Component Rank: Relative Significance Rank for Software Component Search

Katsuro Inoue T, Reishi Yokomori T, Hikaru Fujiwara’,
Tetsuo Yamamoto T, Makoto Matsushita " and Shinji Kusumoto |
T Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
it Japan Science and Technology Corporation, 4-1-8, Honmachi,
Kawaguchi, Saitama 332-8531, Japan
{inoue, yokomori, t-yamamt, matusita, kusumoto } @ist.osaka-u.ac.jp

Abstract

Collections of already developed programs are impor-
tant resources for efficient development of reliable software
systems. In this paper, we propose a novel method of rank-
ing software components, called Component Rank, based
on analyzing actual use relations among the components
and propagating the significance through the use relations.
We have developed a component-rank computation system,
and applied it to various Java programs. The result is
promising such that non-specific and generic components
are ranked high. Using the Component Rank system as
a core part, we are currently developing Software Prod-
uct Archiving, analyzing, and Retrieving System named
SPARS.

1. Introduction

Computer systems are becoming core infrastractures of
effective and efficient activities of everyday life. Programs
involved in computer systems are getting larger and more
complex, and a great number of software engineers are en-
gaged in various kinds of software development projects,
producing many kinds of programs day by day.

It would be imagined that similar programs have been
developed independently in different locations of the world
or in different times in the history, without sharing knowl-
edge of other programs. It is considered that well-organized
collection of programs or program components will im-
prove productivity of the development and quality of the
developed software products.

There are many kinds of software repositories available
on the Internet such as Jumbo![13] or ZDNet[25]. These
are mostly for software users who want to obtain already
developed tools or systems, but not for software developers.

There is also a large software repository called
SourceForge[21] where various software development
projects are carried out with an open-source development
model[20]. In this site, a search feature is provided to find
a proper development project, but there is little support to
explore program components, libraries, portions of codes,
or abstracted algorithms, which are important resources for
new development of programs. Reading, understanding,
and duplicating well-written software legacies are indis-
pensable activities for contemporary software development.
We may want to keep all software legacies in a single repos-
itory; however, structuring and keeping consistency of the
huge repository would be an impractically complicate and a
painful work.

In this paper, we propose a novel method of ranking soft-
ware components, called Component Rank, based on ana-
lyzing actual use relations of components and propagating
the significance through the use relations.

There have been many researches related on software
reusability[6, 9, 17]; however, the significance by actual
usage has not been explored yet. The idea behind Com-
ponent Rank originates from computing fair impact factors
(called influence weights) of published papers[19]. This ap-
proach has been extended to ranking Web documents in the
Internet[18].

We will present the Component Rank model for rank-
ing software components, and show a system for computing
Component Rank. In this model, a collection of software
components is represented as a weighted directed graph
whose nodes correspond to the components and edges cor-
respond to the usage relations. Similar components are clus-
tered into one node so that effect of simply duplicated nodes
is removed. The nodes in the graph are ranked by their
weights which are defined as the elements of the eigenvec-
tor of an adjacent matrix for the directed graph.

The Component Rank computation system targets Java

source files containing a class definition as components.
This system has been applied to various collections of Java
programs, such as JDK, software engineering tools devel-
oped by ourselves, business applications and their frame-
work developed by a mid-size software company, and a col-
lection of XML and other tools.

The results show that stable classes frequently invoked or
inherited by other classes have generally high ranks. Exam-
ples of such classes are for fundamental and standard data
structures and for typical exception handers. Non-standard
and special classes are listed with low ranks in many cases.

Since this empirical validation of Component Rank is
very promising, we are currently developing Software Prod-
uct Archiving, analyzing, and Retrieving System called
SPARS, by which software engineers will interactively re-
trieve software components with various queries.

In Section 2, we will propose Component Rank model.
Section 3 will show an implementation of the Component
Rank model. The results of applications will be presented
in Section 4. Various issues on the model and the imple-
mentation will be discussed in Section 5. Finally, we will
conclude our discussion with future work in Section 6.

2. Component Rank Model
2.1. Component Graph

Software systems are modeled by a weighted directed
graph, called a Component Graph. A node in a graph rep-
resents a software component, and a directed edge e, from
node x to y represents a use relation meaning that compo-
nent x uses component .

Here, we do not restrict our discussion to a specific kind
of component in the graph. A component may be a source-
code module, a link library, or one section of document. The
following discussion will hold for any kind of nodes. Also,
the use relation is left unspecified here for the extendibil-
ity of the model. In Section 4, we will show our concrete
implementation for those abstracted nodes and edges, such
that the components are Java class files, and that the use
relations are the class inheritance, method invocation, and
abstract class implementation.

