Analysis and Implementation Method of Program
to Detect Inappropriate Information Leak

Reishi Yokomorif, Fumiaki Ohata', Yoshiaki Takata*, Hiroyuki Seki* and Katsuro Inoue'
TGraduate School of Engineering Science, Osaka University,
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
{yokomori, oohata, inoue} @ics.es.osaka-u.ac.jp
IGraduate School of Information Science, Nana Institute of Science and Technology
{y-takata, seki} @is.aist-nara.ac.jp

Abstract

For a program which handles secret information, it is
very important to prevent inappropriate information leak
from the program with secret data. Denning proposed a
mechanism to certify a security of program by statically an-
alyzing information flow, and Kuninobu proposed a more
practical analysis framework including recursive procedure
handling, although no implementation has been yet made.

In this paper, we propose a method of security analysis
implementation, and show a security analysis tool imple-
mented for a procedural language. In this work, we ex-
tend Kuninobu’s algorithm by devising various techniques
Sfor analysis of practical programs that have recursive calls
and global variables. This method is validated by applying
our tools to a simple credit card program, and we confirm
that validation of program security is very useful.

1. Introduction

For a program which handles secret information such as
a credit card number, it is very important to prevent inappro-
priate information leak from program data to the outside of
the program (system). Data with secret information should
not be printed out and invisible to ordinary users. The val-
ues seen by the users with non-privileged access right must
be non-secret data, and they have to be independent from
the secret data. As there would be some dependency be-
tween the system output values and secret data to be pro-
tected, a chance to guess and decipher the secret data from
the output values.

Denning proposed a mechanism to certify that a given
program does not violate a security policy for the informa-
tion of the program [2, 3]. This work is, however, highly
theoretical, and there remains a lot of works before applying

it to practical programs. Kuninobu proposed a more practi-
cal analysis framework including recursive procedure han-
dling [7], although no implementation has been yet made.

We have been studying various program analyses such as
slicing [1, 6], and alias analysis [4, 9]. The approaches for
these analyses closely relate to the security analysis, and our
tools for program analysis would be extended to the security
analysis.

Therefore, based on [7], we will propose a method of
security analyses implementation, and will show an imple-
mented tool. In this work, we have devised various tech-
niques for analysis of practical programs that have recursive
calls and global variables. We have validated this method by
applying our tools to a simple credit card program.

In Section 2, we will briefly overview security analysis.
In Section 3, we will present an implementation overview
for the analysis. In Section 4, we will present the details of
the implementation, and present a simple application of the
tool. In Section 5, we will conclude our discussions.

2. Security Analysis

To prevent inappropriate information leak to outside sys-
tem, following access control mechanism, called Manda-
tory Access Control, is generally used:

(1) Each data and storage area in the system has a Security
Class(SC), which represents the degree of secret. The
SC for data d is represented by SC(d).

(2) Each user and process in the system also has Clear-
ance(CL), which means the degree of access right. The
C'L for user u is represented by C'L(u). Also, C'L for
process p is denoted by C'L(p).

(3) User u (process p) can access data d, if and only if
CL(u) > SC(d).

type
standard-type
array-type
compound
statement

limited-statement

basic-statement

assignment
input-statement
output-statement
procedure-call
function-call

standard-type | array-type .
“integer” | “boolean” | “char”
“array”[] “of” standard-type .
“begin” statements “end”.
basic-statement |
“if” expression “then” limited-statement
“else” statement |
“if”” expression “then” statement|
“while”” expression “do” statement .
= basic-statement |
“if” expression “then” limited-statement
else” limited-statement|
“while”” expression “do” limited-statement.
= assignment | procedure-call |
input-statement|output-statement|
compound | empty.
left-value “:=" expression.
“readIn” [“(” a row of variables “)"1|
“writeln” [“(” a row of outputs “)”].
procedure-name [“(”” a row of expressions “)”].
= function-name[“(” a row of expressions “)”].

Figure 1. A part of BNF of target language

Under this access control mechanism, however, inappro-
priate information leak may occur in the following way.

(1) User program u, thatis CL(u) > SC(d), reads a data
d.

(2) User program u writes an information d into storage
area s, thatis SC(s) < SC(d).

(3) User U thatis SC(s) < CL(U) < SC(d) cannot read
data d directly, but U can read information d written in
storage area s indirectly. An information leak occurs
as this way.

