
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 1

Measuring Similarity of Large Software

Systems Based on Source Code

Correspondence

Tetsuo Yamamoto, Makoto Matsushita, Toshihiro Kamiya, and Katsuro

Inoue

The authors are with the Software Engineering Research Group (C/O Katsuro Inoue), Division of Software

Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-

8531, JAPAN. E-mail: {t-yamamt, matusita}@ics.es.osaka-u.ac.jp, kamiya@is.aist-nara.ac.jp, inoue@ics.es.osaka-

u.ac.jp.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 2

Abstract

It is an important and intriguing issue to know the quantitative similarity of large software systems.

In this paper, a similarity metric between two sets of source code files based on the correspondence of

overall source code lines is proposed. A Software similarity MeAsurement Tool SMAT was developed and

applied to various versions of an operating system(BSD UNIX OS). The resulting similarity valuations

clearly revealed the evolutionary history characteristics of the BSD UNIX Operating System. Also, as an

extension of SMAT, a system-wide difference extraction tool was developed, which effectively compressed

a set of source code files relative to a base set.

Keywords

BSD UNIX, Code Clones, Plagiarism, Software Metrics

I. Introduction

Long-life software systems evolve through multiple modifications. Many different ver-

sions are created and delivered. The evolution is not simple and straightforward. It is

common that one original system creates several distinct successor branches during evo-

lution. Several distinct versions may be unified later and merged into another version. To

manage the many versions correctly and efficiently, it is very important to know objectively

their relationships. There has been various kinds of research on software evolution[1], [2],

[3], [4], most of which focused on changes of metric values for size, quality, delivery time

or process, etc.

Closely related software systems usually are identified as product lines, so development

and management of product lines are actively discussed[5]. Knowing development relations

and architectural similarity among such systems is a key to efficient development of new

systems and to well-organized maintenance of existing systems[6].

We have been interested in measuring the similarity between two large software systems.

A quantitative and objective measure for similarity is an important vehicle for knowing

the evolution of software systems, as is done in the Bioinformatics field. In Bioinformatics,

distance metrics are based on the alignment of DNA sequences. Phylogenetic trees using

this distance are built to illustrate relations among species[7]. There are huge numbers of

software systems already developed in the world and it should be possible to identify the

evolution history of software assets in a manner like that done in Bioinformatics.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 3

Various research on finding software similarities has been performed, most of which

focused on detecting program plagiarism[8], [9], [10]. The usual approach extracts several

metric values (or attributes) characterizing the target programs and then compares those

values, usually in the educational environment with limited applicability elsewhere.

There also has been some research on identifying similarity in large collections of plain-

text or HTML documents[11], [12]. These works use sampled information such as keyword

sequences or “fingerprints”. Similarity is determined by comparing the sampled informa-

tion.

It is important that the software similarity metric is not based on sampled information

as the attribute value (or fingerprint), but rather reflect the overall system characteris-

tics. A collection of all source code files used to build a system contains all the essential

information of the system. Thus, we analyze and compare overall source code files of the

system. This approach requires more computation power and memory space than using

sampled information, but the current computing hardware environment allows this overall

source code comparison approach.

In this paper, a similarity metric called Sline, is used, which is defined as the ratio

of shared source code lines to the total source code lines of two software systems being

evaluated.

Sline requires computing matches between source code lines in the two systems, beyond

the boundaries of files and directories. A naive approach for this would be to compare all

source file pairs in both systems, with a file matching program such as diff[13], but the

comparison of all file pairs would be impractical to apply to large systems with thousands

of files.

Insted, an approach is proposed that improves efficiency and precision. First, a fast,

code clone (duplicated code portion) detection algorithm is applied to all files in the two

systems and then diff is applied to the file pairs where code clones are found.

Using this concept, a similarity metric evaluation tool called SMAT(Software similar-

ity MeAsurement Tool) was developed and applied to various software system targets.

We have evaluated the similarity between various versions of BSD UNIX OS, and have

performed cluster analysis of the similarity values to create a dendrogram that correctly

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 4

shows evolution history of BSD OS. Also, the similarity evaluations of student compiler

system projects have confirmed the ability for plagiarism detection.

Further, using a method similar to measuring the similarity, a tool called DET(Difference

Extraction Tool) was developed for extracting the difference between two systems. Ap-

plication of DET it to several versions of FreeBSD OS has confirmed its effectiveness

for compressing one software version to another and identifying system-wide distinctions,

rather than simply using diff.

Section II presents a formal definition of similarity and its metric Sline. Section III de-

scribes a practical method for computing Sline and shows the implementation tool SMAT.

Section IV shows applications of SMAT to versions of BSD UNIX OS and a student

project. Section V shows an extension to a difference extraction tool DET. Results of our

work and comparison with related research are given in Section VI. Concluding remarks

are given in Section VII.

II. Similarity of Software Systems

A. Definitions

First we will give a general definition of software system similarity and then a concrete

similarity metric.

A software system P is composed of elements p1, p2, · · · , pm, and P is represented as a set

{p1, p2, · · · , pm}. In the same way, another software system Q is denoted by {q1, q2, · · · , qn}.
We will choose the type of elements, such as files and lines, based on the definitions of the

similarity metrics described later.

