A Slicing Method for Object-Oriented Programs
Using Lightweight Dynamic Information

Fumiaki OHATA

Kouya HIROSE

Masato FUJII

Katsuro INOUE

Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

{oohata, k-hirose, m-fujii, inoue} @ics.es.osaka-u.ac.jp

Abstract

Program slicing has been used for efficient program de-
bugging activities. Program dlice is computed by analyzing
dependence relations between program statements. e can
divide dependence analyses into two categories, static and
dynamic; the former requires little analysis costs, but the
resulting slices are large. The latter has opposite charac-
ters.

In this paper, we propose a program dlicing method
for Object-Oriented programs and evaluate its effective-
ness with some JAVA programs. Since Object-Oriented lan-
guages have many dynamically determined elements, static
analysis could not compute practical analysis results. Our
method uses static and dynamic analyses appropriately and
computes accurate slices with lightweight costs.

1. Introduction

Program dlicing is very promising approach for pro-
gram debugging, testing, understanding, merging, and so
on|[3,4,7,9,17]. Given asource program p, programslice
isacollection of statements possibly affecting the value of
dicing criterion (apair <s, v>, s isastatement inp and v
isavariable defined or referred at s). Also, we call program
dlice simply dlice. Slice computation is based on depen-
dence analysis between program statementsin a source pro-
gram, and dependence analysis consists of two components,
data dependence analysis and control dependence analysis.
Many slice computation algorithms have been aready pro-
posed, and they are roughly divided into two categories,
gtatic slicing[17] and dynamic dlicing[1]. The former an-
alyzes all dependence relations statically, in other words,
without program execution. The latter analyzes those re-

lations dynamically. Since dynamic slicing focuses on the
specific execution path and can grasp the values of all re-
ferred and defined variables on each execution point, its
analysis precision is better than that of static slicing.

In existing software devel opment environments, not only
procedural languages like C and Pascal but also Object-
Oriented languages like JAVA[8] and C++[15] become to
be used. Since Object-Oriented languages have new con-
cepts such as class, inheritance, dynamic binding and poly-
morphism[5], we cannot adopt existing slicing methods for
procedural programs to Object-Oriented programs. Larsen
et al and Zhao proposed static and dynamic slicing methods
for Object-Oriented programs, respectively[11, 18]; how-
ever, since Object-Oriented languages have many dynam-
icaly determined elements, static slicing cannot compute
practical (or precise) analysis results. On the other hand,
since dynamic slicing needs to record execution trace, it re-
quires too much computation time and memory space.

In this paper, we will adopt an intermediate slicing
method between static slicing and dynamic slicing named
Dependence-Cache (DC) dlicing[2] to Object-Oriented pro-
grams. DC dlicing method uses dynamic data dependence
analysisand static control dependence analysis, which com-
putes more precise analysis results than static slicing and
needs less analysis costs than dynamic dlicing. We have
implemented this method as a slicing system, whose target
language is JAVA.

The structure of this paper is as follows:

In Section 2, we will briefly overview program slice and
DC dlice. In Section 3, we propose extended DC dlice for
Object-Oriented programs. In Section 4 and 5, we evaluate
the proposed method using our implementation with some
JAvA programs, and discuss experimental results, respec-
tively. In Section 6, we conclude our discussion with afew
remarks regarding plans for future work.

2. Dependence-Cache (DC) Slice

In this section, we will briefly explain the computation
process of program slice, and introduce DC dlice on which
our proposed method is based.

2.1. Program Slice

[Slice Computation Procespk
In general, slice computation process consists of the fol-
lowing four phases.

Phase 1: Defined and Referred Variables Extraction
We identify defined variables and referred ones for
each statement in a source program.

Phase 2: Data Dependence Analysis and Control Depen-
dence Analysis
We extract data dependence relations and control de-
pendence relations between program statements.

Phase 3: Program Dependence Graph Construction
We construct Program Dependence Graph (PDG) us-
ing dependence relations extracted on Phase 2.

