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Abstract

When an expression refers to a memory location that is referred to by another expression, we

say that there is an alias relation between those expressions. Alias analysis, i.e, the extraction

of such relations is essential for efficient maintenance of object-oriented programs.

Although many researchers have already proposed analysis methods and implemented pro-

totype tools for object-oriented programs, difficulties still remain in applying such methods to

practical tools in the sense of precision, extensibility, and scalability. Focusing mainly on prac-

tical implementation, we propose an alias analysis method for object-oriented programs. This

method employs a two-phase, on-demand, instance-based, and extensible algorithm.

We have implemented the proposed method as JAAT. JAAT can analyze large programs

such as Java Developer’s Kit (JDK) class library. We have applied JAAT to various large Java

programs and confirmed JAAT’s performance.
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I. Introduction

An alias relation between two expressions e0 and e1 in a source program is a relation

such that e0 and e1 may possibly refer to the same memory location during program

execution. Alias relations are generated by various situations such as parameter passing,

reference variables and indirect reference with pointer variables. We say that e0 is an alias

of e1 (and vice versa) when there is an alias relation between e0 and e1. An alias relation is

an equivalence relation, and we call its equivalence class an alias set. Alias analysis is an

extraction method of alias sets by static analysis, and alias analysis is needed for various

purposes such as compiler optimization[1] and program slicing [23].

Alias analysis was first proposed for traditional procedural languages such as C and

Pascal as part of the static analysis of pointer variables[2], [16], [22], [28]. Concepts such

as class, inheritance, dynamic binding and polymorphism[7] have been introduced through

Object-oriented (OO) languages such as C++[3] and Java[14], and alias analysis methods

for OO programs have been devised[24], [27]. [24], [27] focus mainly on analysis algorithms,

and they have not explored practicability and scalability as analysis tools.

We are interested in developing a practical alias analysis tool for OO languages such

as Java; however, implementation of already proposed approaches remains difficult as
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discussed in [21].

The primary issue for such tools is scalability. Since programs being developed have

become larger and class libraries associated with the developed programs tend to be huge

and complex, the analysis should satisfy scalability in handling large programs. However,

many analysis methods produce poor results due to inherent implementations and more

studies need to be conducted[21].

Another issue is the usage and approach of the analysis. Most previous works focused

mainly on compiler optimization and back-end for data-flow analysis as applications of the

alias analysis. For such purposes, all alias relations in the program need to be extracted

by the analysis. Nonetheless, we believe that alias analysis is useful for program debug-

ging and understanding[21]. For program debugging and understanding, not all the alias

relations are needed at one time; only user-requested relations are to be extracted quickly.

Thus, we have to newly devise an on-demand, incremental analysis approach, which can

be used effectively in an interactive environment.

To resolve these issues, we propose in this paper a new alias analysis method for OO

programs. We have developed a two-phase approach, in which intra-module analysis is

done in Phase 1 for whole programs and libraries, and inter-module analysis is done in

Phase 2 only for an user-demanded target. This two-phase approach greatly contributes

to the overall performance of the analysis.

In this paper, we also consider analysis precision. Flow-sensitiveness of the analysis is an

important factor in determining the analysis precision and cost[18], [19], [20], [30]. A flow

insensitive approach is easily implemented in general; however, this approach produces

poor results. Also, for OO programs, an instance-based analysis for individual objects in-

stantiated from a single class will improve the analysis precision programs when compared

to class-based analysis, although the instance-based approach generally requires high anal-

ysis cost. We take a flow-sensitive instance-based analysis in this research to aim for high

analysis precision with practically affordable analysis cost.

The two-phase approach is also suitable for extending analysis algorithms since software

components for each phase and sub-phase are easily replaceable. Therefore, a new analysis

policy for a precision-cost compromise will be introduced.
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We have implemented the proposed algorithm as JAAT. JAAT considers scalability

in the sense that it can analyze large programs with reasonable computation time. For

example, the analysis time of 32,037 lines of Java programs with 119,564 lines of JDK

library was 168 seconds in Phase 1 and less than 1 milli second in Phase 2. This result

shows that the user can immediately get the resulting aliases on-demand for the user-

specified analysis target after the preparation of Phase 1. Also, the result was fairly

precise in the sense that for our sample programs, 4.42 – 15.37 aliases were found due

to the instance-based approach, which is 32 – 63% less than the traditional class-based

analysis.

As an additional feature of JAAT, it can save internal syntactic and semantic information

as an external XML database, and restore the information, in order to improve reusability

of analysis results. Also, JAAT provides useful Graphical User Interface (GUI), which

shows the resulting aliases using several visualization ways and helps the user’s program

debugging and understanding activities.

In Section II, we give a brief overview of an alias and its analysis for OO programs.

In Section III and Section IV, we propose an alias analysis method for OO programs.

In Section VI, we introduce an implementation of the proposed method and evaluate its

effectiveness using several sample programs. In Section VII, we discuss the evaluation

results with respect to related works and also describe an extension of our method to alias

analysis of pointer variables in C or C++. In Section VIII and Section IX, we conclude our

discussion with a few remarks and describe our future works. In the Appendix, a detailed

proposal of the alias analysis algorithm and its algorithm complexity are presented.

II. Preliminary

A. Example of Aliases

Alias analysis is useful for program debugging and program understanding. To give an

intuition of this, we present an example here. Fig. 1(a) shows a sample Java program and

Fig. 1(b) shows its execution outputs. This program computes the salaries of employee

Emp and manager Mng. The salary of the manager should be higher than the employee.

However, the program execution output is incorrect because a salary addition was made
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to Emp. When the user recognizes such a fault, he/she computes the aliases for reference

variable Emp at line 32. In this paper, we call such a target expression of the alias analysis

the alias criterion (or simply criterion), and it is specified by a tuple <s, e>, where s is

a statement in the source program and e is an expression at s. The shadow expressions

are the resulting aliases for <32, Emp> (which is also an alias itself, and therefore, boxed

with a bold line). We can see around those shadow expressions, and can identify a fault at

the salary addition statement at line 24. By modifying the statement e.add salary(200)

to add salary(200) at line 24, the program will compute an expected result as shown in

Fig. 1(c).

B. Alias Analysis

Alias analysis methods are roughly divided into two categories, flow insensitive alias

analysis (FI analysis) and flow sensitive alias analysis (FS analysis).

B.1 Flow Insensitive Alias Analysis (FI Analysis)

In FI analysis, we do not take into account the execution order of each statement in the

source program[2], [22]. To compute FI aliases, we usually use an alias graph as shown

in Fig. 2(b). An alias graph is an undirected graph, in which each node represents an

expression that refers to a particular memory location. Each edge represents a possible

alias relation between two nodes, which occurs on both sides of an assignment statement

and on the actual and formal parameters.

In Fig. 2(a), when we specify <7, c> as the alias criterion, we get aliases {a, b, new
Integer(1), new Integer(2)}, which are all reachable nodes in the alias graph from the

criterion node.