Suppose that we are able to determine matching between pi and qj (1 ≤ i ≤ m, 1 ≤ j ≤
n), and we call the set of all matched pair (pi, qj) Correspondence Rs, where Rs ⊆ P ×Q.

Similarity S of P and Q with respect to Rs is defined as follows.

S(P, Q) ≡ |{pi|(pi, qj) ∈ Rs}|+ |{qj|(pi, qj) ∈ Rs}|
|P |+ |Q|

As shown in Fig. 1, this definition means that the similarity is the ratio of the number

of elements in Rs to the total number of elements in P and Q. If Rs becomes smaller, S

will decrease, and if Rs = φ then S = 0. Moreover, when P and Q are exactly the same

systems, ∀i(pi, qi) ∈ Rs and then S = 1.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 5

Software system P Software system Q
Correspondence Rs

p1

p2

p3

pm

q1
q2

qn

Fig. 1. Correspondence of elements Rs.

B. Similarity Metrics

The above definition of the similarity leaves room for implementing different concrete

similarity metrics by choosing the element types or correspondences. Here, we show a

concrete similarity metric which will be used in subsequent discussions.

Similarity Metric Sline using equivalent line matching:

Each element of a software system is a single line of each source file composing the system.

For example, if a software system X consists of source code files x1, x2, · · · and each source

code file xi is made up of lines xi1, xi2, · · · , then x11, x12, · · · , x21, x22, · · · , xi1, xi2, · · · , x(i+1)1,

x(i+2)2, · · · are the elements. Pair (xij, ymn) of two lines xij and ymn in system X and sys-

tem Y is in correspondence when xij and ymn match as equivalent lines. The equivalency

is determined by the duplicated code detection method and file comparison method dis-

cussed in detail later. Intuitively, two lines with minor distinction such as space/comment

modification and identifier rename are recognized as equivalent.

Sline is not affected by file renaming or path changes. Modification of a small part in a

large file does not give great impact to the resulting value. On the other hand, finding

equivalent lines generally would be a time and space consuming process. A practical

approach for this is given in Section III.

It is possible to consider other definitions of similarity and its metrics. Comparison to

other such approaches are presented in Section VI.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 6

III. Measuring Sline

A. Approach

The key of Sline is computing the correspondence. A straightforward approach we

might consider is that first we construct appended files x1 ‖ x2 ‖ · · · and y1 ‖ y2 ‖ · · ·
which are concatenation of all source code files x1, x2, · · · and y1, y2, · · · for systems X

and Y , respectively. Then we extract the longest common subsequence (LCS) between

x1 ‖ x2 ‖ · · · and y1 ‖ y2 ‖ · · · by some tool, say diff [13], which implements an LCS-finding

algorithm[14], [15], [16]. The extracted LCS is used as the correspondence.

However, this method is fragile to the change of file concatenation order caused by

renaming files and reorganizing file structures, since diff cannot follow line block movement

to different positions in the files. For example, for two files x1 ‖ x2 and x2 ‖ x1, the LCS

found by diff is either x1 or x2 (longer one of them).

Another approach is that we try to apply diff to all combination of files between two sys-

tems. This approach might work, but the scalability would be an issue. The performance

applied to huge systems with thousands of files would be doubtful.

Here, an approach is proposed that effectively uses both diff and a clone detection tool

named CCFinder[17], [18].

CCFinder is a tool used to detect duplicated code blocks (called clones) in source code

written in C, C++, Java, and COBOL. It effectively performs lexical analysis, transforma-

tion of tokens, computing duplicated token sequences by a suffix tree algorithm[19], and

then reports the results. The clone detection is made along with normalization and param-

eterization, that is, the location of white spaces and lines breaks are ignored, comments are

removes, and the distinction of identifier names are disregarded. By the normalization and

parameterization, code blocks with minor modification are effectively detected as clones.

Appling CCFinder to two concatenated files x1 ‖ x2 ‖ · · · and y1 ‖ y2 ‖ · · · finds all clone

pairs (bx, by) where bx is a subsequence of x1 ‖ x2 ‖ · · ·. and by is that of y1 ‖ y2 ‖ · · ·.
Those clone pairs found are members of the correspondence.

Code clones are only non-gapped ones. Closely similar code blocks with a gap block(unmatching

to them) such as l1l2 and l1lxl2 are not detected as a larger clone l1 ∗ l2 but identified as

two smaller clones l1 and l2. When the lenghts of l1 and l2 are less than threshold of

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 7

File A’

File A’’

File B

File C

File A

File B

Software system X Software system Y

Fig. 2. How to find a correspondence.

CCFinder(usually 20 tokens), then CCFinder reports no clones at all. Therefore, to re-

claim those tokens diff is applied to all pairs of two file xi and yj, where CCFinder detects

a clone pair (bx, by) and bx is in xi and by is in yj, respectively. The result of diff is the

longest common subsequences, which also are considered members of the correspondence.

The combined results of CCFinder and diff is increases Sline by about 10%, compared to

using only CCFinder.

B. Example of Measurement

A simple example of computing Sline with CCFinder and diff is given here. Consider a

software system X and its extended system Y as shown in Fig. 2. X is composed of two

source code files A and B, and Y is composed of four files A′, A′′, B, and C. Here, A′ and

A′′ are evolved versions of A, and C is a newly created file.