Phase 4: Slice Extraction
We compute the dlice for the dlicing criterion speci-
fied by the user. In order to compute the dlice for a
dicing criterion <s, v>, PDG nodes are traversed in
reverse order from V; (node V, denotes statement s.).
The corresponding statements to the reachable nodes
during thistraversal form the slicefor <s, v>.

[Dependence Relatioh

Consider statements s; and s, in a source program p.
When al of the following conditions are satisfied, we say
that a control dependence (CD), from statement s; to state-
ment so exists:

1. sy isaconditional predicate, and

2. the result of s; determines whether s5 is executed or
not.

Thisrelation iswritten by C'D(sy, s2) or 51 -—--+s2. When
the following conditions are all satisfied, we say that adata
dependence (DD), from statement s; to statement s, by a
variable v exists:

1. s; defineswv, and
2. so refersov, and

3. at least one execution path from s; to s, without re-
defining v exists (we call this condition reachable).

b=5;

a=b+b;

if(a> 0) {
c=g
d=b;

v 1. b=5
v 2. a=b+b;
Vo 3 if(@a>0){
4 c=g
v & d=f
}

Figure 2. Slice for <5, b> on Figure 1

Thisrelation is denoted by DD(s1, v, $2) OF 51 —2» 5.

[Program Dependence Graph (PDG)

A PDG is adirected graph whose nodes represent state-
ments in a source program, and whose edges denote de-
pendence relations (DD or CD) between statements. A
DD edge is labeled with a variable name “«” if it denotes
DD(--+, a, ---). An edge drawn from node V; to node V;
represents that “node V; depends on node V"

[Example]

Figure 1 shows asample C program and its PDG (Phase
1 - 3, and Figure 2 shows the dlice (“+/”-marked state-
ments) for <5, b> on Figure 1 (Phase 3.

2.2. Dependence-Cache (DC) Slice

When we statically analyze source programs that have
array variables, too many DD relations might be extracted.
Thisis because it is difficult for us to determine the values
of array indices without program execution if they are not
constant values but variables — array indices problem.

Also, in the case of analyzing source programs that have
pointer variables, aliases (an expression refers to the mem-
ory location which isalso referred to by another expression)
resulting from pointer variables might generateimplicit DD
relations. In order to analyze such relations, pointer analy-
sis should be needed. Many researchers have aready pro-
posed static pointer analysis methodg[6, 14, 13]; however, it
is difficult for static analyses to generate practical analysis
results — pointer alias problem.

DC dlicing uses dynamic DD analysis, so that it can re-
solve above array indices problem and pointer alias prob-
lem. Since dynamic DD analysisis based on program ex-
ecution, we can extract the values of all variables on each
execution point. On the other hand, since DC dlicing uses

static CD analysis, we need not record execution trace and
its analysis cost is much less then that of dynamic slicing
(dynamic dlicing uses dynamic DD and CD analyses).

[DC Slice Computation Procesp
Computation process for DC dliceisasfollows.

Phase 1: Defined and Referred Variables Extraction

Phase 2: Static Control Dependence Anaysis and PDG
Construction
We extract CD relations statically between statements,
and construct PDG that has CD edges only.

Phase 3: Dynamic Data Dependence Anaysis and PDG
Edge Addition
We execute a source program. On program execution,
we extract DD relations dynamically between state-
ments using the following method, and add DD edges
to PDG.

Phase 4: Slice Extraction

[Dynamic Data Dependence Analysis

When variable v is referred at statement s, dynamic DD
relation about v from ¢ to s can be extracted if we can
resolve v's defined statement ¢. We create a table named
Cache Table that contains all variables in a source program
and most-recently defined statement information for each
variable. When variable v is referred, we extract dynamic
DD relation about v using the cache table. The following
shows the extraction algorithm for dynamic DD relations.

Step 1: We create cache C'(v) for each variable v in a
source program.
C'(v) represents the statement which most-recently de-
fined v.

Step 2: We execute a source program and proceed the fol-
lowing methods on each execution point.
On executing statement s,

e when variable v isreferred, we draw an DD edge
from the node corresponding to C'(v) to the node
corresponding to s about v, or

e when variable v is defined, we update C'(v) to s.

[Comparison with Static Slice and Dynamic Slicg

Table 1 shows differences among static slice and dy-
namic sliceand DC dlice.