B.2 Flow Sensitive Alias Analysis (FS Analysis)

In FS analysis, we consider the execution order of statements using a Reaching Alias

set (RAset)[16], [28]. A RAset for statement s, denoted by RA(s), is a collection of alias

sets, which possibly exists just before the execution of s. Each alias set is represented by

a set of tuples (t, f) (t is a statement in the source program and f is an expression at t).

Fig. 2(d) shows RAsets for each statement in Fig. 2(c). In order to compute the aliases
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for <s, e>, we search RA(s) for an alias set that contains e.

At RA(7) in Fig. 2(d), since an alias set [(6, c), (2, a), (6, a), (2, new Integer(1))]

contains variable c, we get the result as shown in Fig. 2(c).

Since FS analysis considers the execution order, it generally requires a larger amount

of CPU time and memory space than FI analysis; however, FS analysis can extract more

accurate alias relations than FI analysis. In Fig. 2, we can see the difference in the

accuracy between the two methods. Previous works [18], [19], [20], [30] show empirical

comparisons of these analyses. In this paper, we focus on FS analysis for more accurate

analysis results.

C. Alias Analysis for Object-Oriented Programs

Alias analysis methods for OO programs have been proposed as the extension of analysis

methods for procedural programs[16], [17], [22], [28], [30]; however, some issues still remain

to be solved for the implementation of practical alias analysis tools for OO programs. Here,

we consider three issues, as follows:

[a] Overall computation time for analysis

In order to implement a practical analysis tool, overall computation time is one of our

main concerns. We have chosen relatively expensive FS approach, where all possible

method-call-paths should be analyzed to compute the RAset. When the target program

contains loops or recursive method calls, it should be analyzed until the increase of

the RAset ‘settles down’. In other words, when a RA(s) for statement s changes

during alias computation, we must re-compute the RAsets for all statements that

are possibly affected by RA(s). Thus, convergence and total computation time are

important factors of the tool.

[b] Effective reuse of analysis results

The alias analysis tool should be used repeatedly with various alias criteria or with

slightly distinct target programs. In such cases, we do not want to re-analyze the

over all programs. In traditional FS alias analysis, RA(s) for statement s is computed

by analyzing all statements in the source program that contain s along the execution

order. Therefore, when another statement t is modified, we might simply re-compute
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RA(s) for each statement s in the source program even if RA(s) is not affected by the

modification of t. We are interested in finding an effective approach that re-computes

RAsets only affected by the modification.

[c] Improvement of analysis precision by separating each instance

In OO programs, each object has its own state and behavior even if they are instantiated

from the same class. Fig. 3 shows part of a Java program that refers to attribute s of

objects x and y. In this program, we prefer to have two independent alias sets [(3, x.s),

(8, s)] and [(4, y.s), (8, s)]. However, if we apply a simple analysis approach such that

all objects instantiated from the same class share the inner alias information, we get

only one alias set [(3, x.s), (4, y.s), (8, s)] where (3, x.s) and (4, y.s) unwillingly fall

in the same alias set. In order to increase the analysis precision, each object should

retain its inner alias relations separately; however, applying this notion to traditional

FS analysis methods would cause consumption of large memory space. We devise an

efficient approach.

III. Analysis Overview

A. Approach

To solve above the mentioned issues, we will adopt the following analysis policies.

Policy 1 Compute intra-module alias relations for each module such as class, method,

and so on.

Policy 2 Compute inter-module alias relations on-demand.

Utilizing these two policies, modularity and independence of the analysis will be estab-

lished. This is particularly important because in OO programming, we usually have to

analyze class libraries in addition to the developed codes. Those class libraries tend to be

large and their analysis cost also becomes large. Thus, the modularized analysis approach

is essential.

In this paper, we divide alias relations into two categories, inner alias relation and outer

alias relation. The followings are their definitions.

inner alias relation: alias relations that are common among all objects instantiated from

the same class
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outer alias relation: alias relations that are not common among objects instantiated

from the same class

Outer alias relations are generated by external objects.

Policy 3 Distinguish outer alias relations on the objects instantiated from the same

class, and analyze inner alias relations in advance, and compute outer alias relations

on-demand.

This policy holds for issue [c].

We also distinguish method invocation information for each instance. Such information

is named object context, which is used where computing outer alias relations for each

instance.

The object context for alias set A, denoted by OC(A), is a set of instance methods that

might be invoked on the objects in A. This context is defined by the following process:

OC(A) := φ.

repeat

When method m appears in expressions such as

a.m(. . .) and a is in A,

OC(A) := OC(A) ∪ {m}.
When method m is an instance method of the objects

in A and its invocation appears in OC(A),

OC(A) := OC(A) ∪ {m}.
until OC(A) is unchanged.

Using OC(A) when we compute the aliases for a.i on condition that a is in A, we can

limit the candidate methods to be considered further. In other words, we can exclude the

instance methods that can not be invoked in the objects referred to by expressions in A.1

We also consider two variants of object context, flow insensitive object context (FIOC)

and flow sensitive object context (FSOC). The former takes into account the method invo-

1If we can not specify the unique A’s type, we might have more than one method; method overriding causes

such a situation.
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cation order, whereas the latter does not. FSOC extracts more accurate alias information

than FIOC.

For example, suppose we compute the aliases for <13, return(i)> in Fig. 42 assum-

ing that the underlined methods Calc::Calc(), Calc::add() and Calc::result() are

invoked in this order. Since Fig. 4(b) uses FSOC, it can generate more precise results

than Fig. 4(a) which uses FIOC. FSOC can exclude two expressions, i and new Integer

in Calc::Calc(), since we know that the definition of i at line 4 is always discarded at

line 10.

FSOC requires more analysis cost than FIOC; on the other hand, FIOC might be less

precise than FSOC. Therefore, we need to compromise between analysis cost and analysis

precision. In this paper, we use the FIOC approach.

Based on Policy 1 – 3 and object context, we propose the following two-phase approach.

Phase 1: Intra-module analysis in advance:

(a) Construction of AFG (defined later) by intra-method analysis

(b) Construction of MFG (defined later) by intra-class and inter-method analysis

Phase 2: Inter-module analysis on demand: Alias computation using AFG and MFG

along with object context

The details of this approach are discussed in Section IV.

B. Other Issues with OO Program Analysis

OO languages like Java, contain more features than traditional procedural languages.

We use the following approaches for each feature.

• Inheritance:

The inheritance concept causes other features such as method overriding and dynamic

binding. In addition, we must take virtual method invocation mechanisms into ac-

count, so that MFG construction algorithms consider the inheritance. The details of

our consideration will be shown later.

• Method overriding and Dynamic binding:

2Since return(x) and x always satisfy alias relations, we only show x as aliases in the figures.
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Method overriding might generate two or more methods that have the same signature

in a class hierarchy. Since the determination of the invoking method depends on the

reference-type of the object that receives a message, static identification of the actually

invoked method is difficult. This difficulty stems from the undecidable type of receiver

object without program execution; however, with alias analysis we can infer such a

type more accurately.