At first, CCFinder is applied to detect clones between two concatenated files A ‖ B and

A′ ‖ A′′ ‖ B′ ‖ C. This finds clones between A and A′, A and A′′, and B and B′. Assume

that no clones are detected between other combination of files. Each lines in the clones

found are put into the correspondence.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 8

Execution of
CCFinder

Execution of
diff

Construction of
Correspondence

X

Y

Step2 Step3

Step4

Step1

Computing
Sline

Step5

Sline

Preprocess

Fig. 3. Similarity measuring process.

Next, diff is applied to file pairs A and A′, A and A′′, and B and B′. Then, the lines in

the resulting common subsequences by diff are added to the correspondence obtained by

the clone detection.

This approach has benefits in the sense that we do not need to perform diff on all the

file pair combinations. Also, we can chase movement of lines inside or outside of the files,

which cannot be detected by diff only. Also, this approach can identify and count the

directives and macros not detected by CCFinder.

C. SMAT

Based on this approach, we have developed a similarity evaluation tool SMAT which

effectively computes Sline for two systems. The following is the detailed process of the

system. An overview is illustrated in Fig. 3.

INPUTS : File paths of two systems X and Y , each of which represents the subdirectories

containing all source codes

OUTPUTS : Sline of X and Y (0 ≤ Sline ≤ 1)

Step 1 Preprocessing:

All comments, white spaces, and empty lines are removed, which do not affect the execution

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 9

of the programs. This step helps to improve the precision of the following steps, especially

Step 3.

Step 2 Execution of CCFinder:

We execute CCFinder between two concatenated files of X and Y . CCFinder has an option

for the minimum number of tokens of clones to be detected, and which is set at 20. This

number is obtained through experiences. Smaller numbers generate many meaningless

clones and larger numbers increase the chance of overlooking useful clones.

Step 3 Execution of diff:

Execute diff on any file pair xi and yj in X and Y respectively, where at least one clone

is detected between xi and yj.

Step 4 Construction of Correspondence:

The lines appearing in the clones detected by Step 2 and in the common subsequences

found in Step 3 are merged to determin the correspondence between X and Y .

Step 5 Computing Sline:

Sline is calculated using its definition; i.e., the ratio of lines in the correspondence to those

in whole systems. Note that the number of lines in the whole systems is one after Step 1

where all comments and white spaces are removed.

SMAT works on Windows 2000 for the source code files written in C, C++, Java, and

COBOL.

For two systems,each of which has m files of n lines, the worst case time complexity is

as follows. CCFinder requires O(mn log(mn))[17]. diff requires O(n2 log n)[13] for a single

file pair and we have to perform O(m2) execution of diff for all file pairs. So in total,

O(m2n2 log n) is the worst case time complexity.

However, in practice, the execution of diff is not performed for all file pairs. In many

cases, code clones are not detected between all file pairs, but only a few file pairs.

Practically, the execution speed of SMAT is fairly efficient, since it grows super-linearly.

For example, it took 329 seconds to compute Sline of about 500K line C source code files

in total on Pentium III 1GHz CPU system with 2G Bytes memory, and 980 seconds for

1M line files. On the other hand, in the case of using only diff for all file pairs, it took

about 6 hours to compute Sline for 500K line files.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 10

4.4BSD Lite(1994/03)

FreeBSD 2.0(1994/11)

FreeBSD 2.0.5(1995/06)

FreeBSD 2.01(1995/11)

FreeBSD 2.2(1997/03)

FreeBSD 3.0(1998/10)

FreeBSD 4.0(200/03)

NetBSD 1.0(1994/10)

NetBSD 1.3(1998/01)

NetBSD 1.4(1999/05)

NetBSD 1.5(2000/12)

NetBSD 1.1(1995/11)

4.4BSD Lite2(1995/06)

OpenBSD 2.3(1998/05)

OpenBSD 2.4(1996/12)

OpenBSD 2.5(1999/05)
OpenBSD 2.6(1999/12)

OpenBSD 2.7(2000/06)
OpenBSD 2.8(2000/12)

OpenBSD 2.2(1997/12)

OpenBSD 2.0(1996/10)

OpenBSD 2.1(1997/06)

NetBSD 1.2(1996/10)

Fig. 4. BSD UNIX evolutional history.

IV. Applications of SMAT

A. BSD UNIX OS Evolution

A.1 Target systems

To explore the applicability of Sline and SMAT, we have used many versions of open-

source BSD UNIX operating systems, namely 4.4-BSD Lite, 4.4-BSD Lite2[20], FreeBSD[21],

NetBSD[22], OpenBSD[23]. The evolution histories of these versions is shown in Fig. 4[24].

As shown in this figure, 4.4-BSD Lite is the origination of the other versions. New versions

of FreeBSD, NetBSD, and OpenBSD are currently being developed in open source devel-

opment style. 23 major-release versions, as listed in Fig. 4, were chosen for computing

Sline of all pair combinations. The evaluation was performed only on source code files

related to the OS kernels written in C(i.e., *.c or *.h files).

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 11

TABLE I

The number of files and LOC of OS.