As an example, Figure 3 shows static, dynamic and DC
slices for dlicing criterion <23, d>; for dynamic and DC
dices, we passed integer value “2" to scanf) statement on
program execution. “./” represents a sliced statement, and
“S",“D" and“DC’ represents static, dynamic and DC dlices,
respectively. In this case, dynamic slicing and DC dlicing
compute the same dlices.

Table 1. Comparison with static slice and dy-
namic slice

Static Slice Dynamic Slice DC Slice

CD static dynamic static
DD static dynamic dynamic
PDG node | statement execution point statement

3. Object-Oriented
Dependence-Cache (OODC) Slice

In this section, we will propose Object-Oriented
Dependence-Cache (OODC) Sice, which is an extended
DC dlice for Object-Oriented programs.

[Analysis Policy]
Object-Oriented languages have the following charac-
ters.

Chr.1: Object isacollection of attributes and methods that
operate attributes.

Chr.2: Dynamic binding feature exists.
Dynamic binding —based on the classtype of an object,
an appropriate override method is selected and invoked

For Chr.1, at the same time that a variable is created,
the corresponding cache is aso created. Using this rule,
we can analyze each object independently even if they are
instantiated from the same class.

For Chr.2, static analysis cannot alwaysidentify invoked
methods without program execution (it is difficult for static
pointer or aias analysis to identify the unique class type of
each object that is referred to by pointer or reference vari-
ables; in general, two or more candidates exist). OODC
dlice also dynamically analyses CD relations about method
invocation for more precise analysis results.

[Algorithm]

Figure 4 shows OODC dlicing algorithm.

On Step 1, we construct PDG with no edge. On Step 2
we statically

e extract CD relations except those about method invo-
cation, and add CD edgesto PDG.

On Step 3 we dynamically
e extract DD relations and add DD edgesto PDG, and

e extract CD relations about method invocation and add
CD edge to PDG,

respectively; algorithm for dynamic DD analysis is shown
in Figure 5.

S D DC

vV v/ L #include <stdio.h>
vV v Vv 2 #defineSIZES

v v/ 3 intcubg(int x) {
NVARRVARRVAR'® return (x * x * x);
VERVARVAR -

v v/ +/ 6 void main(void)

v oV VT

v Vv v & intaSIZE];

vV v V9 int b[SIZE];

v v 4 100 intcd,i;

v 11: 40]=0;

\/ 12: al] =-1;

\/ \/ \/ 13: 2] =2

\/ 14 a[3] = _3;

v 15 a4 =4

Vv oV 16 for(i=0;i < SIZE; i+4) {
VARRVARRVARS Y b[i] = &il;
VARRVARRVARS S

vV Vv v/ 190 scan{"%d’, &c);
v v v 20 d=cube(b[c]);
J v v 2L ifd<0)

v 22: d=—1*d;

Vv oV W/ 23 printf ("%d", [@);
VERVARVAR-C3

Figure 3. Static, Dynamic and DC slices for
slicing criterion <23, d>

On Step 4 — 6 we start PDG traversal in reverse order
from the dlicing criterion node, so that OODC dlice would
be extracted.

[Example]

Figure 6 shows asample program and OODC slice (* /" -
marked statements) for dlicing criterion <16, ¢>. Since
OODC dlice needs program execution, we have executed
this program as follows!:

% javac Main.java
% java Main -1

Table 2 shows a cache history for Figure 6. Cache C'(v)
represents a statement on which variable v is defined using
assignment expressions, parameter passing, and so on. “-”
means “not defined yet”. For example, at statement 16, vari-
ablec isreferred and C'(c) is“14”, so that we can extract
DD(14, c, 16).

On program execution, we need not to record all cache
history. In order to extract dynamic DD relations, we have
only to focus on the values of caches at the executed state-

1\We have passed “ —1" to the first parameter.