For example, when we identify the invoking method of expression a.b(), we can use

the alias information of a in order to infer the reference-types of the instances that

might be referred to by a.

• Thread and Exception:

Here, we do not deal with threads and exceptions. We concentrate on more general

control flows such as loop statement, conditional statement and method call discussed

in Section VII.

IV. Details of Analysis

A. Phase 1: Construction of AFG and MFG

A.1 Phase 1(a): Construction of AFG

An alias flow graph (AFG) is an undirected graph, which shows FS alias relations inside

a single method. A node represents either

• an expression that refers to an object (e.g., a reference variable, an instance creation

expression, or a method invocation) or

• parameters to/from a method or an instance.

The former node is called an AFG normal node and the latter is called an AFG special

node. We prepare special nodes as listed in TABLE I. An edge in AFG denotes an alias

relation immediately determined by the intra-method alias analysis. We call such an alias

relation a direct alias relation. Examples are aliases created by assignment statement,

variable’s definition and its use (def-use relation), and assignment of parameters to/from

special nodes. Such aliases are easily obtained by RAset-based FS may-alias analysis

inside methods and classes[16], [28]. Also, a path formed with more than one edge shows

an indirect alias relation.
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TABLE I

AFG special node

Node Description Location

Actual-Alias-in (AA-in) Alias passed by actual parameter to callee. caller

Formal-Alias-in (FA-in) Alias passed by formal parameter to callee. callee

Actual-Alias-out (AA-out) Alias passed by actual parameter to caller. caller

Formal-Alias-out (FA-out) Alias passed by formal parameter to caller. callee

Method-Alias-out (MA-out) Alias passed by return statement to caller. callee

Method-Invocation (MI) Alias passed by return statement to caller. caller

(Parent node for AA-in(out) node)

Instance-Alias-in (IA-in) Alias passed by instance attribute to method. -

Instance-Alias-out (IA-out) Alias passed by instance attribute from method. -

Note that an expression specifying an attribute b (or a method b()) associated with an

instance a is denoted by a.b (or a.b()) in Java. In such a case, we say that the node for

a in AFG is a parent of the node for b, and the node for b is called a child of the node

for a. Such a parent-child relationship is used for the alias computation in Phase 2. Also,

parent-child relationships between an MI node and its corresponding AA-in nodes exist.

A.2 Phase 1(b): Construction of MFG

A method flow graph (MFG) is a directed graph, which represents the caller-callee

relations of methods in a single class. An MFG node denotes the definition of each method,

and when a method A possibly calls a method B, an MFG edge is drawn from the node

for A to the node for B.

The consideration of inheritance and method overriding concepts of methods are also

important. We have to make MFG while considering such concepts (this will be discussed

in Section V-A.2). Each MFG is constructed by the intra-class analysis of caller-callee

relations using class inheritance analysis.

B. Phase 2: Alias Computation Using AFG and MFG

We compute aliases A(X) for a reference-type expression X by AFG traversal. A(X)

means a set of expressions that might refer to the same memory location as X. X is also

an element of A(X). Note that Fig. 5 includes some of the definitions of the symbols used

in this paper.
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We have adopted the following principles for alias computation using AFG:

1. When we compute the aliases for node C with a parent node P , first we compute P ’s

aliases A(P ), and then we collect information about A(P ), such as

• types for A(P ) and

• OC(A(P )),

after which we compute C’s aliases.

There are many cases where we can not compute the aliases for C without A(P ) and

their types. If we omitted P ’s alias computation, we would have had to consider that

P could refer to all the objects instantiated from the classes derived from P , so that

C’s alias result would be enlarged.

We have named this approach ‘parent-first-child-last approach’.

2. When we reach an MI, MA-out, an FA-in, FA-out, an AA-in or AA-out node during

AFG traversal, using MFG we determine the callee or caller method corresponding to

the node, and then we traverse from the corresponding MA-out, MI, AA-in, AA-out,

FA-in or FA-out node, respectively.

AFG is traversed on the whole program or several classes beyond the class boundary with

MFG information. When programs hold recursive method calls, AFG traversal continues

until the increase of the resulting aliases settles down. The details of the AFG traversal

algorithm and its termination are shown in Appendix I. The complexities of Phase 1 and

2 are shown in Appendix II.

V. Example

A. Phase 1: Construction of AFG and MFG

A.1 Phase 1(a): Construction of AFG

Fig. 6 shows a small Java program and its AFG. Nodes in AFG are shown as circles

with expressions inside, and edges are denoted with solid lines. Other strings out of those

nodes (e.g., Integer, =, Integer b, c;) are comments used to identify the occurrences

of expressions and to help the reader imagine the original source text. In Fig. 6(b), since

new Integer(0) is assigned to a in the source program, you can see that a node for new

Integer(0) is connected to node a with an edge. This edge represents a direct alias
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relation.

Fig. 7 is a Java program with two class definitions, and its AFG. Variable i appearing

at each righthand-side expression (line 7 and 10) is a reference-type instance variable.

Thus, AFG special nodes IA-in[i] and IA-out[i] are employed for each method in class

Calc. Also, the expression for the return value, return(i), at line 13 is a reference to an

object. Therefore, an AFG special node MA-out is created for method Calc::result().

Also, b.result() at line 24 in Fig. 7(a) is represented in AFG with a parent node ϕ(b)

and a child node ϕ(result()).

A.2 Phase 1(b): Construction of MFG

Fig. 8 shows a sample program and its MFG. Method p() is not defined in class B,

and method A::p() is executed when p() is activated on the B’s object. In this case,

method call to q() appearing in A::p() causes activation of B::q(), not A::q(). Thus,

the resulting MFG for class B is as shown in Fig. 8(b).

Fig. 9 shows MFGs for class Calc and class Test shown in Fig. 7(a). Since neither

classes do not have intra-class method calls, there is no MFG edge.

B. Phase 2: Alias Computation Using AFG and MFG

We show an alias computation process for <24, c> (boxed with a bold line) in Fig. 10,

which is the same as Fig. 7(a). Also, lower-case letters b and c represent expressions in

the program, and capital letters B and C represent nodes in AFG.

1. Start AFG traversal from AFG normal node ϕ(c), and immediately reach MI node

ϕ(result()) (Fig. 11).

2. Since ϕ(result()) has parent node ϕ(b), first compute b’s aliases to specify the object

related to result()’s aliases.

(a) Compute b’s aliases A(B).

(b) Compute the types of A(B) using class instance creation expressions included in

A(B). In this case, the type is determined to be Calc.

(c) Compute OC(A(B)). The result is {Calc::Calc(), Calc::add(int c), Calc::result()}.
3. Since alias computation for b indicates that it refers to the objects that are instantiated

from class Calc, traverse AFG from MA-out node in ψ(Calc::result()) (Fig. 12).
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(a) Reach IA-in[i] in ψ(Calc::result()).