FreeBSD

Version 2.0 2.0.5 2.1 2.2 3.0 4.0

No. of files 891 1018 1062 1196 2142 2569

LOC 228868 275016 297208 369256 636005 878590

NetBSD

Version 1.0 1.1 1.2 1.3 1.4 1.5

No. of files 2317 3091 4082 5386 7002 7394

LOC 453026 605790 822312 1029147 1378274 1518371

OpenBSD

Version 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

No. of files 4200 4987 5245 5314 5507 5815 6074 6298 6414

LOC 898942 1007525 1066355 1079163 1129371 1232858 1329293 1438496 1478035

4.4BSD

Version Lite Lite2

No. of files 1676 1931

LOC 317594 411373

TABLE II

Part of Sline values between BSD OS kernel files.

FreeBSD 2.0 FreeBSD 2.0.5 FreeBSD 2.1 FreeBSD 2.2 FreeBSD 3.0 FreeBSD 4.0 4.4BSD-Lite

FreeBSD 2.0 1.000 0.833 0.794 0.550 0.315 0.212 0.419

FreeBSD 2.0.5 0.833 1.000 0.943 0.665 0.392 0.264 0.377

FreeBSD 2.1 0.794 0.943 1.000 0.706 0.421 0.286 0.362

FreeBSD 2.2 0.550 0.665 0.706 1.000 0.603 0.405 0.226

FreeBSD 3.0 0.315 0.392 0.421 0.603 1.000 0.639 0.138

FreeBSD 4.0 0.212 0.264 0.286 0.405 0.639 1.000 0.101

4.4BSD-Lite 0.419 0.377 0.362 0.226 0.138 0.101 1.000

4.4BSD-Lite2 0.290 0.266 0.258 0.179 0.133 0.100 0.651

NetBSD 1.0 0.440 0.429 0.411 0.291 0.220 0.140 0.540

NetBSD 1.1 0.334 0.348 0.336 0.254 0.193 0.152 0.421

NetBSD 1.2 0.255 0.269 0.265 0.225 0.190 0.158 0.331

NetBSD 1.3 0.205 0.227 0.225 0.201 0.208 0.179 0.259

A.2 Results

TABLE I shows the number of files and total source code lines of each version after the

preprocessing of Step 1. TABLE II shows part of the resulting values Sline for pairs of

each version. Note that TABLE II is symmetric, and the values on the main diagonal line

are always 1 by the nature of our similarity.

Sline values between a version and its immediate ancestor/descendant version are higher

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 12

���������

�

���	���

����
����

��������

���������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

������������� ���� �������!�"���
���� !�$#

�������!�"��� ���&% �����'�!����� ���(� �)�����!���*� +��� ������������� ,���

Fig. 5. Sline of FreeBSD 2.2 and other versions.

than the values for non-immediate ancestor/descendant versions. Fig. 5 shows Sline evolu-

tion between FreeBSD 2.2 and other FreeBSD versions. The values monotonically decline

with increasing version distance. This indicates that the similarity metric Sline properly

captures ordinary characteristics of software systems evolution.

Fig. 6 shows Sline between each version of FreeBSD and some of NetBSD. These two

version streams have the same origin, 4.4-BSD Lite, and it is naturally assumed that older

versions between the two streams have higher Sline values, since younger versions have a

lot of independently added codes. This assumption is true for FreeBSD 2.0 through 2.2.

However, for FreeBSD 3.0 and 4.0, the youngest version NetBSD 1.3 has higher values

than other NetBSD versions (Fig. 6 A and B). This is because that both FreeBSD 3.0 and

NetBSD 1.3 imported a lot of codes from 4.4-BSD Lite2 as shown Fig. 4. SMAT clearly

spotted such an irregular nature of the evolution.

A.3 Cluster Analysis

Classifications were made of OS versions using a cluster analysis technique[25] with

respect to Sline values shown above. The distance used for the analysis was 1− Sline, and

the average value was the distance between clusters. The dendrogram from this cluster

analysis is shown in Fig. 7. The horizontal axis represents the distance. OS versions

categorized on the left-hand side are closer ones with high similarity values to each other.

This dendrogram reflects very well the evolution history of BSD OS versions depicted

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 13

�

�������

�����

�������

���
	

���
	��

�����

�������

����

����
��

���
�

�������������
	����

�������������
	������
�

�������������
	����

�������������
	��
	

�������������
�����

�������������

����

� �"!$#&%�' (�)�*
+ ,"-$.&/�0 1�2�1
3 4"5$6&7�8 9�:
;
3 4"5$6&7�8 9�:�<

����
����

Fig. 6. Sline between FreeBSD and NetBSD.

 FreeBSD 2.0
FreeBSD 2.0.5
 FreeBSD 2.1
 FreeBSD 2.2
 FreeBSD 3.0
 FreeBSD 4.0
 4.4BSD Lite
 4.4BSD Lite2
 NetBSD 1.0
 NetBSD 1.1
 NetBSD 1.2
 OpenBSD 2.0
 OpenBSD 2.1
 OpenBSD 2.2
 OpenBSD 2.3
 OpenBSD 2.4
 OpenBSD 2.5
 OpenBSD 2.6
 OpenBSD 2.7
 OpenBSD 2.8
 NetBSD 1.3
 NetBSD 1.4
 NetBSD 1.5

0.5 01

I

II

III

IV

Fig. 7. Dendrogram using similarity Sline.

previously by Fig. 4. Further, as shown in Fig. 7, all FreeBSD versions are contained

in Cluster I and all OpenBSD are in Cluster II. FreeBSD and OpenBSD are distinct

genealogical systems that diverged at a very early stage of their evolution, as shown in

Fig. 4. The dendrogram using Sline objectively discloses it.