INPUTS
p: Program
Z: Inputsfor p’s execution
<s¢, ve>: Slicing criterion
OUTPUTS

PDG(p’I) . PDG for (p, I)
S: OODC dicefor <s¢, ve>

ALGORITHM

Step 1. [Create each PDG,, 7y's node V (s) for statement s in
r]

Step 2: foreachs € pdo
if sisaconditiona (or loop) statement then
s1 := s’sconditional expression
s2 1= s's branch statement (or loop body)
[Add “V(Sl) ———+V(52)" to PDG(p’I)]
fi
done

Step 3: until p with Z terminates do

s := next execution statement

[Analyze dynamic DD relations for s (see Figure 5) |

if sisamethod invocation statement then
C:=V(s)

elif s isamethod declare statement then
[Add“C ---»V(s)" to PDG, 1)]

fi

[Execute s]

done

Stepd: S:={V(sc)}, N:=¢
Step 5: Ni:{n|nL>Sc}U{m|m————>sc}
Step 6: while NV # ¢ do

{n}UN" =N

S=8U{n}

N=N'"U{m|m¢gSA

(Fw(m v, n)Vm ---+n)}

done

Figure 4. Algorithm for OODC slicing

ment. About implementation of caches, we will describe
later.

4. Implementation

We have implemented the proposed method as a slicing
system for JAvA, which consists of two components, analy-
sis libraries and Graphical User Interface (GUI). They are
also writtenin JAVA.

Figure 7(a) shows the design of our implementation. In
Figure 7(a), Objects that have gray background represent
the components we have devel oped.

[Implementation of Analysis Libraries]

We have adopted preprocessor style for implementation
of analysis libraries. Preprocessor style means that be-
fore program execution, we add some JAVA codes to target

INPUTS
p: Program
Z: Inputsfor p's execution
s Statement
C: Cacheset
PDGy, 1): PDGfor (p, 7)
OUTPUTS

PDG(p’I) . PDGfor (p, I)
C: Cacheset

ALGORITHM
if variable v isdeclared at s then
[Create C'(v)]
C(v) =V (s)
C=CcuUu{Cv)}
elif variable v isdefined at s then
C(v) =V (s)
elif variable v isreferred at s then
[Add“C(v) —— V(s)"to PDG, 1) |
fi

Figure 5. Algorithm for dynamic DD analysis

source program p, and on program execution, such codes
dynamically analyze dependence relations between state-
mentsin p.

Interpreter style would also be a candidate for their im-
plementation; however, we have to customize an existing
JAvA Mirtual Machine (JavaVM) or develop a JAVA inter-
preter, and too much execution time would be required.

Since it is easy to develop a preprocessing
environment[10] and we can use existing Just-in-Time
(JIT) compilers to optimize preprocessed programs,
preprocessor style would be a more promising approach.

[Implementation of Cache$
We have used the following rules to implement caches:

e On each class, we consider cache C(v) for instance
variable v as an instance variable.

e On each class, we consider cache C'(v) for class vari-
ablewv asaclass variable.

e On each scope, we consider cache C(v) for local vari-
ablev asalocal variable.

Using above rules, when two objects ¢ and b are instanti-
ated from the same class, we can independently trace caches
C(a.v) and C'(b.v) for instance variables a.v and b.v. When
instance variable v isinherited, C'(v) isaso inherited.

[Implementation of Graphical User Interface (GUI)]
GUI hasthe following features:

o Edit source programs

import java.util.*;
import javaio.*;

static Base b1;
public static void main(String[] args)
throws |OException {

1
2
3:
4: classMain {
5
6

LKL L R K

7: int c;

8 Base b2 = new Derived();

9: int i = Integer.parselnt(argg[0]);
10: if(i <0)

11: bl = newBase();

12: else

13: bl = new Derived();

14: ¢ =h1l.m(i);

15: b2.set(c);

16: System.out.printl n(@);
17: System.out.printin(b1.a);
18}

19: }

: classBase {

22: public int a=10;
23 publicint m(int i) {
24: return (a— i);

L O <
N
[y

26: public void set(int i) {
27 a=i;

28}

-}

31: classDerived extendsBase {
32: publicint m(int i) {

33 return (a+i);

34

35}

<
R

Figure 6. OODC slice for slicing criterion <16,
c>

e Control analysis libraries (PDG construction, dlice
computation, program execution, and so on)

e Show dliceresults.

