
Function Point Measurement from Java Programs

Shinji Kusumoto, Masahiro Imagawa,
Katsuro Inoue

Graduate School of Engineering Science
Osaka University

Toyonaka, Osaka, Japan

{kusumoto, imagawa,
inoue}@ics.es.osaka-u.ac.jp

Shuuma Morimoto, Kouji Matsusita,
Michio Tsuda

Hitachi Systems & Services, Ltd.
Otaku, Tokyo, Japan

{sh-morimoto, k-matsushita,
m-tsuda}@hitachi-system.co.jp

ABSTRACT
Function point analysis (FPA) was proposed to help measure
the functionality of software systems. It is used to estimate
the effort required for the software development. However,
it has been reported that since function point measurement
involves judgment on the part of the measurer, differences
for the same product may occur even in the same organi-
zation. Also, if an organization tries to introduce FPA, FP
will have to be measured from the past software developed
there, and this measurement is cost-consuming. In this pa-
per, we intend to examine the possibility to measure FP
from source code automatically. At first, we propose mea-
surement rules to count data and transactional functions for
object-oriented program based on IFPUG method and de-
velop the function point measurement tool. Then, we have
applied the tool to practical Java programs in a computer
company and examined the difference between the FP val-
ues obtained by the tool and those of an FP measurement
specialist. As the results, the number of data and transac-
tional functions extracted by the tool is similar to ones by
the specialist though for the classification of each function
there is some difference between them.

1. INTRODUCTION
As the size and the complexity of software increase, it be-

comes increasingly important to develop high-quality soft-
ware cost-effectively within a specified period. In order to
achieve this goal, the entire software development processes
need to be managed based on an effective project plan.

In order to construct a distinct project plan, it is essential
to estimate various undesirable phenomena which happened
during the project and take measures to prevent them in ad-
vance. The subjects of estimation in the area of software de-
velopment are size, effort invested, development time, tech-
nology used and quality. Particularly, development effort
is the most important issue. So far, several effort models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright ACM ...$5.00.

[3][4][14] have been proposed and most of them include soft-
ware “size” as an important parameter. In the models, LOC
(lines of code) is often adopted as a measurement criterion.
However, using LOC for software size assessment has diffi-
culties because the definition of LOC is very vague and LOC
depends on the programming language.

Function point is a measure of software size that uses log-
ical functional terms business owners and users more read-
ily understand [2]. Since it measures the functional re-
quirements, the measured size stays constant despite the
programming language, design technology, or development
skills involved. Also, it is available early in the development
process, making its use opportune for planning design and
development projects. Up to the present, various FPA ver-
sions based on the Albrecht’s version have been proposed.
The IFPUG (International Function Point Users Group)
version [6], MarkII version [12] and COSMIC method [5]
have been frequently used in software organizations. Many
studies on function points have been reported in conferences
and journals[1][11].

However, several unsolved problems still remain. One of
them is that differences for the same product may occur
even in the same organization since function point measure-
ment involves judgment on the part of the measurer [8]. For
example, Low and Jeffery [10] reported that a 30-percent
variance was caused within one organization and more than
30-percent variance was caused across organizations. In or-
der to get a consistent value, it is important to automate
the function point measurement[2]. Also, if an organization
tries to introduce FPA, FP will have to be measured from
the past software developed there, and this measurement is
cost-consuming.

We have been dealing with automatic function point mea-
surement for object-oriented software[9][13]. Through the
studies, we have found that many organizations want to
measure function point from source code. Because some-
times there are some functional differences between require-
ments/design specification and source code and the actual
functions are existed only in source code. Also, organiza-
tions sometimes remain only source code.

In this paper, we intend to examine the possibility to mea-
sure function point from source code automatically and re-
port the early results of this study. At first, we propose mea-
surement rules to count data and transactional functions for
object-oriented program based on IFPUG method. Then,
we develop the function point measurement tool based on
the rules. Finally, we apply the tool to practical Java pro-

kusumoto
Appeared in Proc. of ICSE2002

grams in a computer company and examined the difference
between the FP values obtained by the tool and those of
an FP measurement specialist. As the results, the number
of data and transactional functions extracted by the tool is
similar to ones by the specialist though for the classification
of each function there is some difference between them.