A software system is generally modeled with a compo-
nent graph that is weakly connected (assuming that there is
no redundant component). A set of software systems is also
modeled with one component graph. This graph is discon-
nected if there are no sharing components.

Figure 1 shows a component graph for two software sys-
tems X and Y. X consists of 5 components A — F, and
Y consists of 4 components F' — I. This graph also shows
that component C' uses both A and B, and D and E use
C. Also, H and I use GG, and G and F' mutually use one
another.

A F

B
~ Il
C G
N N
D

E H I

e N
System X System Y

Figure 1. An example of component graph

2.2. Weight of Node

Each node v in component graph G has a non-negative
weight value w(v) where 0 < w(v) < 1.

Definition 1 (Total Weights of Nodes) For simplicity of
following calculation, we assume that the sum of the
weights of all nodes in G is 1, i.e.,

Z w(v) =1

veQG

Computing the weight for each node under computation
policies described below is our objective of this work. The
order of the nodes sorted by the weights is called Compo-
nent Rank of the components.

We introduce several definitions to define w(v) for com-
ponent graph G = (V, E).

Definition 2 (Weight of Edge) For computation of the
weights of nodes, we introduce the weight w'(e;;) of an
edge e;; = (v;,v;), such that

w’(eij) = dij X ’LU(Ul)

Figure 2 (a) depicts this definition. Here, d;; is called a
distribution ratio, where 0 < d;; < 1 and the total of d;; for
each j is 1. If there is no edge from v; to vj, d;; = 0. The
distribution ratio d;; is used for determining the forwarding
weights of v; to an adjacent node v;.

Definition 3 (Weight of Node) The weight of a node v; is
defined as the sum of the weights of all incoming edges ey;,

such that
wli) = Y]

eri € IN(v;)

w'(ex;)

Here, IN(v;) is the set of the incoming edges of v;. Fig-
ure 2 (b) shows this definition.

C:
w(v;) W)
: wi(ey) w(ey) &
Vi P e VJ e, H Vi
Y k *

W(vi) =Ww(ey) T w(ey) +
...+W’(ekj)+

(b) Weight of Node

w’(e;;) = dy w(v;)

(a) Weight of Edge

Figure 2. Definition of weights

2.3. Computation of Weights

Based on these definitions, we have n(= |V|) simulta-
neous equations for w(v;),

w(v;) = Z

eri € IN(vy)

dki X w(vk)

Assume that W is a vector of node’s weights,

w(vn)

Also, D is a matrix of the distribution ratios,

d11 d12 e dln

d21 d22 e d2n
D= : . :

dnl dnz dnn

So the simultaneous equations can be rewritten by,

W = D'W ey

where D? is the transposed matrix of D.

Together with Definition 1, formula (1) can be solved by
computing the eigenvector with eigenvalue 1.

Instead of computing the eigenvector, we can also com-
pute the weights of each node by a repeated computation
such that, we give initial ad-hoc weights to each node(e.g.,
1/n to each node), and then propagate them to adjacent
nodes through directed edges. The weights are repeatedly
recomputed until the all weights become stable.

Figure 3 shows a component graph with computed
weights. wv; has two outgoing edges, and weight 0.4 is

0.4 0.2

V) 4705 0.2 o Vs
d;=0.5
0.2 dy=1
0.4 0.2
31— 1 V3
0.4

Figure 3. An example of stable weights as-
signed to nodes and edges

evenly divided to two outgoing edges with 0.2 each (i.e.,
d12 = dyi3 = 0.5). v3 has two incoming edges, each with
weight 0.2, so that the weight of v3 is 0.4.

If we assume that the movement of software developer’s
focus on the target components is represented by a proba-
bilistic state transition, the component graph is a Markov
chain model. Thus, computing the weights of the nodes in
the graph corresponds to getting a stationary distribution of
the chain.

2.4. Convergence of Computation

In the case that a node v; has no outgoing edge, all dis-
tribution ratios d;, become zero. This does not satisfy the
requirement of the total sum of the distribution ratio.

Also, if the graph is not strongly connected as shown in
Figure 4 (a), the weight of v; is repeatedly added to the
weight of vg, causing non-termination in the repeated com-
putation.

In these cases, the eigenvector cannot be solved either.
To guarantee the solution of the simultaneous equations,
i.e., the termination of repeated computation of the weights,
we introduce pseudo use relations between all nodes as
shown in Figure 4 (b), and define an amended distribution
ratio for each node as follows.