Also, we can see the classification of NetBSD and OpenBSD. All versions of OpenBSD

except for 2.0 are in the same cluster III, and this cluster is combined with NetBSD 1.1

in cluster IV together with OpenBSD 2.0. This suggests that all OpenBSD versions were

derived from NetBSD 1.1. This is confirmed by their evolution history.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 14

TABLE III

Sline of student experiment.

A B C D E F G H

A 1 0.009 0.024 0.038 0.034 0 0.054 0.047

B 0.009 1 0.040 0.001 0 0 0 0.023

C 0.024 0.040 1 0.060 0.042 0.088 0.118 0.170

D 0.038 0.001 0.060 1 0.010 0.040 0.069 0.039

E 0.034 0 0.042 0.010 1 0.022 0.172 0.237

F 0 0 0.088 0.040 0.022 1 0 0

G 0.054 0 0.118 0.069 0.172 0 1 0.797

H 0.047 0.023 0.170 0.039 0.237 0 0.797 1

A.4 Similarity with Linux

The similarity between FreeBSD 4.0 and Linux 2.2.1[26] was evaluated. These two

UNIX Operating Systems were released almost at the same time, but they are considered

to share no common ancestors. The resulting Sline value is 0.031, which is a relatively very

low value (most of the lines in the correspondence are for device-dependent codes). This

result indicates that Sline is very effective in distinguishing different systems with little

shared code.

B. Student Project

SMAT was also applied to the results from an undergraduate student project. Students

developed compilers written in C for a subset of PASCAL, under a lecture of theory and

practice of compiler construction. The students turned in all of the object files and source

code files after all 15 test cases had been passed.

We have randomly chosen 8 student results (named A to H). The total source code sizes

were between 3427 and 6866 lines. The results of Sline between any two compilers are

shown in TABLE III.

As you can see, most of the similarity values were very low. For example, between

A and C the value is 0.024. It is considered that A and C wrote many distinct codes

independently and that they created accidentally a few similar codes, as shown in Fig. 8.

These code portions were detected as shared clones since they both have an “if ... then ...

else” structure with function calls having two parameters.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 15

else if (s==SMOD) generate code(C CALL, L MOD);

else generate code(C CALL, L MULT);

if(nenum == STRUE){
fprintf(ofp,” LEA GR1,1\n”);

} else {
fprintf(ofp,” LEA GR1,0\n”);

}

Fig. 8. Similar codes between A and C.

outputfilename[len+1]=NULL;

infile = fopen(argv[1], ”r”);

outfile = fopen(outputfilename, ”w”);

if ((!infile)——(!outfile))

{
fprintf(stderr, ”could not open file \n”);

exit(1);

}

outputfilename[len+1]=’\0’;

fp = fopen(argv[1], ”r”);

outfile = fopen(outputfilename, ”w”);

if ((!fp)——(!outfile)) {
fprintf(stderr, ”could not open file\n”);

exit(1);

}

Fig. 9. Similar codes between G and H.

The highest value, 0.797, was obtained between G and H. As shown in Fig. 9, the

corresponding lines have different line breaks and variable names, but they have the same

system structures. This case was considered plagiarism and SMAT was very effective in

detecting it.

V. Extension to Difference Extraction Tool

As discussed the above sections, SMAT very effectively computes similarity metric Sline

of two software systems. However, the result of SMAT is simply a similarity value, and

there is no report or observation of the detail of the difference of the systems.

Sline computes the correspondence of lines. Using this information, the detailed differ-

ence can be reported and then one system can be compactly represented (or compressed)

by another system.

A difference extraction tool (DET) of two software systems was developed. An overview

of DET follows.

INPUTS :

Directory of source code files for the target system

Directory of source code files for the base system

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 16

OUTPUTS :

Difference file between the target system and the base system

Summary report of file correspondence

Step 1: We execute CCFinder on all concatenated files of the target system and the base

system.

Step 2: For each target file ft, a base file fb is picked which contains more clones against

ft than any other files. Then we perform diff between ft and fb. If the result of diff is

smaller than ft itself then we consider that ft and fb match and the diff result is output.

Otherwise raw ft is output. If no clones are found in ft, we also output ft itself.

Step 3: Report a summary which contains the list of matched file names, their original

sizes, and diff result sizes.

Underline concept of DET is very similar to SMAT. It performs clone detection by

CCFinder between two systems, and then extracts difference by diff between file pairs

with clones. SMAT explores all possible file pairs where any shared clone exists, but DET

tries only one file pair where the most shared clones are found.

DET also restores the target system from the given difference file together with the base

system.

DET was applied to various BSD UNIX versions. For example, it was applied to

FreeBSD 2.0 and 2.0.5 where the total sizes of all kernel source code files were about

10.8M Bytes and 12.8M Bytes, respectively. The size of the DET difference file from 2.0

to 2.0.5 is 4.8M Bytes, and from 2.0.5 to 2.0 is 2.8M Bytes. The reason why the for-

mer is larger is that the newer version 2.0.5 contains many newly added files which are

straightforwardly included in the difference file.