Section 2 briefly explains function point analysis. Next,
Section 3 proposes the rules to count data and transactional
functions from object-oriented program. Section 4 shows
the function point measurement tool based on the proposed
rules and Section 5 describes the case study. Section 6 con-
cludes the paper.

2. FUNCTION POINT

2.1 Overview
Function point measures the functionality provided by

software. It can be determined from the requirements spec-
ification, design specification and program code. Unlike
LOC, since function point measures functionality, it is said
to be independent of the technology and language used for
the software implementation.

Allan Albrecht first proposed original function point anal-
ysis [2]. Albrecht’s function point is computed by counting
the following software characteristics: (1) External inputs
and outputs, (2) User interactions, (3) External interfaces
and (4) Files used by the system. Each of them is then indi-
vidually assessed for complexity and given a weighting value
which varies from 3 (simple) to 15 (complex).

Albrecht’s function point has been widely used but it has
some weakness. Thus, many kinds of function point, such as
IFPUG version[6], COSMIC method[5]. 3D Function Points
version[7], Feature Points version[7] and MarkII version[12],
have been proposed. In this paper, we address the IFPUG
version since it provides the detail procedures and rules for
function point counting compared to other versions.

2.2 IFPUG version
IFPUG version is a modified-version of the Albrecht’s

function point. In the modification, the evaluation of the
complexity of the software was objectively established and
the rules of the counting procedures were also described
minutely and precisely.

In the IFPUG version, the counting procedure of func-
tion point consists of seven steps[6], Step1: Determine the
Type of Function Point Count, Step2: Identify the Count-
ing Boundary, Step3: Count Data Function Types, Step4:
Count Transactional Function Types, Step5: Determine the
Unadjusted Function Point Count, Step6: Determine the
Value Adjustment Factor and Step7: Calculate the Final
Adjusted Function Point Count.

Here, we explain Step 2, 3, 4 and 5 to understand the
proposed rules in Section 3.

Step2 (Identify the Counting Boundary): A boundary in-
dicates the border between the application or project
being measured and the external applications or the
user domain. A boundary establishes which functions
are included in the function point count.

Step3 (Count Data Function Types): Data function types
represent the functionality provided to the user to meet

internal and external data requirements. Data func-
tion types are classified into the following two types:
Internal logical file(ILF) and External interface file(EIF).

The definition of data functions are described as fol-
lows:

Internal Logical File(ILF): (1)The group of data is
user identifiable group of data. (2)The group of
data is maintained within the application bound-
ary. (3)The group of data identified has not been
counted as an EIF for the application.

External Interface File(EIF): (1)The group of data is
user identifiable group of data. (2)The group of
data is not maintained by the application being
counted. (3)The group of data identified has not
been counted as an ILF for the application.

Here, the term “file” refers to a logically related group
of data and not to the physical implementation of those
group of data.

Then, assign each identified ILF or EIF a functional
complexity based on the number of data element types
(DETs) and record element types (RETs) associated
with the ILF or EIF using the RET/DET complexity
matrix(See Table 1). A data element type (DET) is
a unique user recognizable, nonrecursive field on the
ILF or EIF. A record element type(RET) is a user
recognizable subgroup of data elements within an ILF
or EIF.

Table 1: RET/DET complexity matrix

RET\DET 1-19 20-50 51-
1 Low Low Average

2-5 Low Average High
6- Average High High

Step4 (Count Transactional Function Types):

Transactional function types represent the functional-
ity provided to the user for the processing of data by
an application. They are defined as the following three
types: External input(EI), External output(EO) and
External inquiry(EQ). The definition of transactional
functions are described as follows:

External input(EI): An external input processes data
or control information that comes from outside
the application’s boundary. The external input
itself is an elementary process.

External output(EO): An external output is an el-
ementary process that generates data or control
information sent outside the application’s bound-
ary.

External inquiry(EQ): An external inquiry is an ele-
mentary process made up of an input-output com-
bination that results in data retrieval. The output
side contains no derived data. Here, derived data
is data that requires processing other than direct
retrieval and editing of information from internal
logical files and/or external interface files. No in-
ternal logical file is maintained during processing.