(b) Traverse AFG from IA-out[i] in {M | ψ−1(M) ∈ OC(this)( ≡ OC(A(B)))}.
Fig. 10 shows c’s aliases (masked) and OC(A(B)) (underlined). Since OC(A(B)) does

not contain Calc::inc(), expressions in Calc::inc() are excluded from the candidates

for c’s aliases.

VI. A Java Alias Analysis Tool (JAAT)

We have implemented the proposed method as a Java Alias Analysis Tool (JAAT).

Using JAAT, we have executed several programs and obtained data.

A. Overview of JAAT

JAAT consists of three subsystems, the analysis subsystem, the XML database subsystem

and the User Interface (UI) subsystem. Fig. 13 shows the structure of JAAT. We will

overview each subsystem.

A.1 Analysis Subsystem

The analysis subsystem consists of three components: The syntax analyzer analyzes

Java source files and generate syntax trees3. The semantic analyzer proceeds with a

semantic analysis that creates symbol tables and extracts declare-refer relations among

identifiers and generates semantic trees. The alias analyzer that generates MFGs and

AFGs as Phase 1, and computes the aliases for the alias criterion specified by the user’s

request as Phase 2. The alias analyzer returns the resulting aliases to the UI subsystem.

A.2 XML Database Subsystem

Generated trees and graphs are proprietary data structures, and are placed into the

memory space of JAAT, as are many other analysis tools[4], [25]. Since the translation

from a source program to the corresponding semantic tree is a fairly time-consuming

process, we would not want to discard analysis results for the analysis sessions. Thus, we

build a database for semantic trees. This feature improves the reusability of the analysis

results along with the AFG/MFG approach.

3The syntax analyzer is generated by ANTLR[9].
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We use an eXtensible Markup Language (XML)[11] database that holds semantic tree

information. The XML converter 4 converts semantic trees to XML documents and vise

versa. The XML database is a collection of XML documents, each of which represents one

Java class or interface. In order to keep the XML database compact, we do not preserve

source text information, such as line breaks, spaces and comments. The formatted source

text in Java can be re-generated by the application that we have also implemented. In

Section VII, we will discuss the effectiveness of the XML database with experimental

results and some XML applications.

A.3 UI Subsystem

The UI subsystem5 has two main functions, editing programs and visualizing the result-

ing aliases. When the user specifies an expression as an alias criterion, the UI subsystem

sends a query to the analysis subsystem. It displays the analysis results on the text win-

dow (Fig. 14(a)). The text window shows the resulting aliases with colored backgrounds.

Statements without any aliases can be compressed on the screen with smaller fonts by the

user’s commands. The user can focus attention to the statements with aliases, and other

statements, masked by the compressed display mode, can be easily enlarged and displayed

normally if required.

Fig. 14(b) is the alias tree window that shows the resulting aliases like a tree, on which

each node denotes class, method or expression. Since aliases tend to be found widely

in many methods or classes, the alias tree window enables the user to grasp the overall

distribution. In Fig. 14(b), two alias trees (left tile) for two alias criteria are shown, on

which the resulting alias trees are spread from Alias[0] and Alias[1] nodes, respectively.

When clicking a node, the user can see the information (right tile) about that node.

B. Evaluation

In order to explore the applicability of JAAT, we have applied it to various sample

programs. TABLE II shows features of the sample programs. Note that we must analyze

not only these sample programs but also all related classes in JDK for inter-method alias

4The XML converter uses libxml[13] as an XML parser.
5The UI subsystem uses Gtk−− tool kit[8].
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TABLE II

characteristics of analyzed programs

Programs Sample Program Related Classes in JDK

Number of Files Number of Lines Number of Files Number of Lines

TextEditor 1(0.1%) 915(0.8%) 802(99.9%) 114,887(99.2%)

WeirdX (X server) 47(5.5%) 16,703(12.6%) 815(94.5%) 115,977(87.4%)

ANTLR (Parser Generator[9]) 129(32.6%) 18,775(35.7%) 267(67.4%) 33,847(64.3%)

DynamicJava (Java Interpreter) 242(22.7%) 32,037(21.1%) 825(77.3%) 119,564(78.9%)

analysis. For example, TextEditor is composed of one file 915 lines long. TextEditor

directly and indirectly uses the classes in JDK, which is in 802 files with a total of 114,887

lines (99.2% of the overall total lines). This data shows that a heavy effort on analysis

must be done for the related classes.

B.1 Computation Time of Phase 1(a)

Our modularized analysis is effective in that we only have to re-analyze modified parts

of the programs when small parts of the program are modified. On the other hand, the

RAset-based analysis[16], [28] can not retain analysis results for each module separately;

therefore, the overall program might have to be re-analyzed. Although user-development

programs are often modified when developing a Java program, their related classes are

seldom modified.

TABLE III(a) shows AFG construction time for sample programs and their related

classes. The analysis time for its related classes is much longer than for those of the

sample programs. For example, TextEditor itself requires only 100 milli seconds, and its

related classes require 99,980 milli seconds. When we modify TextEditor, we do not need

to re-analyze its related classes, but only the TextEditor.

B.2 Computation Time of Phase 1(b)

TABLE III(b) shows MFG construction time for sample programs and their related

classes. Since MFG construction time does not depend on the programs size, but on the

number of intra-class method calls, the MFG construction time of the sample program

is not always longer than that of its related classes. For example, DynamicJava itself
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TABLE III

experimental results

Programs Sample Program Related Classes in JDK

TextEditor 100 99,980

WeirdX 14,220 100,540

ANTLR 12,830 23,480

DynamicJava 56,260 110,150

(a) computation time of Phase 1(a) [ms]

Programs Sample Program Related Classes in JDK

TextEditor 10 390

WeirdX 20 390

ANTLR 100 80

DynamicJava 960 450

(b) computation time of Phase 1(b) [ms]

Programs Average

TextEditor 0.65

WeirdX 0.29

ANTLR 0.17

DynamicJava 0.07

(c) computation time of

Phase 2 [ms]

Programs Instance-based Class-based

TextEditor 4.42 8.31

WeirdX 15.37 24.54

ANTLR 5.94 18.77

DynamicJava 9.16 17.19

(d) average number of detected aliases [nodes]

— PentiumIII-667MHz-512MB(Debian GNU/Linux)

requires 960 milli seconds, but its related classes require only 450 milli seconds. However,

the overall MFG construction time is much smaller than the AFG construction time.

B.3 Computation Time of Phase 2

TABLE III(b) shows average AFG traversal time for all AFG normal nodes in each

sample program. According to TABLE III(b), it is clear that Phase 2 takes much less

computation time than Phase 1. In the case of TextEditor, 0.65 milli seconds is much

smaller than the AFG construction time (100,080 milli seconds = 100 milli seconds +

99,980 milli seconds) for TextEditor and its related classes.

Our on-demand approach might be unsuitable as back-end for data-flow analysis and

compiler optimization which needs whole alias analysis results. However, when we do
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TABLE IV

comparison between Java source files and the XML database in construction of the

semantic tree

From Construction time[s] Data Size[MB]

Java source files 37 25

XML database 24 62

not need to compute the aliases for all expressions, or when we implement an interactive

programming support tool with alias analysis features, our method is a practical choice.