The difference extracted by DET was smaller than simply using diff. To check this, we

executed “diff -nN” recursively into directories and measured the output sizes, which were

about 5.8M Bytes either from 2.0 to 2.0.5 or from 2.0.5 to 2.0. The outputs of DET were

about 1.2 to 5 times smaller than diff for the cases of other versions.

This suggested that DET could be useful to archive older versions based on the current

version of a system. Considering the dramatic increase of disc capacity and rapid decrease

of its price, it may be feasible to store all versions of a system without the compression.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 17

However, DET generates a summary report containing correspondence of old files and new

files, which gives very important clues about file name changes and directory structure

modifications.

DET is considered a suitable tool to trace evolution of large software systems. Also,

DET could be useful for managing large product lines where many versions with minor

modifications exist.

VI. Discussion and Related Work

As presented in previous sections, our similarity definition, similarity metric Sline, and

metric evaluation SMAT worked well. Our approach provides a practical, meaningful and

useful measure for maintaining and managing large software systems.

A. Similarity Definition

The definition of similarity used symmetric in the sense that the similarity for X and

Y and that for Y and X are the same. This is because the similarity is defined as

(|x| + |y|)/(|X| + |Y |) where x is the set of X’s elements in the correspondence and y is

that of Y ’s elements.

Another definition of the similarity is such that |x|/|X| where the correspondence is

determined with respect to Y , but Y and y do not appear explicitly in the similarity for-

mula[11]. This similarity definition gives a single side view of the system difference, which

would make it suitable for investigating characteristics of individual systems. However,

an overview of system evolution is difficult to archive with the single side definition. For

example, to make dendrograms as shown in Fig. 7, it is necessary to define the distance of

two systems X and Y . With our approach, the similarity is used as the distance. In the

case of the single side definition, an average of two similarity values might be used such

that (|x|/|X|+ |y|/|Y |)/2, but this average value has less rational meaning.

B. Metric Sline

The correspondence which determines Sline is a many-to-many matching between source

lines located within files and directories. The reasons of the many-to-many matching is that

we would like to trace the movement of any source code block within files and directories

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 18

as much as possible, and obtain the ratio of succeeded and revised codes to overall codes.

It is possible to use one-to-one matching in the correspondence, but it characterizes the

similarity metric too naively to copied codes. Assume that a system X is composed of a

file x1, and a new system X ′ is composed of two files x′1 and x′2 where both x′1 and x′2 are

the same copies of x1. In our definition using the many-to-many matching, the similarity

is 1.0, but using the one-to-one matching gives 0.5 which does not reflect development

efforts properly.

Actually, metrics Sline have very high correlation to with development efforts. The cor-

relation coefficient between Sline values and release durations of FreeBSD versions was

-0.973. On the other hand the correlation coefficient between the size increases and the re-

lease durations was 0.528. Therefore, Sline should be a reasonable measures of development

efforts.

Another reason for using many-to-many matching is performance. The one-to-one ap-

proach needs some mechanism to choose the best matching pair from many possiblities,

which generally is not a simple, straight forward process.

C. Similarity Metric Sfn using file name matching

An alternative and much simpler metric Sfn for can be employed for similarity.

Consider a software systems composed of source code files. The correspondence between

two such systems is the set of all file pairs having the same file(path) names. That is, if

a file pi in one system and a file qj in another system have the same file names, including

file paths, then pair (pi, qj) is included in the correspondence.

It is very easy to compute Sfn, by checking each file path. However, Sfn is very fragile

to renames and restructures of source code files. Also, it cannot detect changes of file

contents. Furthermore, since Sfn does not account for the sizes of each source code files,

it might produce values far from reality.

For example, when Sfn was applied to the student project described in Section IV-B,

the similarity values were as shown in TABLE IV. Using Sline and SMAT, we were able to

detect a possible plagiarism between G and H(Sline=0.797). However, the Sfn between G

and H was 0.190, which was too low to suspect plagiarism. The correlation between Sline

and Sfn was -0.004, meaning that there was no relation between them.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 19

TABLE IV

Sfn of compiler systems.

A B C D E F G H

A 1 0 0 0.113 0 0 0 0

B 0 1 0.666 0.125 0.600 0.666 0.105 0.428

C 0 0.666 1 0.137 0.857 1 0.125 0.545

D 0.113 0.125 0.137 1 0.133 0.137 0.102 0.117

E 0 0.600 0.857 0.133 1 0.857 0.235 0.500

F 0 0.666 1 0.137 0.857 1 0.125 0.545

G 0 0.105 0.125 0.102 0.235 0.125 1 0.190

H 0 0.428 0.545 0.117 0.500 0.545 0.190 1

D. SMAT

SMAT worked very efficiently for large software systems. To compute Sline, execution of

diff for all possible file pairs would have been a simple approach. However, the execution

speed would have become unacceptably slow as mentioned in III-C. Combining CCFinder

and diff boosted the performance of SMAT. Also, as mentioned before, the movement

and modification of source code lines can be traced better by CCFinder, which effectively

detects clones with different white spaces, comments, identifier names, and so on. The

matching computation using only diff cannot chase those changes.

There are a lot of researches on clone detection and many tools have been developed[27],

[28], [29]. We would be able to use those tools in stead of CCFinder.