To prevent inappropriate information leak like this, Den-
ning proposed a mechanism to certify that a program does
not violate information flow policy [2, 3]. This certification
mechanism first sets SC for each variable and input value in
the program. After setting SC, the certification mechanism
detects inappropriate information leak, based on Informa-
tion Flow which shows control flow and data flow between
variables. The certification fails, if there is a statement s
such that

o the least upper bound of SC of used variables (vari-
ables referred to) at s is higher than SC of de fined
(variables assigned to) variable at s, or

o the least upper bound of SC of used variables at s is
higher than SC of the storage area accessed at s.

In [5], J.Banatre reexamined this method theoretically,
and attempted to generalize the analyze method. Howeyver,
since these methods do not take account of a recursive call
and global variables, applicability is limited. Also these

methods analyze only return values and actual parameters
in a function (procedure) call statement. Since these meth-
ods do not investigate how the return values are calculated,
the result is too strict to use practically.

In [7], Kuninobu proposed an information security anal-
ysis algorithm that takes account of the analysis of proce-
dure calls including recursive ones. This algorithm defines
simultaneous equations from the information flow at each
statement. Then, it performs security analysis calculation
on these simultaneous equations, and provides SC for each
output of the program with respect to given SC for each
input. Assume that the formal parameters of the main func-
tion of the program are x4, . . ., z;, the input files of the pro-
gram are in filey , ..., in file;, the return value of the main
function of the program is y;, and the output files of the
program are out fileq, ..., outfiler. This algorithm cal-
culates 1 + k SC’s corresponding to the return value and
output files from the simultaneous equations, and i+ 5 SC’s
corresponding to the formal parameters and input files.

In general, the approach of security analysis is classified
into following two categories.

e To provide the SC for each output of the program from
the SC of each input

e To certify that a given program does not violate the
flow policy.

In this paper, we focus the former approach.

3. Implementation of Information Security
Analysis Algorithm

Based on [7], we have implemented a prototype of the
information security analysis algorithm. In this section, we
show an overview of the implementation and a process for
the analysis. We will present the details of the tool and an
application, in Section 4.,

3.1 Overview of Implementation

We have implemented a prototype system for Pascal pro-
gram. Fig 1 is a part of its BNF.

Our implementation is different from [7]’s algorithm in
the following points.

¢ Global variables handling :
We will explain it in details later.

o Efficient inter-procedural analysis :

In [7], when analyzing a procedure, the algorithm
needs to hold the analysis results for all combination of
parameter’s SC. In our implementation, however, we
only keep a result for the least upper bound of combi-
nation of parameter SC. We consider that this is suffi-
cient for actual use.

¢ Simplification of SC and input/output file

To make intuitive understanding easy, we limit SC to
{high, low}, and limit input/output files to only stan-
dard input/output files.

3.2 Analysis Procedure

3.2.1 Overview

The security analysis consists of two phases.

Phase 1: setting up initial condition of security analysis

We set up following SC, as the starting point of
the security analysis. Other SC’s for global variables
and local variables are set to low.

input statements: SC’s for the input values that are
read at input statements

procedure(function) declarations : SC’s of the for-
mal parameters of each procedure(function)

Phase 2: information flow analysis
This phase calculates the SC of each output statement
of the program with the initial condition and informa-
tion flow. After this analysis, the algorithm outputs
such statements with high SC.

In this paper, we mainly explain Phase 2, especially on
the analysis of global variables, intra-procedural analysis,
and inter-procedural analysis.

3.2.2 Analysis of Global Variables

Our security analysis algorithm deals with global variables.
To deal with global variables in the analysis of each proce-
dure(function), we consider global variables as virtual pa-
rameters of each procedure(function), and as virtual return-
values of each procedure(function).

This approach works in principle; however, it is not
efficient since we have to prepare space for these virtual
parameters(return-values) with respect to each procedure
even if global variables is not necessarily accessed in the
procedure.

Therefore, it is necessary to investigate global variables
that used or defined directly or indirectly at each procedure
before the security analysis. Global variables that defined
directly or indirectly at the procedure P are regarded as the
virtual return-values of the procedure P, Global variables
that used directly or indirectly at the procedure P are re-
garded as the virtual parameters of the procedure P. “Di-
rectly defined(used) in procedure P” means that it is de-
fined(used) in procedure P. “Indirectly defined(used) in
procedure P means that it is defined(used) in procedures
that are called by procedure P.