Then, assign each identified EI or EO a functional com-
plexity based on the number of file types referenced
(FTRs) and data element types (DETs).A file type
referenced is ,(1) An internal logical file read or main-
tained by a function type, or (2) An external interface
file read by a function type. Also, assign each EQ a
functional complexity based on the number of file types
referenced (FTRs) and data element types (DETs) for
each input and output component. Use the higher of
the two functional complexities for either the input or
output side of the inquiry to translate the external in-
quiry to unadjusted function points. For each of EI,
EO and EQ, there is a FTR/DET complexity matrix.
Table 2 shows the FTR/DET complexity matrix for
EI.

Table 2: FTR/DET complexity matrix of EI

FTR\DET 1-4 5-15 16-
0-1 Low Low Average
2 Low Average High
3- Average High High

Step5 (Determine the Unadjusted Function Point Count):

As the result of Step3 and Step4, the counts for each
function type are classified according to complexity
and then weighted using the matrix. The total of all
the function types is the unadjusted function point
count.

3. PROPOSED FUNCTION POINT MEASURE-
MENT RULES FOR OO PROGRAMS

3.1 Key Idea
Here, we explain the key idea of the proposed function

point measurement rules for object-oriented programs. The
proposed approach deal with the function point measure-
ment based on IFPUG, the main process is extracting data
functions and transactional functions from the target pro-
gram.

It seems to be difficult to judge the types of functions
only from the static information about source codes. So,
we use the dynamic information collected from the program
execution based on a set of testcases which should corre-
spond to all functions of the target program. It is desirable
that the testcases are used for acceptance test by the user
because functions not used by the user (for example, func-
tions used by only the developers for debug or maintenance
activities) are not tested and such functions should not be
counted as function point. Also, since the testcases used in
the acceptance test would be kept in the organization, this
assumption is appropriate.

An example of the dynamic information collected from
program execution is shown in Figure 1. In Figure 1, there
are four classes1 (A, B, C and D). It shows an interaction,
which is a set of messages exchanged among the classes like
a sequence diagram. We call this kind of sequence as method

1Actually, they are objects based on the classes. “Class” in
this paper is almost the same as “object”.

 classA classB classC classD

Figure 1: Example of dynamic information

calling sequence. By analyzing the contents of the messages
and the type of the classes in the method calling sequence
constructed by each testcase, we measure the function point.

In the following sections, we explain the details of counting
data and transactional functions.

3.2 Counting data function types
We consider that some of the classes included in the target

program are data functions because, in IFPUG, data func-
tions are defined as the functionality provided to the user to
meet internal and external data requirements.

From our previous experience[9][13], most classes (except
actor classes) on the object-oriented requirements/design
specification directly corresponded to data functions. How-
ever, in the actual program even if it was developed based
on the design specification, there are a lot of classes which
are not appeared on the specification. So, it is quite diffi-
cult to identify which classes should be corresponded to data
functions. Here, we assume that the function point analyst
select the classes that would be the data functions from the
program.

Then, the data functions are classified into two types: In-
ternal Logical File (ILF) and External Input File (EIF) as
follows:

ILF: Among the classes selected as data function, dur-
ing the program execution, the classes some of which
methods are called with some arguments are regarded
as ILF. That is, we consider that the arguments repre-
sents the data and the methods update the data which
the class obtains.

EIF: Among the classes selected as data function, other
classes that are not regarded as ILF, are regarded as
EIF.

Finally, we need to decide the complexity of the ILF/EIF
based on the number of data element type(DET) and the
record element type(RET). DET is a unique user recogniz-
able, nonrecursive field on the ILF or ELF and RET is a
user recognizable subgroup of data elements within an ILF
or EIF. As described above, since classes in the program
are corresponded to data functions, we define that DET is
the number of simple variables (int, chat, boolean) in the
class and RET is the number of the variables defined as the
class type. That is, class variables defined as class type is
considered to be the meaningful group of data.

3.3 Counting transactional function types
In IFPUG, transactional functions are defined as the in-

put/output processing, which updates or refers to the data
function, from outside the application’s boundary. Regard-
ing the classes as data functions, we consider that the method

classA classB(DF)

B.method

Figure 2: Basic element

classA(Boundary
class) classB(DF)

B.method

Transactional function (method calling sequence)

Figure 3: Identification of transactional function

that updates or refers to the data in the class can be used
to extract the transactional function.