Figure 7(b) shows a screenshot of GUI part.
The following shows an example of slice computation
using our GUI.

1. open JAVA source program p :
Open File List Wndow shows p's name,
Text W ndow showsthe sourcetext of p, and Fi | e
I nf or mati on W ndow shows p’s status.

2. translate p to preprocessed JAVA source program p’ :
p’ contains additional JAVA codes in order to analyze
dependence relations dynamically between statements
inp.

3. construct PDG), for p:

PDG, has CD edges only (all DD edges and CD

m teaturing open File List
Windsw R

public static void main(String ares[])

{

Hashtable form_data = null;

Sesten.outnrintn(Cal |ib Header (1);
Elcoilibjaa = SEEEEREISSIINRI R R R s

Tomenea] Transiatel | 1€ INformation
Window

public static Hashtable ReadParse(InputStrean inStrean)
{

FileName :
Hashtable form_data = new Hashlahle():‘

CGI. java

FilePath ¢ String inBuffer = ™
Slicing Criteriof ilePath :
G:¥Home¥ | ab¥tool¥javacc? PR
-0¥0ohata¥0al . java '{ Gl

inBuffer = Systew.zetProperty(“czl.query_string”);

o
&l
#
% File Inform
*
@

GUI (Graphical User Interface) Kind :
Java file
_________________________________ else
/ N 1
’ \ Last Update : 7 _ 7 =
! ! Ved Feb 14 17:15:28 45T | Dalé[nput‘ d = new DatalnputStrean(inStrean);
H I 2 String line;
! ! 2001
' H try
1 Program + H Translate : !
| Analysis Code @ 1 DONE : - i ipe = d.readLine(]) != null) =
' [Source] i Console & Status
' 1 i
: Program + Java : ‘1n1gizw —— Window =
''| Analysis Code Virtual H e :
1 [Bytecode] Machine ,' 110 [20:7 - 20:76] #0

[El

9 [16:7 - 18:71130 : 88(8) 91(Top) 92(Top) 93(Title) 93(Top) 94(Top) 95(Top) S6(ToR) 87 (Top) 9&(Top)

(&) Design (b) Screenshot of GUI

Figure 7. Slicing system for Java

edges about method invocation will be added on the 5. Evaluation
next step).
5.1. Metrics

Using our dlicing system, we have evaluated the pro-
) posed method. Table 3 shows the features of sample pro-
4. execute p’ . grams we have used; P; loads some data from text files

We collect dynamic DD relations and add the corre- and generates HTML files, P, isapaint application using a
sponding DD edges to PDG,,. Also, we collect CD MOUSE.

relations about method invocation and add the corre- Also, we have used the following metrics:

sponding CD edges to PDG),. Consol e & Sta-

t us W ndow shows p’’s execution results and some Slice Size: Comparison with static slice and dynamic slice

debugging messages. [Table 4]
Since we have implemented OODC sdlicing method
only, we compute static slice and dynamic dlice by
hand.

Execution Time: Comparison between before and after
preprocessing (adding analysis codes) [Table 5]
Since P, isadiaogue application, we could not record
its execution time.

5. dlice computation:
The user specifiesadlicing criterion, and we start PDG
traversal in reverse order from the node correspond-
ing to the dlicing criterion. Statements in the result-
ing slice are highlighted with colored background on Memory Use: Comparison between before and after pre-
Text W ndow(s) . Inthe case of Figure 7(a), they processing [Table 6]
are distributed on two source files.

Table 2. Cache history for Figure 6

St|C(b1) C(b2) C(c) C(i) C(bl.a) C(b2.a) C(args) C(args|0])
4| - - - - - - - -
5| 5 - - - - - - -
6| 5 - - - - - 6 6
7| 5 -7 - - - 6 6
8| 5 8 7 - - - 6 6
31 5 8 7 - 6 6
21] 5 8 7 - - - 6 6
2| 5 8 7 - - 22 6 6
9] 5 8 7 9 - 22 6 6
10| 5 8 7 9 - 22 6 6
1 112 8 7 9 - 22 6 6
21 11 8 7 9 - 22 6 6
2 1 8 7 9 2 22 6 6
411 8 14 9 2 22 6 6
2311 8 14 9 2 22 6 6
24/ 11 8 14 9 22 22 6 6
15 11 8 14 9 22 22 6 6
26] 11 8 14 9 22 22 6 6
27711 8 14 9 2 27 6 6
6] 11 8 14 9 22 27 6 6
7] 11 8 14 9 22 27 6 6