Definition 4 (Amended Distribution Ratio)

g -1 px dij + (1 —p)/n ifv; has outgoing edge e;;
U 1/n if v; has no outgoing edges

Here p(0 < p < 1) is the ratio between the weight of real
use relations and that of pseudo use relations, and we gen-
erally employ a fairly large value such as 0.85 as discussed
later.

@ | v, YV, e V3
\ xl I‘\‘ ‘,," A xl
Oy oy, =
Ly i

Figure 4. Introduction of pseudo use relation
for convergence

By using dgj instead of d;;, we can always compute the
weight for a given component graph. This pseudo use rela-
tion can be considered as a possible implicit reference of a
component to all components (including itself).

2.5. Clustering Components

Software systems are often made by reusing already de-
veloped components. Some components are simply copied
from previous systems, or some are constructed from those
with minor or major modifications.

In the above mentioned method, those reused compo-
nents are represented as multiple nodes in a component
graph, and their weights are computed independently.

We would want to identify the similarity of components
and to feed back the similarity information to the computa-
tion, in order to obtain more practical weight values.

Assume that we can measure similarity S(vq, ve) of any
two nodes (components) v; and v in a component graph
G = (V,E), where 0 < S(v1,v2) < 1, S(v,v) = 1, and
S(v,w) = 0 if v and w are totally different.

Here, we say that an equivalence relation of v; and vy
exists when S(vi,vy) > ¢, where ¢ is a criterion of the
equivalence. This equivalence relation partitions V' into a
set of equivalence classes, composing the quotient set V.

We define the clustered component graph G' = (V' E")
for GG as follows.

Definition 5 (Clustered Component Graph)

G' = (V',E') such that V' is the quotient set of V,
and E' = {(v,v})|(vi,v;) € E} where v and v’; are
equivalence classes involving v; and vj, respectively.

Figure 5 shows an example of a clustered component graph.
Two weakly connected subgraphs in the component graph
are merged into one weakly connected graph as the clus-
tered component graph. As shown in this example, there are

VI=Vy, Vo=V

V3 \Z e v,

Va A\ y—' > Vi

v, \2 Vs Vi Vs
Component Graph Clustered Component Graph

Figure 5. An example of clustered component
graph

cases such that several independent subgraphs in the com-
ponent graph are merged into one, and the characteristics of
each subgraph can be propagated to other subgraphs.

Using the clustered component graph instead of the com-
ponent graph, we will compute the weights of each node as
the above mentioned approach, including the amendment of
the distribution ratio. We simply call component graph for
clustered component graph hereafter, if there is no ambigu-

ity.
3. Component Rank System
3.1. Implementation of Component Rank Model

Based on the Component Rank model discussed in Sec-
tion 2, we have designed and implemented a system to com-
pute Component Ranks for Java programs. The following
features the implementation.

Component: A single Java source file with .java exten-
sion is considered as a component. In Java, it is in-
herently easy to extract components, since each class
definition is independently defined as a single file with
Jjava extension. Internal classes are not considered as
components here.

Use relation: Class inheritance relation, method invoca-
tion, and abstract class implementation are the use re-
lations. Here, we employ only statically detectable
ones from the source programs.

Ratio p between real and pseudo use relations: We use
p=0.85 which means that the total weight value 0.15
is assigned to the pseudo use relations.

Distribution ratio: The distribution ratios of the real use
relations, which go out from one node, are equally

XX.java

— java file =component

ﬂ Input
(3) Use Relation
Extraction

(4) Clustered Componenq

(1) Similarity
Measurement
by SMMT

(2) Clustering Graph Construction
'
5)C t Rank
(6) De-Clustering to) (? mpontertl‘
Original Component Graph omipuiation
g by Repetition

Output

Order of Weights =Component Rank of .java files

Figure 6. Architecture of the component rank
system

the same values. For example, if a node have 5 out-
going edges, the distribution ratio evenly divided for
each edge is 0.17. The total of 5 edges is 0.85, and the
rest 0.15 is the total of the pseudo use relations, which
imaginarily go out to all nodes in the component graph.

Similarity ¢: Similarity metrics for source codes, pro-
posed in [23], is adopted, and its measurement tool
SMMT is used. The metrics is based on a combina-
tion of a fast code-clone detection by CCFinder[14]
and a file-difference detection by diff[5]. The number
of shared source code lines is divided by the number of
total lines, producing the similarity value. We employ
the similarity criterion ¢ = 0.80 here.

3.2. Architecture of the Component Rank System

Figure 6 shows the architecture of our first prototype of
the Component Rank system.