B.4 Average Number of Detected Aliases

The proposed method uses the instance-based approach that can distinguish outer alias

relations on objects instantiated from the same class. On the other hand, if we use the

class-based approach that shares outer alias relations with other objects instantiated from

the same class, analysis precision will decrease. Traditional alias analysis methods are not

concerned with the instance-based approach, but only with the class-based approach.

TABLE III(c) shows the comparison results between those two approaches with regard to

the average number of detected aliases for all AFG normal nodes in each sample program.

For example, the instance-based approach generates more accurate results than the class-

based approach (4.42 nodes v.s. 8.31 nodes) in TextEditor. The average size of aliases is

about 32 – 63% of the class-based approach; therefore, our approach is of practical value.

B.5 Effects of The XML Database

Since the XML database is a text-based database, it requires higher analysis costs than

in a proprietary database. However, we think that the reusability of the data by the XML

database is important. As mentioned in Section VI, since there are many programs and

libraries that can deal with XML documents, we can easily implement XML applications

for program debugging and understanding activities that access the XML database. The

advantages of the XML database are as follows:

• Decreased analysis costs

The implemented XML database holds semantic tree information. In order to evaluate

its effectiveness, we have compared the XML database and the Java source files from
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the viewpoints of time and space.

We have used all source codes for the JDK 1.3 class library. The XML database for

semantic trees took 45.6 seconds to be generated.

We compared the construction time for all semantic trees from the XML database and

the Java source files, and compared disk space to store them as shown in TABLE IV.

It took 37 seconds to construct semantic trees from the Java source files and only 24

seconds to construct the trees from the XML database. While the data size became

large, the improvement of the construction was satisfactory.

• Rapid development of applications

We have implemented three XML applications (see Fig. 13):

– XML-HTML converter (2000 lines in eXtensible Stylesheet Language Transforma-

tions (XSLT)[12]),

– XML-Java converter (2000 lines in XSLT, 1500 lines in C++) and

– XML-XML converter (identifier replacement program, 600 lines in XSLT).

Fig. 15 shows the result of applying the XML-HTML converter. We can see the

Java source text with HTML tags that are generated from the XML representation

of class java.lang.ClassLoader. Using WWW browsers, we can also traverse the

declaration-reference chains for identifiers (these chains are represented by links) such

as types and methods and variables.

VII. Discussion

Our proposed method for alias computation, which consists of two analysis phases,

has produced effective results, and problems with the alias analysis of OO programs are

sufficiently resolved.

In this section, we compare our results and related works, and also show an extension

of our method to programs with pointer variables in ordinary languages.

A. Comparison with Related Works

In this section, we discuss our work and related works from several viewpoints.
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A.1 Two-phase Approach

Several prior research studies also analyze each module in advance[17], [27]. However, in

these studies, each element A (alias relation) in an RAset holds conditions if a specific alias

relation A0 really exists (if true, A exists). These conditions are used for indirect alias

relations; however, all combinations of accessible variables should be taken into account as

candidates for A0. In our method, since each AFG edge represents a direct alias relation,

we can easily extract each indirect alias relation as an AFG path.

Such conditional-based algorithms used in [17], [27] would be suitable as back-end for

data-flow analysis (e.g., program slicing), which needs whole alias relations in target pro-

grams. Since we focus mainly on program debugging and understanding activities using

alias information itself, more simple representation is useful. On the other hand, since

our AFG traversal algorithm is designed in order to compute the aliases for single alias

criterion specified by the user, it is unsuitable for data-flow analysis (however, we will be

able to define new AFG traversal algorithm for computing whole alias relations in target

programs if need).

Also, [17] focuses on ordinary procedural languages only, and [27] is not applied to aliases

with pointers, where both methods have been implemented as prototype tools only.

A.2 Instance-based Analysis

The instance-based approach was proposed in Object slicing, which is a slice extraction

method for OO programs[5]. [5] extends the System Dependence Graph (SDG) and defines

the traversal algorithm to compute slices with regard to a specific object; however, [5]

assumes that the pointer or alias analysis have been already performed by another method.

To get a practical alias analysis tool, combining an alias analysis method and the instance

separation method into a single method is very important, as we have proposed here.

A.3 On-demand Alias Extraction

We applied an on-demand approach to alias analysis. Although alias information has

been used for other analyses such as compiler optimization, data-flow analysis and so

on[1], [2], [16], [22], [24], [28], alias information is itself useful for program debugging and

understanding of Java programs, because, in general, Java programs have many aliases,
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which are caused by reference-type expressions.

Since all alias information in the target program is not necessary on program debugging

and understanding activities, we believe on-demand (or query-based) analysis will be a

cost-effective approach.

A.4 Extensibility of The Algorithm

In Section II, we introduced FS analysis and FI analysis. In general, their algorithms

are different, and are implemented independently; the former uses RAsets, the latter uses

point-to or alias graphs. Since each analysis has merits and demerits on analysis costs and

analysis precision, we think that practical alias analysis tools should be implemented with

both methods. In order to compare various alias analysis methods, many prototype tools

have been implemented[18], [19], [20], [30]. Since those tools are for prototypes, changing

and extending analysis algorithms are not considered.

Using our AFG-based alias analysis approach, we can share intra-method analysis re-

sults with several alias analysis algorithms. Each AFG holds intra-method FS alias anal-

ysis results for its corresponding method. Although FS analysis requires much larger

computation time than FI analysis, intra-method analysis is generally more effective than

inter-method analysis; applying FS policy to the intra-method alias analysis would be a

practical choice.

Since various alias analysis methods can be described in the form of the AFG traversal

algorithm, we can compromise between analysis cost and precision by changing traversal

algorithms. FSOC and FIOC are examples of this approach. So are instance-based and

class-based algorithms (their comparison results were shown in TABLE III(c)).

Currently, the AFG traversal algorithm in Appendix I does not completely satisfy FS

due to the FIOC approach. In order to apply FSOC, flow directions should be represented

using direct edges.

Since distinguishing may-alias relations and must-alias relations is effective for more pre-

cise analysis results, applying this approach to AFG construction and traversal algorithms

would be more powerful by its flexible mechanism on algorithm selection.
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A.5 XML Database

JavaML also describes semantic tree information using XML[10]. [10]’s approach resem-

bles our XML database. However, since JavaML considers only intra-class declaration-

reference relations about identifiers, we are afraid that JavaML can not restore semantic

trees from generated XML documents. Since our generated XML documents can take into

account both inter-class and intra-class declaration-reference relations, semantic trees can

be easily restored from XML documents.

A.6 Thread and Exception

Since FS analysis considers the execution order of statements, its analysis precision

depends on the precision of control-flow information. Thus, if we can collect more precise

control-flow information, FS analysis results should become more precise.