3.2.3 Intra-procedural Analysis

First, the security analysis algorithm prepares Security
Class Set(SCset), that is a collection of SC of each vari-
able at each program point. An e¢lement of SCset is a pair
(variable, SC). An initial state of SCset consists of elements
of global variables that are used in the procedure, local vari-
ables, and formal parameters. Each SC is initialized as fol-
lows.

local variable: [ow

formal parameter: the least upper bound of actual pa-
rameter’s SC of the corresponding procedure-call
statements

global variable: the least upper bound of global variable’s
SC at the imitation of the corresponding procedure-call
statements

After setting up SCset, we analyze the procedure from
the first statement following the order of execution of the
program, Fig 2 shows the calculation of SCset. Let Psyqrt
be the first statement in the procedure P. This algorithm
starts with ALGORITHM(P,;4,¢, #). SCset directly before
analysis of statement s is denoted by SC'set(s), and one
after the analysis is denoted by SC'set(s’).

(assignment statement)
cl :={ c | xERef(s)A(x, c)ESCset } U imp;
kill := { (%, c) | x€Def(s)A(x, c)ESCset };
gen = { (x, U.ec) | xEDef(s)};
SCset := SCset — kzll U gen

(input statement)
kill :={ (x, ¢) | xE€Def(s)A(x, c)ESCset };
gen = SCsetinput (s)
(* { | XESCsetinpur(5) } = Def(s) %)
SCset := SCset — kzll U gen

(output statement)
el :={ ¢ | xERef(s)A(x, c)€SCset } U imp
SCoutput = Ucecrc; SCset := SCset

(if statement)(if E then B;;,..,, else B ;. .)
¢l :={ ¢ | xERef(E)A(x, c)ESCset } U imp;
SCsetyy. 1= SCset;
ALGORTTHM(B; p,ey, Ucgei©); SCsetypy ey, 1= SCset;
SCset := SCsetpre;
ALGORITHM(B e, Ucgci0); SCsetepqe = SCset;
SCset := unite(SCset;pen, SCsetese)

(while statement)(while E do B)

SCsetpre = 0;

while SCset <> SCsety,,. begin
el := { ¢ | x€Ref(E)A(x, c)ESCset } U imp;
ALGORITHM(B, U ¢10);
SCset := unite(SCset, SCsetprc)

end

SCset := SCsetpre

(block statement)(being B, ; . .. B,,; end)
ALGORITHM(B1, U.¢c10);

ALGORITHM(By,, U e.1€)
SCset := SCset

(procedure call)
statement s calls a procedure P.
SCsetyeqt =0
fori:=010 |Syciuaq1s| begin
cl:= { € | (Sactualslil, €)€SCset };
SCsetnext = SCsetnext U { (P formatslil, ¢ };
end;
foreach x€Ref’(P) begin
SCsety, et = SCsety,eont U
{ (x,¢)]| (x, c)ESCset }
end,
SCset := SCsety et
analysis of procedure P;
kaill =0,
fori:=01to |syctuals| begin
kel = kell U
{ (Pformals[i], C) | (Pformals [il, C)Escset}
end
SCset := SCset — kel

Figure 2. ALGORITHM(S, ¢mp)

SCouipui(s): SC for output statement s
L operator for the least upper bound

unite(A, B): unify SCset A and SCset B.

has in SCset B.

Ref(s): a collection of variables that used(referred to) at statement s
Def(s): a collection of variables that defined at statement s

Ref’(P): acollection of global variables that used in procedure P
Def’(P): a collection of global variables that defined in procedure P
Sactualss @ collection of actual parameters in procedure-call statement s
Prormatss acollection of formal parameters in procedure P

SCset: SCset immediately before the analysis of statement s

SCset;,pus: a collection of elements (variable, SC) that determined at the input statement s as initial condition,

SC of each variables is the least upper bound of the SC that the variable has in SCset A and the SC that the variable

Figure 3. Terms and symbols in Figure 2

According to the kinds of statements, the SCset
SC'set(s) is updated and SCset(s') is defined as shown
in Fig 2,

Fig 2 represents

inner transaction of analysis of statement s
SCset of directly after analysis of statement s or
SC of output statement s

Fig 3 explains terms and symbols that appear in Fig 2.