Base on the idea, we define basic element in the method
calling sequence. Basic element is the sub-method calling
sequence where a method, that is defined in a data function
class, is called by other class as shown in Figure 2.

At first, we collect the method calling sequence for all the
testcases and the sequences are candidates of transactional
function. Next, to identify transactional function, we have
to take account of the application boundary. Here, we iden-
tify the class, whose methods are inevitably called when the
user input some data into the program, as boundary class.
For example, GUI classes or Java Servlet classes would be
the boundary classes. Then, in a method calling sequence
which starts when the method defined in the boundary class
is called, and ends when the method call is finished, if the
basic element is appeared, then the sequence is regarded as
a transactional function(See Figure 3).

If there exist transactional functions in which name of the
called method, type and the number of the argument, the
order of called are the same, they are regarded as the same
transactional function.

Then, for each of the identified transactional functions,
we classify them into three types: External Input(EI), Ex-
ternal Output(EO) and External inquiry(EQ) based on the
proposed rules in Figure 4.

In Rule 1, since the user-defined class is delivered to data
function class as a argument, such sequence is regarded as
EI.

In Rule 2, before delivering the return value to the bound-
ary class from data function class, some class (called halfway
class), that are not identified as data function class, modi-
fies the return value and delivers it to the boundary class.
In IFPUG, a processing in which data maintained by data
function is processed and outputted to application bound-
ary is regarded as EO. Thus, such sequence is regarded as
EO.

For the transactional functions that do not satisfy the
Rules 1 and 2, we consider that they don’t include renewal

 classA
(Boundary
class)

classB

C.method(X)

x: User defined class

classC
 (DF)

 classA
(Boundary
class)

classC
 (DF)

C.method

 classB
(Halfway
class)

Rule 1: External Input (EI)

Rule 2: External Output (EO)

Figure 4: Rules for transactional functions

of data function and output the processed data outside the
application boundary. So, they are regarded as EQ.

Finally, we need to decide the complexity of the EI/EO/EQ
based on the number of data element type(DET) and the
types referenced record element type(FTR). DET is the num-
ber of data items which are comings and goings through ap-
plication boundary and FTR is the number of data function
updated or referred to in the transactional function.

In our proposed rule, since boundary classes are applica-
tion boundary, we count DET as follows:

• EI: DET is the total number of the argument of the
methods called by the boundary class in the processing
of EI.

• EO, EQ: DET is the total number of the return values
of the methods called by the boundary class in the
processing of EO. If the return value is a class, then the
number of variables defined in the class is also counted.

FTR is the number of data function appeared in the trans-
actional function. In the case that the same data function
class is appeared repeatedly, it is counted just once.

4. FUNCTION POINT MEASUREMENT TOOL
Based on the proposed method, we have developed a func-

tion point measurement tool from Java programs. The tool
has developed on Windows2000 PC with Java.

Figure 5 shows the overview of the system. It includes the
following components:

• Syntax analyzer: It analyses the target program and
accumulates the syntax information used in the FP
calculation of it into syntax information file.

• Executor: It executes the target program using a set
of testcase, collects the information about program ex-
ecution and accumulates it into execution log file.

• FP calculator: It calculates the value of function point
based on the data of syntax database, execution log

Syntax Analyser

Executor

Tese case

Syntax
information
file

Execution
log file

FP calculator

Deta function
class

FP results

 Java
Source Code

Boundary class

Figure 5: Overview of FP tool

Table 3: Format of syntax information file

C Class name
CV Class variable name Type DETflag
...

...
...

...

M Method name
MV Method variable name Type DETflag
...

...
...

...

M
MV

database using the specified data function classes and
boundary classes.

The format of the syntax information file is shown in Table
3. In Table 3, C means a label of the name of a class. Then,
CV means a label of the name, type, and a flag (DETflag) of
each class variable defined in the class. The flag (DETflag)
is used to judge whether the variable is regarded as DET or
RET. Then, M means a label of the name of the method de-
fined in the class. MV means a label of the name, type, and
a flag of each class variable defined in the method. DET-
flag is also used to judge whether the variable is regarded
as DET or RET. Table 3 shows the information for just one
class. Actually, the information is described for all classes
in the target program.