Currently, since JAAT’s control-flow representation does not consider the control-flows

caused by threads and exceptions, its resulting aliases will become imprecise with the

programs that contain threads and exceptions. However, since many researchers have

already proposed control-flow analysis methods for thread and exception[15], [29], we

will be able to adopt the algorithms in [15], [29] to construct the improved control-flow

representation that takes thread and exception into account.

B. Alias Analysis for Pointer Variables

In Section IV, we have described an alias analysis method for reference-type expressions

in Java. This method has been also extended to the alias analysis of ordinary procedural

programs with pointer variables such as C or C++. In such a case, we need special

consideration of indirect reference by pointers (especially, higher-order pointers) because

a callee can modify its caller’s alias relations using n-order (n ≥ 2) pointer variables even

if parameter passing uses a passed-by-value mechanism. The following are the core parts

of the extension.

B.1 Phase 1(a): Construction of AFG

We prepare n AFG nodes for each n-order pointer variable. Fig. 16 shows a C program

and the direct alias relations (i.e, the AFG edge and each element denotes an AFG node)

December 27, 2001 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 23

extracted from the program. Since procedure assign(char **y, char *x) uses a second-

order pointer variable y as the first parameter, we prepare the following nodes:

• AA-in[&b] and AA-in[b] for actual parameter b in procedure main()

• FA-in[y] and FA-in[*y] for formal parameter y in procedure assign(char **y, char

*x)

In addition to AA-in and FA-in nodes, we add the corresponding AA-out and FA-out

nodes, respectively.

B.2 Phase 2: Alias Computation using AFG and MFG

There are two operators for pointer variables – indirect operator ‘∗’ and address operator

‘&’. Expression ∗x represents the value in the memory location to which x refers, and

expression &x represents x’s memory location. To adapt the alias computation algorithm

to these operators, we have also applied the parent-first-child-last approach to them. For

example, when we compute the aliases for ∗a, first we compute the aliases for a. The

details of the AFG traverse algorithm for ‘∗’ and ‘&’ will be represented in Fig. 17 as

[Cond.8] and [Cond.9] at Step 2.

VIII. Conclusions

We have proposed an alias analysis method for OO programs, which is a scalable and

on-demand method with high precision and extensibility. Also, we have implemented this

method as JAAT, and evaluated its effectiveness. JAAT consists of three subsystems, the

analysis subsystem, the XML database subsystem, and the UI subsystem. The analysis

subsystem can analyze large programs such as a JDK class library. We can save semantic

tree information to the XML database to decrease the analysis cost and improve reusability

of the analysis results.

IX. Future Research

We plan to implement the FSOC approach, and compare this approach with the existing

FIOC approach. In addition, we also plan to extend our AFG construction and AFG

traversal algorithms for exceptions and threads.
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Appendix

I. AFG Traversal Algorithm

In this section, we will describe the AFG traversal algorithm in Phase 2. Phase 2 is the

most important phase for our AFG-based alias analysis because we use query-based alias

computation, and we can control the analysis cost and precision by changing the AFG

traversal algorithm.

Fig. 17 shows the AFG traversal algorithm used in JAAT. The algorithm uses the FIOC

and FS may-alias approaches.

In Step 1, we identify AFG node E for e that is specified by the user as an alias criterion.

In Step 2, we start AFG traversal from E where we find reachable nodes in AFG from

E. This step requires not only simply traversing AFG edges but also additional processes.

Traversing AFG edges is only for intra-method alias relations identified in Phase 1(a);

thus, more complicated alias relations such as inter-method or outer alias relations have

to be identified here. We perform the following processes according to the classification of

nodes during the AFG traversal.

If we arrive at AFG node C on the traversal, we do the following based on the node

type of C.

1. C is an AFG normal node that has parent node P :

Compute P ’s aliases A(P ) by applying Step 2 recursively to P , and infer A(P )’s

types from the instance creation expressions in A(P ). Next, compute OC(A(P )).

If C’s corresponding expression c is an instance variable, traverse AFG from IA-

in[c] and IA-out[c] nodes held by OC(A(P ))’s corresponding methods, and traverse

AFG from the nodes (here, we define each node as N) that satisfy all the following

conditions:

• N ’s corresponding expression is an instance variable named c, and

• N ’s parent node is in A(P ).

2. C is a MI node that has parent node P :

Compute P ’s aliases A(P ), infer A(P )’s type, and compute OC(A(P )). Next,

traverse AFG from MA-out nodes whose corresponding methods are in OC(A(P ))

and their signatures are the same as that of C’s corresponding method invocation
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expression.

3. C is an IA-in[c] or IA-out[c]:

Traverse AFG from IA-out[c] or IA-in[c] held by OC(this)’s corresponding AFGs.

OC(this) means the object context for the currently focused instance (i.e, this

object). If an alias criterion is in this object, OC(this) is initialized as a set of

constructors and methods that are directly or indirectly called from the construc-

tors. Otherwise, OC(this) is initialized with OC(A(P )) (A(P ) is an alias set that

refer to the instances that have c as an instance variable).

This process is for the instance-based approach.

For example, suppose that we have reached IA-in[b] or IA-out[b] computing the

aliases for a.b. After finishing the alias computation for a, we begin alias compu-

tation for b using information about a’s type and OC(a). When a’s type is A, the

alias computation for IA-out[b] or IA-in[b] is proceeded under OC(this)(≡ OC(a))

in class A. If we can not determine the unique A(a)’s type, we should traverse

AFG in two or more classes inferred from A(a).

4. C is an AA-in[c] or AA-out[c] that has parent node P :

Traverse AFG from FA-in[c] or FA-out[c] whose corresponding methods are called

by MI node P .

When P has parent node Q, we will apply a dynamic binding policy to the alias

computation for P . Thus, P ’s invoked methods are determined by Q’s type, i.e,

Q’s alias analysis results.

5. C is an FA-in[c] or FA-out[c]:

Suppose that method mB is a method that has formal parameter c. First, collect

methods mA that are in OC(this) and calls mB, using MFG. Next, traverse AFG

from AA-in[c] or AA-out[c] in mA’s corresponding AFGs.

6. C is an MA-out node:

Suppose that method mB is a method that has C’s corresponding return expres-

sion. First, collect methods mA that are in OC(this) and calls mB, using MFG.

Next, traverse AFG from MI nodes in mA’s corresponding AFGs.

7. C is an MI node:
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TABLE V

elements of AFG-based alias analysis

Symbol Description

A Maximum number of attributes in each class (inherited attributes are also counted)

M Maximum number of methods in each class (inherited methods are also counted)

L Maximum number of sum of local variables and parameters in a method

C Total number of classes in the target program

E Total number of expressions in the target program

k Maximum length of parent-child chains

(when a chain forms a recursive loop, we do not count the previously visited expressions)

First, extract methods mA that are in OC(this) and are called by C. Next, traverse

AFG from the MA-out nodes in mA’s corresponding AFGs.

In our AFG traversal algorithm, we applied the following rules to detect its termination.