(1) The similarity of any two components (files) is com-
puted by SMMT tool, for M input components.

(2) Two components with similarity higher than or equal to
t=0.8 are merged into one component. By this cluster-
ing, we get N(< M) equivalence classes.

(3) The syntax analyzer parses the java source files, and ex-
tracts class inheritances, method invocations, and ab-

stract class implementations, as the use relations. The
analyzer has been constructed by using Java syntax li-
brary ANTLR[1].

(4) The clustered component graph is constructed as a form
of N x N amended distribution ratio matrix.

(5) The weights of nodes are computed by propagating ini-
tial ad-hoc values through edges until we get the con-
vergence. This method is mostly faster than solving
the eigenvector by a math library.

(6) The weighted nodes in the clustered component graph
is mapped back to the original components, so that we
can see the order of the weight of each component in
M, i.e., Component Rank of the Java file, as the output.

The system computes Component Rank fairly efficiently
even for a large set of programs. It takes about 7 minutes
to compute Component Rank for JDK 1.3.0 (1877 compo-
nents of totally 575,000 lines.) on a PC workstation (Pen-
tium IV, 2GHz, 2GBytes memory).

4. Experiments

We have applied the Component Rank system to 4 sets
of Java programs as follows.

4.1. JDK 1.3.0

All source programs of Java 2 Software Development
Kit, Standard Edition 1.3.0[12] (simply referred to JDK
1.3.0 here) are the target of the first application. It is com-
posed of 1877 .java files of totally 575,000 lines of code in
Java. These files include the classes which are very impor-
tant and fundamental ones to develop various Java applica-
tions.

Table 1 shows the resulting Component Rank values for
each file, listed from the highest rank to the lowest one. The
highest one, java.lang.Object class, is the superclass of any
class in Java, so that this class is used directly or indirectly
by any class, causing it on the top of the ranking.

Other highly ranked classes are also fundamental ones
that are possibly invoked or inherited from many other
classes. The 3rd class, java.lang.Throwable, is the super-
class of any error or exception handlers so that it is used by
many classes with error or exception handling.

There are 622 classes with the lowest (1256th) rank.
These classes are not used by any other classes at all.

The overall result of Component Rank for JDK 1.3.0
matches to our intuition such that very general and core
classes are ranked high, and specific and independent
classes are ranked low.

Table 1. Component Rank for JDK 1.3.0

C.Rank Class Name Weight
1 java.lang.Object 0.16126
2 java.lang.Class 0.08712
3 java.lang.Throwable 0.05510
4 java.lang.Exception 0.03103
5 java.io.IOException 0.01343
6 java.lang.StringBuffer 0.01214
7 java.lang.SecurityManager 0.01169
8 java.io.InputStream 0.01027
9 java.lang.reflect.Field 0.00948
10 java.lang.reflect.Constructor 0.00936

1256 sunw.util. EventListener 0.00011
1256

4.2. Collection of SE Tools

We have applied the Component Rank system to a col-
lection of software engineering tools developed in our lab.
There are 582 files in total. The following lists their
overview.

C-K Metrics Measurement Tool 1: This tool measures
C-Kmetrics[4] of Java programs. The package name is
cktool, and the tool uses a syntax analyzer ANTLR[1].

C-K Metrics Measurement Tool 2: This is an upgraded
tool of above, and is named cktool_new.

Component Rank System: A version of Component
Rank system itself is also targeted. It uses library
ANTLR, a matrix computation library JAMA[11],
and a general utility library Caffe Cappuccino Class
Library[3]. The package name is jp.ac.osaka_u.ics.
iip_lab.metrics.

Libraries: The source files of above mentioned libraries,
ANTLR, JAMA, and Caffe Cappuccino Class Library
(the package name is jp.gr.java_conf keisuken) are in-
cluded as the target. JDK is excluded here.

Table 2 shows the result of those tools. There
are two of the second classes, antlr.debug.Event and
antlr,debug. NewLineEvent, having the same weights.
These two are merged into a single node in the clustered
component graph because of their similarity. Also, two
classes of the 8th rank are merged into one.

We have noticed that library classes are generally in
higher ranks, and our developed application classes are gen-
erally in lower ranks. Also, we knew that many data con-
tainer classes are ranked high, such as antlr.Token at the
first, and antlr.collections.impl. Vector at the 4th rank.