E. Related Work

There has been a lot of work on finding plagiarism in programs. Ottenstein used Hal-

stead metric valuations[30] of target program files for comparison[31]. There are other

approaches which use a set of metric values to characterize source programs[32], [33], [34].

Also, structural information has been employed to increase precision of comparison[35],

[36]. In order to improve both precision and efficiency, abstracted text sequences (to-

ken sequences) can be employed for comparison[8], [9], [37], [10]. Source code texts are

translated into token sequences representing programs structures, and the longest common

subsequence algorithm is applied to obtain matching.

These systems are aimed mainly at finding similar software code in the education envi-

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 20

ronment. The similarity metric values computed by comparison of metrics values do not

show the ratio of similar codes to non-similar codes, and thus would be less intuitively

accurate. Also, scalability of those evaluation methods to large software system such as

UNIX OS is not known.

In reverse engineering field, there has been research on measuring similarity of compo-

nents and restructuring modules in a software system, to improve its maintenanceability

and understandability[38], [39], [40]. Such similarity measures are based on several metric

values such as shared identifier names and function invocation relations. Although these

approaches involve important views of similarity, their objectives are to identify compo-

nents and modules inside a single system, and cannot be applied directly to inter-system

similarity measurement.

A study on the similarity between documents is presented by Broder[11]. In this ap-

proach, a set of fixed-length token sequences are extracted from documents. Then two

sets X and Y are obtained for each document to compute their intersection of them. The

similarity is defined as (|X| ∩ |Y |)/(|X| ∪ |Y |).
This approach is very suitable for efficiently computing the resemblance of a large collec-

tion of documents such as world-wide web documents. However, choosing token sequences

greatly affects the resulting values. Tokens with minor modification would not be detected.

Therefore, this is probably an inappropriate approach for computing subjective similarity

metric for source code files.

Manber[12] developed a tool to identify similar files in large systems. This tool uses a

set of keywords and extracts subsequences starting with those keywords as fingerprints.

A fingerprint set X of a target file is encoded and compared to a fingerprint set Y of a

query file. The similarity is defined as |X ∩ Y |/|X|.
This approach works very efficiently for both source program files and document files

and would fit exploration of similar files in a large system. However, it is fragile to the

selection of keywords. Also, it would be too sensitive to minor modifications of source

program files such as identifier changes and comment insertions.

These methods are all quite different from those developed and presented herein, since

they do not perform comparison on raw and overall text sequences, but rather on sam-

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 21

pled text sequences. Sampling approaches would get high performance, but the resulting

similarity values would be less significant than our whole text comparison approach.

VII. Conclusion

A proposed definition of similarity between two software systems with respect to cor-

respondence of source code lines was formulated as a similarity metric called Sline. An

Sline-based evaluation tool SMAT was developed and applied to various software systems.

The results showed that Sline and SMAT are very useful for identifying the origin of the

systems and to characterize their evolution. Furthermore, using the computation process

of SMAT, a difference extraction tool, DET, was developed which compresses a target

software system relative to a base system and reports the difference.

Further applications of SMAT to various software systems and product lines will be made

to investigate their evolution. From a macro level analysis view point, categorization and

taxonomy of software systems analogous to molecular phylogeny should be an intriguing

issue to pursue. From a micro level analysis view point, chasing specific code blocks

through system evolution will be interesting to perform.

References

[1] V. R. Basili, L. C. Briand, S. E. Condon, Y.-M. Kim, W. L. Melo, and J. D. Valett, “Understanding

and predicting the process of software maintenance release,” in 18th International Conference on Software

Engineering, berlin, 1996, pp. 464–474.

[2] L. A. Belady and M. M. Lehman, “A model of large program development,” IBM Systems Journal, vol. 15,

no. 3, pp. 225–252, 1976.

[3] S. Cook, H. Ji, and R. Harrison, “Dynamic and static views of software evolution,” in the IEEE International

Conference On Software Maintenance (ICSM 2001), Florence, Italy, Nov. 2001, pp. 592–601.

[4] C. F. Kemerer and S. Slaughter, “An empirical approach to studying software evolution,” IEEE Transactions

on Software Engineering, vol. 25, no. 4, pp. 493–509, 1999.

[5] The First Software Product Line Conference (SPLC1), ,” http://www.sei.cmu.edu/plp/conf/SPLC.html, Den-

ver, Colorado, August 2000.

[6] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns, Addison Wesley, 2001.

[7] A. Baxevanis and F. Ouellette, Eds., Bioinformatics 2nd edition, pp. 323–358, John Wiley and Sons, Ltd.,

England, 2001.

[8] A. Aiken, “Moss (measure of software similarity) plagiarism detection system,”

http://www.cs.berkeley.edu/ moss/.

[9] L. Prechelt, G. Malpohl, and M. Philippsen, “Jplag: Finding plagiarisms among a set of programs,” Technical

Report 2000-1, Fakultat fur Informatik, Universitat Karlsruhe, Germany, 2000.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 22

[10] M. J. Wise, “YAP3: Improved detection of similarities in computer program and other texts,” SIGCSEB:

SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), vol. 28, 1996.

[11] A. Z. Broder, “On the resemblance and containment of documents,” in Proceedings of Compression and

Complexity of Sequences, 1998, pp. 21–29.