Table 3. Target programs

Program | Classes Override Methods Lines
Py 2 0 223
Py 3 7 226

5.2. Discussions

The size of OODC dlice is 20-70% as large as that of
static slice, so that we can say that OODC dliceis more pre-
cise than static dlice [Table 4]. Since target programs are
small, their precision difference are also small; however,
we guess that precision difference would become wider
for larger programs on which class inheritance and method
overriding occur frequently.

On the other hand, additional costs for dynamic depen-
dence analyses are small and practical [Table 5, Table 6].

Since we have not implemented dynamic slicing method
and static slicing method for Java yet, we could not com-
pare analysis costs among them; however, about analysis
costs and precision, the following characteristics had been

Table 4. Slice size [lines (slice/total)]

Slicing Criterion | Static Dynamic OODC
Pi() 26(11.7%) 156.7%) 15(6.7%)
Pi(2) 83(37.2%) 27(12.1%) 27(12.1%)
Pi(3) 37(16.6%) 24(10.8%) 24(10.8%)
P(1) 48(21.2%) 14(6.2%) 14(6.2%)
Px(2) 45(19.9%) 12(53%) 12(5.3%)
Px(3) 25(11.1%) 17(75%) 17(7.5%)

Table 5. Execution time [ms]
Program | Before(Ty) After(Tg) Tp/Ta
Py 138 582 4.22
Celeron-500MHz(128MB) / Windows98SE /
JDK 1.3.0_01(HotSpot)

Table 6. Memory use [KByte]

Program | Before(T4) After(Tg) Tp/Ta
Py 478 645 1.35
Py 836 920 1.10

indicated by experimental results for programs written in
procedural language Pascal[2]. These characteristics would
be also satisfied on JAVA programs.

Analysis Time (Costs): Dynamic > DC > Static

Slice Size (Precision):Static > DC > Dynamic
5.3. Related Works

Larsen et al and Liang et al proposed static slicing
methods for Object-Oriented programg[11, 12]. Since static
analysis need not program execution, analysis costs might
be small; however, Object-Oriented languages have many
dynamically determined elements, such as polymorphism,
dynamic binding, exceptions, and so on. Furthermore, we
also have to analyze alias relations with pointer variables
and reference variablesfor C++ and JAVA programs, respec-
tively; alias relations should be resolved before DD analy-
sis. Although Steensgaard and Tonella et al proposed static
alias analysis methods] 14, 16], it is difficult for us to com-
pute practical analysis results statically.

Zhao proposed a dynamic slicing method for Object-
Oriented programs[18]. Dynamic slicing methods would
generate more practical results than static slicing methods;
however, since it requires too much computation time and
memory space to record execution trace, we cannot analyze
large programs dynamically. Also, [18]'s method is pro-
posed only and have not been implemented yet.

Asidacet al proposed DC dlice that was originally named
Dynamic Data Dependence (D?) dice, and they imple-
mented a slice system for Pascal[2]. Our slicing method is
based on their work; however, [2] focuses on ordinary pro-
cedural languages only, and their implementation is not for
practical use, but a prototype only. Our proposed method
takes Object-Oriented languages into account, and we have
implemented adlicing system for JAVA that is used by many
software devel opers.

6. Summary and Future Work

In this paper, we have proposed a dlicing method
for Object-Oriented programs, which is an intermediate
method between static slicing and dynamic dlicing. Since
proposed method dynamically analyzes al DD relations
and CD relations about method invocations, its analysis pre-
cision is better than that of static slicing. On the other hand,
sinceit statically analyzes CD relations except method invo-
cations, its analysis costs is less than that of dynamic dlic-
ing. Also, we have implemented our method as a slicing
system for JAvA, and we have evaluated its effectiveness.