• When AFG traversal reaches node N0 to compute the aliases for c, we record N0 to

RNlist(c); RNlist(c) represents reached nodes list (RNlist) for c.

• When the AFG traversal reaches the nodes in the RNlist again, we no longer traverse

AFG.

• A RNlist is created for each alias set that may refer to the same memory location. For

example, when a.b is an alias criterion, RNlist(a) and RNlist(b) is created.

• Suppose that a.b.c is an alias criterion and we have reached node N1 on the alias

computation for a. When we check if N1 is in RNlist(a), we should also check if N1 ∈
RNlist(b) and check if N1 ∈ RNlist(c), respectively.

Since the size of each RNlist is less than E and the number of the RNlist is less than k

(the maximum length of the parent-child chain), we can prevent creating RNlists infinitely

so that AFG traversal must terminate.

II. Algorithm Complexity

We discuss algorithm complexity for each phase.

TABLE V shows the elements of AFG-based alias analysis.

• Phase 1(a): Construction of AFG

When the target program has loop statements, we must analyze expressions at

most E2 times. In order to analyze each expression, two or three set operations
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are needed. Since set operation cost is proportional to the number of elements

in the target set, the time complexity of set operation is covered with O(A + L).

Thus, in the worst case, the time complexity is O((A + L) · E2). The number of

AFG nodes is O(E) and the number of AFG edges is O(E2). The space complexity

is O(E2) in the worst case.

In our experimentation, both the time complexity and the space complexity were

near liner order.

• Phase 1(b): Construction of MFG

One MFG is constructed for each class. Since we must check each expression once

in order to find method calls, the time complexity is O(E). Since the number of

methods in a class is less than M , the number of MFG nodes is O(C ·M), and the

number of MFG edges is O(C ·M2). Thus, the space complexity is O(C ·M2) in

the worst case.

Also, the complexity was near liner order in our experimentation.

• Phase 2: Alias Computation using AFG and MFG

Since we use the instance-based approach, we must also compute the aliases for

parent nodes, recursively.

In the worst case, the time complexity and the space complexity are both O(Ek);

however, such a case is quite rare. In our experimentation, k’s values were 2 or 3

on average.
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1: class Employee {
2: String name; int salary; Employee supervisor;

3: Employee(String n, int s) {
4: name = n;

5: salary = s;

6: supervisor = null;

7: }
8: void add salary(int n) {
9: salary += n;

10: }
11: void set supervisor(Employee e) {
12: supervisor = e;

13: }
14: void print() {
15: System.out.println(name + ” Salary:” + salary);

16: }
17: }
18: class Manager extends Employee {
19: Manager(String n, int s) {
20: super(n, s);

21: }
22: void manage(Employee e) {
23: e.set supervisor(this);

24: e.add salary(200);

25: }
26: }
27: class Office {
28: public static void main(String args[]) {
29: Employee Emp = new Employee(”Emp”, 750);

30: Manager Mng = new Manager(”Mng”, 750);

31: B.manage(Emp);

32: Emp.print();

33: Mng.print();

34: }
35: }

(a) source program

% java Office

Emp Salary: 950

Mng Salary: 750

(b) program execution

(with error)

% java Office

Emp Salary: 750

Mng Salary: 950

(c) program execution

(without error)

Fig. 1. example of alias
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1: Integer a, b, c;

2: a = new Integer(1);

3: b = new Integer(2);

4: c = b;

5: System.out.println(c);

6: c = a;

7: System.out.println(c);

(a) FI alias analysis

a c b new Integer(2)new Integer(1)

(b) alias graph

1: Integer a, b, c;

2: a = new Integer(1);

3: b = new Integer(2);

4: c = b;

5: System.out.println(c);

6: c = a;

7: System.out.println(c);

(c) FS alias analysis

St.(s) Reaching alias set(RA(s))

1 φ

2 φ

3 {[(2, a), (2, new Integer(1))]}
4 {[(2, a), (2, new Integer(1))], [(3, b), (3, new Integer(2))]}
5 {[(2, a), (2, new Integer(1))], [(4, c), (3, b), (4, b), (3, new Integer(2))]}
6 {[(2, a), (2, new Integer(1)), [(4, c), (5, c), (3, b), (4, b), (3, new Integer(2))]}
7 {[(6, c), (2, a), (6, a), (2, new Integer(1))], [(3, b), (4, b), (3, new Integer(2))]}

(d) reaching alias set (RAset)

Fig. 2. FI alias analysis and FS alias analysis

1: x = new A;

2: y = new A;

3: x.s = . . . ;

4: y.s = . . . ;

5: class A {
6: Integer s;

7: . . . (. . . ) {
8: . . . = s;

Fig. 3. aliases without instance separation

December 27, 2001 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 32

1: public class Calc {
2: Integer i;

3: public Calc() {
4: i = new Integer(0);

5: }
6: public void inc() {
7: i = new Integer(i.intValue() + 1);

8: }
9: public void add(int c) {
10: i = new Integer(i.intValue() + c);

11: }
12: public Integer result() {
13: return(i);

14: }
15: }

(a) flow insensitive object context (FIOC)

1: public class Calc {
2: Integer i;

3: public Calc() {
4: i = new Integer(0);

5: }
6: public void inc() {
7: i = new Integer(i.intValue() + 1);

8: }
9: public void add(int c) {
10: i = new Integer(i.intValue() + c);

11: }
12: public Integer result() {
13: return(i);

14: }
15: }

(b) flow sensitive object context (FSOC)

Fig. 4. example of object context

ϕ(x): mapping from expression x to its corresponding AFG node

ϕ−1(X): mapping from AFG node X to its corresponding expression

A(X): aliases for AFG node X

NP (X): a parent AFG node for AFG node X

ψ(m): mapping from method m to its corresponding AFG

ψ−1(M): mapping from AFG M to its corresponding method

e =id e′: true when e and e′ are the same identifiers, otherwise false

Fig. 5. definition of symbols

1: Integer a = new Integer(0);

2: Integer b, c;

3: b = a;

4: c = b;

(a) source program

c  =  b  ;

b  =  a  ;

Integer a = new Integer (0);

Integer b, c;

(b) AFG

Fig. 6. sample program and its AFG (1)
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1: public class Calc {
2: Integer i;

3: public Calc() {
4: i = new Integer(0);

5: }
6: public void inc() {
7: i = new Integer

(i.intValue() + 1);

8: }
9: public void add(int c) {
10: i = new Integer

(i.intValue() + c);

11: }
12: public Integer result() {
13: return(i);

14: }
15: }

16: class Test {
17: Calc a, b;

18: Integer c;

19: Test() {
20: a = new Calc();

21: b = new Calc();

22: a.inc();

23: b.add(1);

24: c = b.result();

25: }
26: }

(a) source program

public class Calc
Integer i;

public void inc()

i = new Integer(i.intValue() + 1);

IA-in[i]

IA-out[i]

i = new Integer(0);

public Calc() IA-in[i]

IA-out[i]

public void add(int c)

i = new Integer (i.intValue() + c);