Table 2. Component Rank for SE tools

C.Rank Class Name Weight
1 antlr. Token 0.10727
2 antlr.debug.Event 0.06189
2 antlr.debug.NewLineEvent 0.06189
4 antlr.collections.impl. Vector 0.05434
5 jp.gr.java_conf keisuken.

text.html. HtmlParameter 0.05246
6 jp.gr.java_conf keisuken.
net.server.ServerProperties 0.03699
7 Jama.Matrix 0.01564
8 jp.gr.java_conf keisuken.
util.IntegerArray 0.01390
8 jp.gr.java_conf keisuken.
util. LongArray 0.01390
10 jp-ac.osaka_u.es.ics.iip_lab.metrics.
parser.IdentifierInfo 0.01365
418 cktool_new.examples.Main 0.00050

This result also suggests that Component Rank is an in-
dicator of generality and specialty of classes from the view
point of usage from other classes.

4.3. Framework and Applications Developed by a
Software Company

Daiwa Computer, located in Osaka, Japan, is a software
company with about 180 engineers. In that company, vari-
ous kinds of new technologies in Software Engineering are
actively studied and introduced. It holds ISO9001:2000 cer-
tificate and CMM Level3 assessment.

In that company, a shared framework for Java applica-
tions has been constructed, and various business applica-
tions have been developed on this framework.

Using this framework, five Web-based data management
applications have been developed. Those applications have
similar features but have distinction in their implementation
such as databases and their interfaces (SQL, DB2, Oracle,
).

These five applications and the framework itself are the
target of the ranking. They contain 1538 components in
total, and these components were clustered into 339 nodes.

The observation we got by this experiment is very sim-
ilar to the previous two experiments. The classes defined
in the framework generally have high ranks. For example,
from the first to 10th ranked classes are for the framework.
This means that those classes are frequently used by other
classes. Also, we knew that classes defining data structures
and their containers are highly ranked. The first ranked class
is the definition of a record class for database management,
which is defined in the framework. These results confirm

Table 3. Search Result Sorted by Component
Rank

Order Class Name weight
(C.Rank)

1(67) enhydra3.l...dom.Node 0.029110
2(169) saxon7.0...saxon.om.Nodelnfo 0.000969
3(275) saxon7.0...saxon.pattern.NodeTest 0.000437
4(316) enhydra3.1...dom.DocumentImpl 0.000368
5(355) saxon7.0...saxon.pattern.Pattern 0.000324
6(382) saxon7.0...saxon.Controller 0.000296
7(437) enhydra3.1...xslt. XSLTEngineImpl 0.000241
8(446) enhydra3.l...dom.ElementImpl 0.000235
9(500) saxon7.0...saxon.style.StyleElement 0.000202

10(506) saxon7.0...saxon.tree.NodeImpl 0.000198
125(4441) enhydra3.1...FuncID 0.000029
125(4441) - :

our approach, in the sense that core and fundamental com-
ponents can be easily identified by the rank.

4.4. Searching Components with Component Rank

The rank values computed by our method are generic
ones in the sense that any kind of components is ordered
in one dimension. We would usually want to search a spe-
cific kind of components in which we are interested, and
also we may want to sort the found components in the order
of their ranks.

To have the first impression of such a search, we have
ranked 7171 Java files for text editors JEDIT and jext, an
application server Enhydra, an XSLT processor saxon, and
a Gnutella client phex (all these handle XML documents),
found in SourceForge[21], in addition to JDK 1.3.0 and the
4 tools shown in Section 4.2.

For these, we searched components with a keyword
“getNodetype” by using UNIX tool grep, excluding the
components having the keyword only in comments. We had
181 matched components, and they are sorted by Compo-
nent Ranks, as shown in Table 3.

Method “getNodetype” is a method to get the informa-
tion of the kind of the node in the DOM tree. At the first and
second in the sorted order, the definitions of that method ap-
pear. Other components use that class. High-ranked com-
ponents are mainly for the operation of elements and for
the analysis of a style sheet, which are fairly generic opera-
tions. On the other hand, many low-ranked components are
for non-generic and specific purpose ones such as classes

for interpreting and performing the contents described by
XML.

We would think that this is a very encouraging result,
since the high-ranked components are ones which should be
directly referred to or should be associated when we build
codes related to DOM trees.

5. Discussions
5.1. Weight Computation

In our Component Rank model, the weights of nodes are
propagated to other nodes through edges. We would con-
sider another simpler model such that the weight of a node
is determined by the number of incoming edges. This alter-
nate model can be easily computed without complex com-
putation for the convergence (or the eigenvector as we do).