3.2.4 Inter-procedural Analysis

An usual procedural program consists of more than one pro-
cedure, and generally more than one procedure-call state-
ment exist for each procedure. A procedure may call itself
recursively, or two or more procedures may call each other,

Therefore, the analysis result of procedure P may be in-
fluenced (through parameters, return values, or global vari-
ables) the analysis result of procedure P’ that calls P. Se-
curity analysis algorithm must continue until the analysis
results become stabilized. The security analysis algorithm
prepares the following elements for the inter-procedural
analysis.

analysis list :
The analysis list is a list of analysis order of proce-
dures. This is based on the invocation of procedure-
calls of the program. The analysis list is updated dur-
ing the analysis, and the analysis terminates if the anal-
ysis list becomes empty. The details of the algorithm
of updating the analysis list is explained in [8].

SCset C at the beginning of procedure :

Each procedure has one C. Consider a procedure-call
statement s that calls procedure P. In analyzing s, the
algorithm calculates the least upper bound @ of C for P
and SCset C’ for s. If @ is greater than C, C is redefined
with the values of @, and the analysis goes into P. On
the other hand, if @ is the same SCset as C, analysis of
P is known to be unnecessary.

SCset D at the end of procedure :

Consider at the end of the analysis of procedure P,
where the SCset for P was initially D and is updated
to D’. The algorithm calculates the least upper bound
w of SCset D and SCset D', If w is greater than D, D
is redefined with the values of @. Also, all procedures
calling P are added in the analysis list. On the other
hand, if @ is the same SCset as D, nothing is done.

3.3 Example of Analysis

As an example, consider a function f in Fig 4. At first,
we define the following SCset from the global variable, lo-
cal variable, and parameter.

SCset(8) := {(a, low), (x, low), (y, low)}

Then, we analyze from the first statement(line 8) of the
function following the order of execution. We get from Fig
2,

kill :={(y, low)}; gen := {(y, high)}

SCset(8’) := SCset(8) — kill U gen
= {(a, low), (x, low), (y, high)}.

program sample;
var a : integer;

1

2

3L

4: function f(x : integer) : integer;
5: (¥ assume a, x — [ow *)
6: vary : integer;

7: begin

8 readln(y); (* «— high *)
9: if a > O then

10: begin

11: ar=y+1;
12: y:i=x—1;
13: end;

14:

15: writeln(y);
16: writeln(x);

17:

18: fi=y;
19: end
20: ...

21: end.

Figure 4. a sample program

Next, SCset(9) is defined as SCset(8’), and statement 9
is analyzed . In the same way, analysis continues until at the
end of the statement 18. We obtain

SCset(18°) := {(a, high), (x, low), (y, high), (f, high)}.

After this intra-procedural analysis, we compute the
unite @ of SCset(18’) and initial D for f. If Q is greater
than D, D is redefined with the values of), and we add
all procedures calling f into the analysis list. On the other
hand, if) is the same SCset as D, nothing is done.

4. Security Analysis Tool and Its Application

In this section, we will present the details of the tool
which realizes the security analysis algorithm,

We have developed the security analysis tool by adding
the security analysis routines to Osaka Slicing System[8],
which is a tool for computing program slices.

4.1 Overview

Fig 5 shows an overview of our security analysis tool.
The input of this tool is a source code in Pascal. First,
this tool analyzes the program syntax and semantics(Fig 5,
Step1). Next, the user sets up an initial condition of security
analysis(Fig 5, Step2). Then, the tool performs the security
analysis (Fig 5, Step3). Finally the tool outputs statements
whose SC are high (Fig S, Step4).