IA-in[i]

IA-out[i]

public Integer result() IA-in[i]

return  (i);

MA-out

Calc b  ;
class Test

Test()

Calc a  ; Integer  c  ;

IA-out[c]IA-out[b]IA-out[a]

a = new Calc(); b = new Calc();

a.inc(); b.add(1);

c = b.result ();

IA-in[a] IA-in[c]IA-in[b]

IA-out[i]

(b) AFG

Fig. 7. sample program and its AFG (2)
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1: class A {
2: void p() { q(); }
3: void q() { r(); }
4: void r() { }
5: }

A::r()A::p() A::q()

(a) class A

6: class B extends A {
7: void q() { s(); }
8: void s() { }
9: }

B::q() B::s()A::p() A::r()

(b) class B

Fig. 8. sample program and its MFG

Calc::Calc() Calc::inc()

Calc::add() Calc::result()

(a) class Calc

Test::Test()

(b) class Test

Fig. 9. MFGs for Fig. 7(a)

1: public class Calc {
2: Integer i;

3: public Calc() {
4: i = new Integer(0);

5: }
6: public void inc() {
7: i = new Integer

(i.intValue() + 1);

8: }
9: public void add(int c) {
10: i = new Integer

(i.intValue() + c);

11: }
12: public Integer result() {
13: return(i);

14: }
15: }

16: class Test {
17: Calc a, b;

18: Integer c;

19: Test() {
20: a = new Calc();

21: b = new Calc();

22: a.inc();

23: b.add(1);

24: c = b.result();

25: }
26: }

Fig. 10. alias set for <24, c> (masked expressions are aliases)
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 Calc  b  ;
class Test

Test()

Calc a  ;  Integer  c  ;

IA-out[c]IA-out[b]IA-out[a]

a = new Calc(); b = new Calc();

a.inc(); b.add(1);

c = b.result ();

IA-in[a] IA-in[c]IA-in[b]

Fig. 11. alias set for <24, b> in Fig.10 (masked expressions are aliases)

public class Calc
Integer i;

public void inc()

i = new Integer(i.intValue() + 1);

IA-in[i]

IA-out[i]

i = new Integer(0);

public Calc() IA-in[i]

IA-out[i]

public void add(int c)

i = new Integer (i.intValue() + c);

IA-in[i]

IA-out[i]

public Integer result() IA-in[i]

return  (i);

MA-out IA-out[i]

Fig. 12. alias set for <24, result()> in Fig.10 (masked expressions are aliases)

Parse tree AFGSource file Semantic tree

User

MFG

XML database

Syntax
analyzer

Semantic
analyzer

Alias
analyzer

Semantic tree-XML
converter

XML-XML
converter

Source text with HTML tags

Source file

GUI

User

[XML database subsystem]

[Analysis subsystem]

[UI subsystem]

XML-HTML
converter

XML-Java
converter

Fig. 13. JAAT (structure)
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(a) text window

(b) alias tree window

Fig. 14. JAAT (UI)

Fig. 15. HTML representation of Java source file
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void main() {
1: char *a, *b;

2: char c = ’ ’;

3: a = &c;

4: assign(&b, a);

5: putc(*b);

}

6: void assign(char **y,

char *x) {
7: *y = x;

}

(a) sample C program

[(3, &c), (3, a)]

[(3, a), (4, a)]

[(1, b), (4, b)]

[(4, &b), (4, AA-in[y])]

[(4, b), (4, AA-in[*y])]

[(4, a), (4, AA-in[x])]

[(4, AA-out[*y]), (4, b)]

[(4, b), (5, b)]

[(6, FA-in[y]), (7, y)]

[(6, FA-in[*y]), (7, *y)]

[(6, FA-in[x]), (7, x)]

[(7, x), (7, *y)]

[(7, *y), (6, FA-out[*y])]

(b) extracted direct alias

relations

Fig. 16. alias analysis for programs with pointer variables
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Step 1: Specify an alias criterion e (E := ϕ(e)).

Step 2: Start AFG traversal from E.

When we traverse AFG, we perform following processes at each reachable node C:

[Cond.1] C is an AFG normal node that has a parent node:

1. c := ϕ−1(C), P := NP (C)

2. Compute P ’s aliases A(P ).

3. Compute A(P )’s type using class instance creation expressions included in A(P )

4. Compute OC(A(P )).

5. Traverse AFG from IA-in[c] and IA-out[c] nodes in {GM | ψ−1(GM ) ∈ OC(A(P ))}, and

Traverse AFG from {N | NP (N) ∈ A(P ) and ϕ−1(N) =id c}.
[Cond.2] C is an MI node that has a parent node:

1. c := ϕ−1(C), P := NP (C)

2. Compute P ’s aliases A(P ).

3. Compute A(P )’s type using class instance creation expressions included in A(P ).

4. Compute OC(A(P )).

5. Traverse AFG from MA-out nodes in {M | ψ−1(M) ∈ OC(A(P ))}.
[Cond.3] C is an IA-in or IA-out node:

1. c := ϕ−1(C)

2. Traverse AFG from IA-out[c] or IA-in[c] in {M | ψ−1(M) ∈ OC(this)}.
[Cond.4] C is an AA-in or AA-out node:

1. Compute method m that MI node NP (C) calls.

2. Traverse AFG from the corresponding FA-in or FA-out node in ψ(m).

[Cond.5] C is an FA-in or FA-out node:

1. MB := {M | C ∈ M}, mB := ψ−1(MB)

2. mA := {m | m ∈ OC(this) and m calls mB} (using MFG)

3. MA := ψ(mA)

4. Traverse AFG from the corresponding AA-in or AA-out node in MA.

[Cond.6] C is an MA-out node:

1. MB := {M | C ∈ M}, mB := ψ−1(MB)

2. mA := {m | m ∈ OC(this) and m calls mB} (using MFG)

3. MA := ψ(mA)

4. In MA, traverse AFG from MI nodes that call mB

[Cond.7] C is a MI node:

1. mA := {m | m ∈ OC(this) and C calls m}
2. MA := ψ(mA)

3. Traverse AFG from MA-out nodes in MA.

. . . . . . . . . . . . . . . . . . . . . . [Cond.8] and [Cond.9] are for programs that have pointer variables.
[Cond.8] C is an AFG normal node with ’∗’ operator, such as ∗x:

1. X := ϕ(x)

2. Compute X’s aliases A(X).

3. Traverse AFG from {ϕ(y) | ϕ(&y) ∈ A(X)} and {ϕ(∗y) | ϕ(y) ∈ A(X)}.
[Cond.9] C is an AFG normal node with ’&’ operator, such as &x :

1. X := ϕ(x)

2. Compute X’s aliases A(X).

3. Traverse AFG from {ϕ(y) | ϕ(∗y) ∈ A(X)} and {ϕ(&y) | ϕ(y) ∈ A(X)}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 3: Expressions corresponding to reachable nodes are e’s aliases.

Fig. 17. alias computation algorithm
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