However, this alternate model is very fragile to local spe-
cial references. Consider that a component A is 10 times
used by components B1 to B10, and Bl to B10 are not
used by any component at all. In the alternate model, the
weight of A becomes 10. In the Component Rank model,
the weight of A is relatively determined by other compo-
nents, but A is not ranked high as the alternate model, since
the weights of B1 to B10 are relatively low. Thus, we con-
sider that our model is very stable for such local references.

This argument is a similar one such as a comparison
of Web search engines between Google and other simple
search engines only counting incoming references[18]. The
simple engines could easily cheated by intentionally-made
local reference links, but Google is resistant to such links.

5.2. Clustering Policy

The clustering similar nodes is an important character-
istics of our Component Rank model. If we would model
multiple software systems in a component graph without
clustering, the graph might be composed of multiple discon-
nected subgraphs and the weights would be independently
computed inside each subgraph, without circulating weights
over subgraphs (except for small interaction by the pseudo
use relations).

The clustering has an effect that the weights of one soft-
ware system are propagated to other systems through clus-
tered nodes, resulting in Component Rank as a global rank-
ing in all the software systems.

We have taken a clustering policy such that first similar
nodes are clustered then the weight of each node is com-
puted. An alternate policy would be that first we compute
the weight of each node in the original component graph,
then we cluster the similar nodes by adding similar node’s
weights as the clustered node’s weight.

In our policy, simply copied and used components are
not counted repeatedly. Consider a simple case shown in
Figure 7 (we do not consider the pseudo use relations for
simplicity here). In this case, components A and B are du-
plicated. In our policy, the result weights for A* and B’ are
1/4, while those are 1/3 in the alternate policy. This means
that in our policy the existence of simply copied compo-
nents does not affect the resulting weight. In the alternate
policy, if the number of copied components grows, the re-
sulting weights for those components increase.

We believe that it is important not to count simply dupli-
cated components, but to count modified and labored com-
ponents.

Consider another case shown in Figure 8. In this case,
component A is reused, but B is replaced with C. In the
result, the weight of A’ is 2/5 in our policy, which is higher
than 1/3 in the alternate policy. The weight of A’ in the
alternate policy is 1/3, the same value as the case in Figure
7, even with its structural change.

These examples sharply present that the duplication with
modification is properly counted in our policy, but it is not
in the alternate policy.

5.3. Similarity Criterion ¢ and Pseudo Use Relation
Ratio p

We have investigated different ¢ from 0.10 to 0.90, and
knew that the resulting ranks are fairly insensitive to t[24].
There are some components which are clustered with 0.70
or lower, but not with 0.80 or higher. Exception handlers
in JDK are examples of those. We thought that such com-
ponents should be counted separately so we have employed
t=0.80 here.

The ratio p between real and pseudo use relations has
been explored in detail[7]. We knew that the resulting
weight values are affected by p, but that the resulting Com-
ponent Ranks are insensible to p. The ranks are fairly stable
even if we have changed p from 0.75 to 0.95, so we have
chosen p=0.85 here.

5.4. Distribution Ratios of Node

In the current implementation of the Component Rank
system, we have employed an equal distribution ratios for
any outgoing edge from one node. We can consider another
policy such that we give some priority to specific outgoing
edges which are considered to deserve. At this moment,
we do not have a clue to determine the priority, and we
think this is a further issue. However, our intuition is that
if the component graph becomes huge enough, the priority
parameter of distribution ratios would not affect to the re-
sult ranks so severely, as we have investigated variations of
t and p above.

We have defined the Component Rank model such that
the weight of a node is divided and distributed to the outgo-
ing edges so that the total weight of the outgoing edges is
the weight of the node (assuming no pseudo edges). We
can consider another model where the weight of a node
is directly the weights of each edge, without division by
the number of the outgoing edges. This model means that
nodes with more outgoing edges have higher influence to
other nodes totally, than nodes with less outgoing edges.
We thought that this is unfair, but we might need a further
investigation.

5.5. Scalability

In order to get practically useful results, we need to col-
lect a huge number of source programs. In that sense, the
scalability of the system is important. Currently, our Com-
ponent Rank system works under about 8,000 components
due to the limitation of the similarity computation. The
current similarity computation is based on a pair-wise ex-
ecution of diff[5] for any two components. This should be
changed to a more efficient method such as classification of
components by characteristic metrics.

Compared to the similarity computation, the conver-
gence computation is a much lighter process, and we think
that it would not limit the scalability.

5.6. Related Works

The Component Rank model proposed here is based on
our original intuition, such that, from a huge number of col-
lections of legacy software, we might be able to effectively
search software components, pieces of program codes, pro-
gram patterns, or abstracted algorithms, by using a similar
approach as Google[2, 8, 18] for Web pages, together with
various program analysis techniques. Google computes the
ranks (called PageRanks) for HTML documents available
in the Internet. The resulting PageRank is practically very
useful. A related analyses on the Web links have been dis-
cussed in detail in [16].