[12] U. Manber, “Finding similar files in a large file system,” in Proceedings of the USENIX Winter 1994 Technical

Conference, San Fransisco, CA, USA, January 17–21 1994, pp. 1–10.

[13] J. W. Hunt and M. D. McIlroy, “An algorithm for differential file comparison,” Tech. Rep. 41, Computing

Science, Bell Laboratories, Murray Hill, New Jersey, 1976.

[14] W. Miller and E. W. Myers, “A file comparison program,” Software- Practice and Experience, vol. 15, no.

11, pp. 1025–1040, 1985.

[15] E. W. Myers, “An O(ND) difference algorithm and its variations,” Algorithmica, vol. 1, pp. 251–256, 1986.

[16] E. Ukkonen, “Algorithms for approximate string matching,” INFCTRL: Information and Computation

(formerly Information and Control), vol. 64, pp. 100–118, 1985.

[17] T. Kamiya, S. Kusumoto, , and K. Inoue, “A token-based code clone detection tool - ccfinder and its empirical

evaluation,” Techinal report, Osaka University, Department of Information and Computer Scineces, Inoue

Laboratory, 2000.

[18] T. Kamiya, S. Kusumoto, , and K. Inoue, “A token-based code clone detection technique and its evaluation,”

Technical report of IEICE, SS2000-42-52, vol. 100, no. 570, pp. 41–48, 2001.

[19] D. Gusfield, “Algorithms on strings, trees, and sequences,” Computer Science and Computational Biology.

Cambridge University Press, 1997.

[20] M.K. McKusick, K. Bostic, M.J. karels, and J.S. Quarterman, The Design and Implementation of the 4.4BSD

UNIX Operating System, Addison-Wesley, 1996.

[21] The FreeBSD Project, “The FreeBSD Project,” http://www.freebsd.org/.

[22] The NetBSD Foundation Inc., “The NetBSD Project,” http://www.netbsd.org/.

[23] OpenBSD, “OpenBSD,” http://www.openbsd.org/.

[24] W. Schneider, “The unix system family tree: Research and bsd,”

ftp://ftp.freebsd.org/pub/FreeBSD/branches/-current/src/share/misc/bsd-family-tree.

[25] B. S. Everitt, Cluster Analysis, Edward Arnold, 3rd edition, London, 1993.

[26] Linux Online, “The Linux Home Page at Linux Online,” http://www.linux.org/.

[27] B. S. Baker, “On finding duplication and near-duplication in large software systems,” in Second Working

Conference on Reverse Engineering, Toronto, Canada, July 1995, pp. 86–95.

[28] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using abstract syntax trees,”

in Proceedings of the International Conference on Software Maintenance, Bethesda, Maryland, Nov. 1998, pp.

368–378.

[29] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic detection of function clones in a

software system using metrics,” in Proceedings of the International Conference on Software Maintenance,

Monterey, California, Nov. 1996, pp. 244–253.

[30] M. H. Halstead, Elements of Software Science, Elsevier, New York, 1977.

[31] K. J. Ottenstein, “An algorithmic approach to the detection and prevention of plagiarism,” ACM SIGCSE

Bulletin, vol. 8, no. 4, pp. 30–41, 1976.

[32] H. L. Berghel and D. L. Sallach, “Measurements of program similarity in identical task environments,” ACM

SIGPLAN Notices, vol. 19, no. 8, pp. 65–76, 1984.

March 3, 2002 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 200X 23

[33] J. L. Donaldson, A. M. Lancaster, and P. H. Sposato, “A plagiarism detection system,” ACM SIGCSE

Bulletin(Proc. of 12th SIGSCE Technical Symp.), vol. 13, no. 1, pp. 21–25, 1981.

[34] S. Grier, “A tool that detects plagiarism in pascal programs,” ACM SIGCSE Bulletin(Proc. of 12th SIGSCE

Technical Symp.), vol. 13, no. 1, pp. 15–20, 1981.

[35] H. T. Jankowitz, “Detecting plagiarism in student Pascal programs,” The Computer Journal, vol. 31, no. 1,

pp. 1–8, 1988.

[36] K. L. Verco and M. J. Wise, “Software for detecting suspected plagiarism: Comparing structure and attribute-

counting systems,” in Porc. of 1st Ausutralian Conference on Computer Science Education, John Rosenberg,

Ed., Sydney, Australia, july 1996, pp. 86–95.

[37] G. Whale, “Identification of program similarity in large populations,” The Computer Journal, vol. 33, no. 2,

pp. 140–146, 1990.

[38] S. C. Choi and W. Scacchi, “Extracting and restructuring the design of large systems,” IEEE Software, vol.

7, no. 1, pp. 66–71, Jan. 1990.

[39] R. W. Schwanke, “An intelligent for re-engineering software modularity,” in Proceedings of theThirteenthIn-

ternational Conference on Software Engineering, Austin, Texas, USA, May 1991, pp. 83–92.

[40] R. W. Schwanke and M. A. Platoff, “Cross references are features,” in Proceedings of the 2nd International

Workshop on Software Configuration Management, Oct. 1989, pp. 86–95.

English is reviewed and revised by Edit Science, Inc.

March 3, 2002 DRAFT