Since JAVA has other dynamically determined elements
such as multi-thread and exception, we are planning to an-
alyze CD relations about them dynamically. Also, we are
going to evaluate our method for large programs.

Acknowledgments

Thiswork is partly supported by Ministry of Education,
Science, Sports, and Culture, grant-in-aid for priority ar-
eas “Principles for Constructing Evolutionary Software”,
#10139223.

References

[1] Agrawal, H., and Horgan, J. : “Dynamic Program
Slicing”, SSIGPLAN Notices, vol. 25, no. 6, pp. 246—
256, 1990.

[2] Ashida, Y., Ohata, F. and Inoue, K. : “Slicing Meth-
ods Using Static and Dynamic Information”, Proceed-
ings of the 6th Asia Pacific Software Engineering Con-
ference, pp. 344-350, Takamatsu, Japan, December
1999.

[3] Beck, J. and D, Eichmann. : “Program and interface
dlicing for reverse engineering”, Proceedings of the
15th International Conference on Software Engineer-
ing, pp. 509-518, Baltimore, Maryland, May 1993.

[4] Bates, S. and Horwitz, S. : “Incremental program
testing using program dependence graphs’, Confer-
ence Record of the Twentieth ACM Symposium on
Principles of Programming Languages, pp. 384-396,
Charleston, South Carolina, January 1993.

[5] Booch, G. : “Object-Oriented Design with Applica-
tion”, The Benjamin/Cummings Publishing Company,
Inc, 1991.

[6] Enami, M., Ghiya, R., and Hendren, L. J. : “Context-
sensitiveinterprocedura points-to analysisinthe pres-
ence of function pointers’, Proceedings of the ACM

8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S GPLAN' 94 Conference on Programming Language
Design and Implementation, pp. 242-256, Orlando,
Florida, June 1994.

Gallagher, K. B. and Lyle, J. R. : “Using program
dlicing in software maintenance”, |EEE Transactions
on Software Engineering, vol. 17, no. 8, pp. 751-761,
1991.

Gosling, J., Joy, B. and Stecle, G. : “The JAVA™ Lan-
guage Specification”, Addison-Weseley, 1996.

Horwitz, S. and Reps, T. : “The Use of Program
Dependence Graphs in Software Engineering”, Pro-
ceedings of the 14th International Conference on Soft-
ware Engineering, pp. 392-411, Melbourne, Aus-
tralia, May 1992.

“JavaCC”,
http://ww. webgai n. com product s/
net amat a/ j ava_doc. ht n

Larsen L. D. and Harrold, M. J. : “Slicing Object-
Oriented Software”, Proceedings of the 18th Interna-
tional Conference on Software Engineering, pp. 495—
505, Berlin, Germany, March 1996.

Liang, D. and Harrold, M. J. : “Slicing Objects Us-
ing System Dependence Graphs’, Proceedings of the
IEEE International Conference on Software Mainte-
nance, pp. 358-367, Bethesda, Maryland, November
1998.

Shapiro, M. and Horwitz, S. : “Fast and accurate flow-
insensitive point-to analysis’, Proceedings of the 24th
ACM SIGPLAN-SGACT symposium on Principles of
programming languages, pp. 1-14, Paris, France, Jan-
uary 1997.

Steensgaard, B. : “Points-to anaysis in almost lin-
ear time”, Technical Report MSR-TR-95-08, Microsoft
Research, 1995

Stroustrup, B. : “The C++ Programming Language
(Third edition)”, Addison-Wesley, 1997.

Tonella, P, Antoniol, G., Fiutem, R., and Merlo, E.
. “Flow Insensitive C++ Pointers and Polymorphism
Analysis and its Application to Slicing”, Proceedings
of the 19th International Conference on Software En-
gineering, Boston, Massachusetts, pp. 433-443, May
1997.

Weiser, M. : “Program Slicing”, Proceedings of the
Fifth International Conference on Software Engineer-
ing, pp. 439449, San Diego, California, March 1981.

[18] Zhao, J. : “Dynamic Slicing of Object-Oriented
Programs’, Technical Report SE-98-119, Information
Processing Society of Japan, pp. 17-23, May 1998.