The Google’s approach can be considered as an HTML
extension of a method proposed for counting impact of pub-
lications, called influence weight[19]. The influence weight
of a publication is determined by the sum of the weights of
incoming references, as the Component Rank model does.

A major distinction of our model from PageRank and the
influence weight is that our approach explores similarity be-
tween components before the weight computation. This is
definitely important for software components. There would
be so many copied or slightly modified software compo-
nents when we simply collect software systems. Without
proper handling of those similar components, we could not
get reasonable and practical ranks.

1/4 1/4
Other

Components A’ X’

Al Al [X [1l
1L 2 [e] v

Copied
Components

—»
—1

B B Y 4 14
Clustering before Weight Computation
Non-Clustered Component Graph
1/3 1/6
A’ X’
B’ Y’
173 1/6

Clustering after Weight Computation

Figure 7. Effect of simple copied compo-
nents

Our Component Rank is a true measure of soft-
ware reuse. There have been many researches on soft-
ware reusability, and many literatures have been already
published[9, 17]. Software reuse is a promising approach
to improve the efficiency of software development and the
quality of developed software[10, 15].

Many methods to measure reusability of software com-
ponents have been proposed. Etzkorn’s approach[6] is that
various static metrics for C++ classes (components), such as
cohesion and complexity, are measured and these values are
normalized and added. Yamamoto’s approach[22] is that
class interface information is used to determine reusability.
These approaches are based on measuring static properties
of components.

Our approach does not measure the property of compo-
nents, but only uses relation among components. We be-
lieve that the overall structure of the components represents
much properly the usage history of the component, rather
than the metrics of the components. In our model, if a com-
ponent is repeatedly reused (by not simple copying), the re-
sult rank will be higher. However, the property measures
are not affected by the repeated reuse.

5.7. SPARS

Using the Component Rank system as a core ranking en-
gine, we are currently developing Software Product Archiv-
ing, analyzing, and Retrieving System called SPARS. Figure
9 shows SPARS architecture. Various Java source programs
are collected, and they are stored in the raw component
archive. Those components are ranked by the Component

Copied and 2/5 1/5

Original Modified Other

Components Components Components A’ X’
Al [a] [X o /AN
[I Bllc| |y
B C Y s s 155

Clustering before Weight Computation
Non-Clustered Component Graph

A’ X’
8\l
B’ C Y’

1/6 1/6 1/6
Clustering after Weight Computation

Figure 8. Effect of copied and modified compo-
nents

Collection of
Java Source Programs
Raw Component
Component Rank
Archive Engine Ranked
Component
Archive
Component Searcher Query
O <:> Browser Analyzer Sear.ch
Engine
ﬁ Formatter
SPARS

Figure 9. Architecture of SPARS

Rank engine and stored as the ranked component archive.

A component searcher, who is trying to build a software
system, will give SPARS queries for some typical definition
or typical usage of a class to build, by keywords or portions
of source codes. These queries are analyzed and given to the
search engine. It retrieves the ranked component archive.
The matched results are listed by the ranks, and are returned
to the component searcher.

6. Conclusion

We have proposed a novel ranking method of software
components, Component Rank, and shown the first imple-

mentation of Component Rank. Using the implemented
system, various Java programs have been ranked, and the
characteristics of Component Rank have been investigated.

Although the results might be still preliminary, we be-
lieve that this method is very promising. Using the Compo-
nent Rank method, we are currently developing a software
component retrieval system, SPARS, which will be used in
various situations of software development, such as search-
ing, exploring, checking, investigating, reminding or refer-
ring to software components, as we use dictionaries and li-
braries when writing a composition. SPARS might be con-
sidered as a Google-like system for software engineers.

There are several further issues. The validity of Compo-
nent Rank will be explored further.

One approach is to evaluate the rank values directly.
However, since we do not know any objective measure in-
herently correlating to Component Rank, we would use, for
a validation, a subjective measure such as questioners to
software experts.

Another approach would be to investigate precision and
recall of the search results. To do this, we will need to build
a proper experimental setting, including correct answers to
test queries.

In the Component Rank model, we employed only stat-
ical use relations. It is possible to extend to use relations
such as method invocation and dynamic class binding. This
approach would be more preferable since we can compute
the ranks of components without their source codes. Dis-
tinction between statical and dynamical ranks is a very in-
triguing research issue to explore.