4.2 Example of Application

We consider that this tool is useful for validating the se-
curity of a program, in the sense that we can detect in ad-

set up an perform security analysis

initial condition
o 2 @) 3 O
QE)QO Q%QQ 0¢5Q©
1 l 4
output results

analyze syntax

E and semantics E

Figure 5. Overview of Security Analysis Tool

19t
File Analyze P.Eval Execute Preserve Options. Misc
"

(Al oad file uouakuVS.pas A
art analy

iF §=201 then

2in
HikaeDate[o1d_index]
Hik plafold_i

v
= 1=
display
&Y
L6SBIVS,iCH\x1b (B}
B2kc! CTHIrHAS19K373a\ 11 (B)
else
begin i
Page Up || Page bown | Top || Botiom [Gow e v
= = 1=

Figure 6. Analysis Result Output of Tool

success

reservation

SUCCESSL

certification

credit card
number

l fail

oﬁtput certification
failure

fail

output reservation
result

output reservation
failure

. credit card
certification number

success fail
reservation)loutput certification
failure

successJ \fa"

output reservation [[output reservation
result failure

[] output

>

module

Figure 7. Overview of ticket reservation sys-
tem

vance unexpected information leak by checking the state-
ments whose SC are high before practical use of the pro-
gram. By showing possible information leak, we can re-
organize program structure, and reduce statements whose
SC are high, i.e., the ones with possible information leak.

As an example of such validation of program, we con-
sider a ticket reservation system. The system contains a
credit card certification module as shown in Fig 7.

As an initial condition, we assume that only the input
statement that reads a credit card number has high SC, and
other input statements have low SC. We analyze this system
by our tool, and the result is that 35 output statements of 36
output statements have high SC, as shown with highlight
lines in Fig 6). These statements with high SC are widely
embedded not only in the credit card verification module but
in the reservation module as shown in Fig 8. This is because
the system handles a reservation after a success of the credit
card certification. In this situation, “any possible action in
the reservation” implies a success of credit card certifica-
tion.” We can guess the status of the credit card certification
through the reservation result, and this is unexpected secu-
rity hole.

We have changed the structure of the program, so that
we handle the reservation before the certification of a credit
card as shown in Fig 9. We have analyzed this system by
our tool under the same condition. The result is that only
13 output statements of 36 output statements have high SC.
Now all the output statements in the reservation module are
low, and all output statements with high SC are in the credit
card certification module.

As shown in this example, changing program structure
can cause a change of information flow, leading to chance
of possible information leak. Thus validation of program
security i very important.

Figure 8. Analysis Result of Original Program

| .
joutput reservation
Iresult

credit card
certification number
fail

success

output certification |loutput certification
result failure

—— high ————- low

Figure 9. Analysis Result of Reorganized Pro-
gram

5. Conclusion and Future Work

In this paper, we have proposed an implementation of a
security analysis algorithm that was originally proposed in
[71, and shown an application of this method. In this imple-
mentation, the algorithm originally in [7] has been extended
to deal with global variables and procedural calls.

We are planning extensions of our tool as follows:

e Extension of security analysis algorithm to apply
object-oriented programs

e Realization of security analysis with a general lattice
model

References

[1] D. Atkison and W.G.Griswold. The design of whole-program
analysis tools. in Proceedings of the 18th International Con-
ference on Software Engineering, Berlin, Germany, pages 16—
27, 1996.

(2]
(3]

[4]

[5]

(6]

(7]

(8]

91

D.E.Denning. A lattice model of secure information flow.
Communication of the ACM, 19(5):236-243, 1976.
D.E.Denning and P.J.Denning. Certification of programs
for secure information flow. Communication of the ACM,
20(7):504-513, 1977.

F.Ohata and K.Inoue. Alias analysis for object-oriented pro-
grams. Technical report of IPSJ 2000-SE-126, pages 57-64,
2000. (In Japanese).

J.Banitre, C.Bryce, and D. Métayer. Compile-time detection
of information flow in sequential programs. Proc.3rd ES-
ORICS, LNCS 875, pages 55-73, 1994.

M.Weiser. Program slicing. in Proceedings of the 5th Interna-
tional Conference on Software Engineering, San Diego, USA,
pages 439-449, 1981.

S.Kuninobu, Y.Takata, H.Seki, and K.Inoue. An information
flow analysis of programs based on a lattice model. Tech-
nical report of IEICE SS 2000-30, pages 25-21, 2000. (In
Japanese).

S.Sato, H.Iida, and K.Inoue. Software debug supporting tool
based on program dependence analysis. Transaction on IPSJ,
37(4):536-545, 1996. (In Japanese).

P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Flow in-
sensitive c++ pointers and polymorphism analysis and its ap-
plication to slicing. in Proceedings of the 19th International
Conference on Software Engineering, pages 433-443, 1997.