An example of the execution log file is shown in Table
4. In Table 4, the line labeled “Begin” indicates that the
following method is called in the program execution and
the line labeled “End” indicates that the following method
execution is finished. For example, the first line “Begin
Sakaya.Sakaya.1.String” means that a method “Sakaya” in
a class “Sakaya” is called with one argument and the type of
the argument is String. Next, a method “Souko” in a class
“Souko” is called with two arguments and the each type of
the arguments is String and int. Then, a method “Haisou”
in a class “Haisou” is called with no arguments. Finally,
these methods are recursively finished. Figure 6 shows Ta-
ble 4 schematically.

Table 4: Example of execution log file

Begin Sakaya.Sakaya.1.String
Begin Souko.Souko.2.String.int
Begin Haisou.Haisou.0
End Haisou.Haisou.0
End Souko.Souko.2.String.int
End Sakaya.Sakaya.1.String

Sakaya Souko Haisou

Sakaya(String)

Souko(String,int)

Haisou()

Figure 6: Corresponding sequence to Table 4

5. CASE STUDY

5.1 Overview
In order to evaluate the appropriateness of the proposed

rules, we applied our tool to an application program devel-
oped in Hitachi Systems & Services. Then, we compared the
FP values obtained by our system to those obtained by the
FP counting specialist. The FP counting specialist counted
the FP from requirements specifications of the application.

The target program is a typical Web application. Since
the application has been developed based on the object ori-
ented approach and such kind of application would be de-
veloped repeatedly, we consider that it is appropriate for the
case study. The structure of the application is shown in Fig-
ure 7. Java program in the application server is the target
program. The size of the application is about 10K steps.

In order to measure function point by the tool, it is nec-
essary to identify the data function classes in the program
and boundary classes. In this case study, we selected them
as follows:

Data function classes: The classes whose methods access
and update the table of the database are selected as
data function classes.

Boundary classes: Java Servlet classes except the classes for
showing confirmation message and assistance for data
input are selected as boundary classes. Because in
the target program, the screen for data input includes
several sub-screens for data input assistance. So, we
consider that it is appropriate to select only the classes
that implement the main screens for data input.

Table 5 shows the FP values calculated by the system and
the function point specialist. The size of the execution log
files was 15MB. As shown in Table 5, the values of unad-
justed function point are quite similar (174 and 170). Based
on Table 5, we analyze and examine the discuss the results.

Application server

Java program

Java Servlet
Browser

Java Servlet
classes for

database access

Database
server

Oracle8i

CSV

J D
B

C

HTML

W
e b S

e rve r

Figure 7: Target application program

Table 5: Result of FP

Data Function

Transactional
Function

 FP

ILF

EIF

EI

EO

EQ

Tool

11

1

9

13

0

174

Specialist

4

7

6

14

0

170

5.2 Analysis of data function
It is not always possible to correspond the data functions

on the requirements specification to ones on the program.
However, in this case study, by selecting the classes, that
conceal the access to database, as data functions, both the
number of data functions by the system (12=11+1) and the
specialist (11=4+7) are quite similar. It indicates that it
would be possible to get the values of data functions from
program that is similar to ones from requirements specifica-
tion.

On the other hand, the classification result of data func-
tion types are different between the tool and the specialist.
The tool regarded most data functions as ILF. The result
is due to the fact that most methods in the data function
class have arguments. In the classification rule described in
Section 3.2, such classes are regarded as ILF.

In order to cope with this problem, it is necessary to revise
the classification rule. The original rule is, among the classes
selected as data function, during the program execution,
the classes some of whose methods are called with some
arguments are regarded as ILF. It is conceivable to make
conditions to the arguments. For example, if the argument
of the method in a class indicates the meaningful data, the
class is regarded as ILF. Also, it may be necessary to collect
the detail information from program executions whether the
data in the class is updated.

classB classC
(DF)

classD

 classX
(Boundary
class) classB classC

(DF)
classD

 classY
(Boundary
class)

