
Gemini: Code Clone Analysis Tool

Yasushi Ueda†, Yoshiki Higo†, Toshihiro Kamiya‡, Shinji Kusumoto† and Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University,
Toyonaka, Osaka 560-8531, Japan, Phone:+81-6-6850-6571, Fax:+81-6-6850-6574

{y-ueda, kusumoto, inoue}@ist.osaka-u.ac.jp
‡PRESTO, Japan Science and Technology Corp.

kamiya@ist.osaka-u.ac.jp

Abstract
In this paper, we present a maintenance support environ-

ment based on code clone analysis, called Gemini.

1 Introduction

Maintaining software systems is getting more complex
and difficult task, as the scale becomes larger. Code clone
is one of the factors that make software maintenance dif-
ficult [1]. A code clone is a code portion in source files
that is identical or similar to another. If some faults are
found in a code clone, it is necessary to correct the faults in
its all code clones. However, for large-scale software, it is
very difficult to correct them completely. In order to detect
the code clones effectively, various clone detection meth-
ods have been proposed.We have proposed and developed a
code clone detection tool, CCFinder [2], that detects code
clones from single program or multiples.

In this paper, we present a maintenance support environ-
ment, called Gemini [3], which visualizes the code clone
information from CCFinder. Using Gemini, we can specify
a set of distinctive code clones through GUIs, and refer the
portions of source code corresponding to the clones, so that
reconstruction or so can be carried out with high maintain-
ability.

2 Preliminaries

2.1 Definition on clone and related terms

A clone relation is defined as an equivalence relation
(i.e., reflexive, transitive, and symmetric relation) on code
portions. A clone relation holds between two code portions
if (and only if) they are the same sequences. For a given
clone relation, a pair of code portions is called clone pair if
the clone relation holds between the portions. An equiva-
lence class of clone relation is called clone class. That is,
a clone class is a maximal set of code portions in which a
clone relation holds between any pair of code portions. A
code portion in a clone class of a program is called a code
clone.

� � � � � � � � � � � 	
 � �
�
 � � � � � �
 � �
 � � 	
 � ���

� � � � � ��� � � � 	
 � �

� � � �
 � � � � � ��	
 � ���
�
 � � � ��� � � � � �
 � � 	
 � ���

Code clone database Clone selection
inf or m a tion

Clone selection
inf or m a tion

I nter f aces

User

Maintenance support environment

S ou r ce f i les

Code clone detector

M etr i cs m anag er

S ou r ce code m anag er

Clone p ai r m anag er

Figure 1. Architecture

2.2 CCFinder
CCFinder detects code clones from all the sub-strings

of token sequence of source code and outputs the locations
of the clone pairs on the source code. In clone detection
of CCFinder, the token sequence of source code is trans-
formed, i.e., tokens are added, removed, or changed based
on the transformation rules that aims at regularization of
identifiers and identification of structures. Then, each iden-
tifier related to types, variables, and constants is replaced
with a special token. This replacement makes code por-
tions with different variable names a clone pair. Details of
CCFinder have been shown in [2].

CCFinder has no GUI but it only generates character-
based output. It is quite difficult for the person who ana-
lyzes the source code to investigate a code clone only from
this information and source code, and to perform analysis
of the source code and reconstruction of it.

3 Maintenance support environment

3.1 Design
Gemini invokes CCFinder internally and analyzes the

outputs from CCFfinder. The architecture of Gemini is
shown in Figure 1.

First of all, source files are input into code clone detec-
tor, CCFinder. Then the output of CCFinder is accumulated
in this code clone database. Using the database, clone pair
manager and clone class manager visualize the information

1

(a) Scatter plot view (right side) and clone
pair list view (left side)

(b) Metric graph (right side) and clone
class list view (left side)

(c) Source code view (right side)

Figure 3. Snapshots of Gemini

a b a f g h b c b d c e i j k a b c

a b a f g h b c b d c e i j k a b c

f1
f2

f3
f4

f5
f6

f1 f2 f3 f4 f5 f6

: m a t c h e d p o s i t i o n
f1, f2 , …, f6 : f i l e
a , b , …, k : t o k e n

(a) Before sorting

a b a a b c b c b d c e f g h i j k

a b a a
b

c
b

c b d c
e f

g
h

i
j

k

f1
f6

f3
f4

f2
f5

f1 f6 f3 f4 f2 f5

(b) After sorting

Figure 2. A simple examples of scatter plot

of clone pairs or classes. On some interfaces, user can spec-
ify clone pairs or classes, he or she is interested in. By
selecting them, he or she can refer to the actual source code
through source code manager and its UI.

As principal interfaces to analyse code clones, there is
scatter plot view and metric graph view in Gemini as fol-
lows:

Scatter plot view
A simple example of scatter plot is shown in Figure 2(a).

In scatter plot, both the vertical and horizontal axes repre-
sent lines of source files. A black dot means that the corre-
sponding tokens on the horizontal and the vertical axis are
the same. So a clone pair is shown as a diagonal line seg-
ment. Naturally, a diagonal line from the upper left to the
lower right is always drawn since such dot means compar-
ison of token with itself. The dots are symmetrical with a
diagonal line. In Figure 2(a), each file includes only three
tokens in order to simplify the plot and files are sorted in
alphabetical order of the file paths.

However, the distribution of dots is occasionally spread
widely, depending on the file order. In such case, the cost
for analysis is high especially in large-scale software. So we

give this view a sorting function with respect to the file order
not to distribute clone pairs all over the scatter plot as much
as possible. As a basic idea of sorting, we put similar files
as near as possible. Here the ratio of covered code range of
a file by clones of the other file that is target for comparison
is used as the criterion of similarity. Figure 2(a) is a scatter
plot before sorting. By the sorting, the distribution becomes
narrower in Figure 2(b).

Using this plot as user interface like in Figure 3(c)), user
can easily identify the location of clone pairs. Then the cor-
responding source code can be referred through source code
view (See Figure 3(c)).

Metric graph view
In this view, the values of several kinds of metrics for

each clone class are shown as a graph, parallel coordinates.
For an example of metrics, there is DFL [2]. It indicates
an estimation of how many tokens would be removed from
source files when the code portions in a given clone class
are reconstructed. Based on the values of such metrics, we
can focus on distinctive code clones that may be meanig-
ful in maintenance. By setting the warning (interesting)
range about the value of each metric, user can select clone
classes whose metric values are in the range (See Figure
3(b)). Also the corresponding source code can be referred
through source code view.

3.2 Implementation
Gemini has been implemented in Java and runs on the

environment where JDK 1.3 VM can be executed. A exam-
ple of GUI is shown in Figure 3.

References
[1] M. Fowler, Refactoring: improving the design of existing code,

Addison-Wesley, 1999.
[2] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic

Token-Based Code Clone Detection System for Large Scale Source
Code”, IEEE Transactions on Software Engineering, Vol.28, No.7,
pp. 654-670, 2002.

[3] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue， “Gemini: Maintenance
Support Environment Based on Code Clone Analysis”, Proc. of the
8th International Symposium on Software Metrics, pp.67-76, 2002.

