
(Third edition)”, Addison-Wesley, 1997.

[16] Tonella, P., Antoniol, G., Fiutem, R., and Merlo, E.
: “Flow Insensitive C++ Pointers and Polymorphism
Analysis and its Application to Slicing”, Proceedings
of the 19th International Conference on Software En-
gineering, Boston, Massachusetts, pp. 433-443, May
1997.

[17] Weiser, M. : “Program Slicing”, Proceedings of the
Fifth International Conference on Software Engineer-
ing, pp. 439–449, San Diego, California, March 1981.

[18] Zhao, J. : “Dynamic Slicing of Object-Oriented
Programs”, Technical Report SE-98-119, Information
Processing Society of Japan, pp. 17–23, May 1998.