S1

S2

Figure 8: Cause of classification error

5.3 Analysis of transactional function
Both the number of transactional functions by the tool

(22=9+13) and the specialist (20=6+14) are quite similar.
Each of the transactional functions counted by the special-
ist was also counted by the tool. So, the tool counted two
transactional functions excessively. The reason is that we
extracted the transactional function as the method calling
sequence and if the same method calling sequence was ex-
tracted, then it was not counted as twice. In this case, if
the starting class of the calling sequence is not the same,
they are decided as different functions. Figure 8 shows an
example of this case. The method calling sequence S1 and
S2 include the same sub-sequence (surrounded by a dotted
line). However, the specialist judged such ones are essen-
tially the same and he regarded them as one transactional
function. To cope with this problem, we need to improve
the rules for transactional function. For example, some call-
ing sequences each of which includes the same sub-calling
sequence, though the length of the sequence should be de-
termined in some way, regard as the same one.

For some transactional functions that handle the PDF or
CSV file, in counting DET, we did not count the inside of
the files and so the value of DET becomes lower. To cope
with this problem, the syntax information file should include
the detail information about the variables in the class.

6. CONCLUSIONS
We have intended to examine the possibility to measure

function point from source code automatically. Here, we
have proposed detailed function point measurement method
for object-oriented program and developed the function point
measurement tool. Then, we have applied the tool to prac-
tical Java programs in a computer company and examined
the difference between the function point values obtained by
the tool and those of an function point measurement spe-
cialist. As the results, we got the similar number of data
and transactional functions. However, in the classification
of functions, there exists some differences between the tool
and the specialist.

In the case study, the target Java program did not include
EQ. So, it is necessary to apply the proposed tool to other
programs which include EQ. Simultaneously, we are going
to revise the rule of the classification of each function as de-
scribed in Section 5 and pursuit the possibility of automatic
function point measurement from source code.

7. ACKNOWLEDGMENTS
This research was supported in part by Grant-in-Aid for

Encouragement of Young Scientists (No: 12780220), Japan
Society for the Promotion of Science. The tool used in the
case study was developed by RISE(Research Institute of
Software Engineering) under support from IPA’s (Information-
technology Promotion Agency) “support program for young
software researchers”.

8. REFERENCES
[1] A. Abran, P. N. Robillard: “Function point analysis:

An empirical study of its measurement processes”,
IEEE Transactions on Software Engineering,
22(12), pp.895-909(1996).

[2] A. J. Albrecht: Function point analysis,
Encyclopedia of Software Engineering, 1. John Wiley
& Sons (1994).

[3] V. R. Basili and K. Freburger: “Programming
measurement and estimation in the Software
Engineering Laboratory”, Journal of Systems &
Software, 2, pp. 47-57 (1981).

[4] B. W. Boehm: Software Engineering Economics,
Prentice-Hall(1981).

[5] Common Software Measurement International
Consortium, COSMIC-FFP Version 2.0 (2000).
http://www.cosmicon.com/.

[6] IFPUG. 2000. Function Point Counting Practices
Manual, Release 4.1. International Function Points
Users Group.

[7] C. Jones: Applied Software Measurement,
McGraw-Hill(1996).

[8] B. A. Kitchenham: “The problem with function
points”, IEEE Software, 14(2):, pp. 29-31 (1997).

[9] S. Kusumoto, K. Inoue, T. Kasimoto, A. Suzuki, K.
Yuura and M. Tsuda: “Function Point Measurement
for Object-Oriented Requirements Specification”,
Proc. of International Computer Software and
Applications Conference, pp. 543-548(2000).

[10] G. C. Low and D. R. Jeffery: “Function points in
the estimation and evaluation of the software
process”, IEEE Transactions on Software
Engineering, 16(1), pp. 64-71(1990).

[11] C. J. Lokan: “An empirical study of the correlations
between function point elements”, Proc. of the 6-th

International Symposium on Software Metrics, pp.
200-206 (1999).

[12] C. Symons: Software Sizing and Estimating. John
Wiley & Sons (1991).

[13] T. Uemura, S. Kusumoto and K. Inoue: “Function
point analysis for design specifications based on the
Unified Modeling Language”, Journal of Software
Maintenance and Evolution, Vol. 13, No. 4,
pp.223-243 (2001).

[14] C. E. Walston and C. P. Felix: “A method of
program measurement and estimation”, IBM
Systems Journal, 16(1), 54-73(1977).