We have discussed the Component Rank model only for
component retrieval; however, we are planning to apply
Component Rank to automatic software architecture com-
position. There are many literatures for the structuring soft-
ware architectures from the results of statical analyses of
source codes and libraries, or from the results of dynamic
analyses of object code execution. We think that those anal-
ysis results could be more stabilized by the propagation and
convergence computation as the Component Rank model.

Our Component Rank system is currently implemented
to accept Java programs only. We will extend to other pro-
cedural languages such as C and C++. To do this, we have to
define the component and use relation for those languages.
Functions and procedure invocations would be practically
feasible candidates, but we need further investigation and
validation.

Acknowledgments

We express our great thanks to Daiwa Computer Co.,
Ltd. for the data collection. We also thank Prof. Ku-
miyo Nakakoji of University of Tokyo / SRA-KTL and Dr.

10

Yunwen Ye of University of Colorado / SRA-KTL for their
helpful comments and discussions.

This project is supported by Japan Science and Technol-
ogy Corporation, Research and Development for Applying
Advanced Computational Science and Technology.

References

[1] ANTLR. “http://www.antlr.org/”.

[2] S.Brin and L. Page. “The Anatomy of a Large-scale Hyper-
textual Web Search Engine”. Computer Networks and ISDN
Systems, 30(1-7):107-117, 1998.

Caffe Cappuccino class library. “http://cappuccino.ne.jp
/keisuken/java/capp/api/overview-summary.html”.

S. Chidamber and C. Kemerer. “A Metrics Suite for Object-
Oriented Design”. [EEE Transactions. Software Engineer-
ing, 20(6):476-493, 1994.

Diffutls. “http://www.gnu.org/software/diffutils/”.

L. H. Etzkorn, W. E. H. Jr.,, and C. G. Davis. “Automated
Reusability Quality Analysis of OO Legacy Software”. In-
formation and Software Technology, 43(5):295-308, 2001.
H. Fujiwara. “ A New Reusability Metric Based on Reuse
Results and Similarity among Programs”. Master’s thesis,
Dept. of Informatics and Mathematical Science, Osaka Uni-
versity, 2002. (In Japanese).

Google. “http://www.google.com”.

J. Guo and Lugi. “A Survey of Software Reuse Reposito-
ries”. In Proceedings of 7th IEEE International Conference
and Workshop on the Engineering of Computer Based Sys-
tems, pages 92-100, Edinburgh, Scotland, April 2000.

S. Isoda. “Experience Report on a Software Reuse Project:
Its Structure, Activities, and Statistical Results”. In Pro-
ceedings of 14th International Conference on Software En-
gineering, pages 320-326, Melbourne, Australia, 1992.
JAMA : A Java Matrix Package. “http://math.nist.gov/
javanumerics/jama/”.

Java 2 Software Development Kit, Standard Edition 1.3.0.
“http://java.sun.com/j2se/”.

JUMBO! “http://www.jumbo.com/”.

T. Kamiya, S. Kusumoto, and K. Inoue. “CCFinder: A
Multi-Linguistic Token-based Code Clone Detection Sys-
tem for Large Scale Source Code”. IEEE Transactions. Soft-
ware Engineering, 28(7):654—670, 2002.

B. Keepence and M. Mannion. “Using Patterns to Model
Variability in Product Families”. IEEE Software, 16(4):102—
108, 1999.

J. Kleinberg. “Authoritative Sources in a Hyperlinked Envi-
ronment”. Journal of the ACM, 46(5):604—632, 1999.

C. Krueger. “Software Reuse”. ACM Computing Surveys,
24(2):131-183, 1992.

L. Page, S. Brin, R. Motwani, and T. Winograd. “The
PageRank Citation Ranking: Bringing Order to the Web”.
Technical Report of Stanford Digital Library Technologies
Project, 1998. http://www-db.stanford.edu/backrub/ pager-
anksub.ps”.

G. Pinski and F. Narin. “Citation Influence for Journal Ag-
gregates of Scientific Publications: Theory, with Applica-
tion to the Literature of Physics”. Information Processing
and Management, 12(5):297-312, 1976.

(3]
(4]

(3]
(6]

(7]

(8]
(9]

(10]

(11]
(12]

(13]
(14]

(15]

(16]
(17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]

[25]

E. S. Raymond. “The Cathedral and the Bazaar”.
“http://www.tuxedo.org/ esr/writings/cathedral-bazaar/”.
SOURCEFORGE.net. “http://sourceforge.net/”.

H. Yamamoto, H. Washizaki, and Y. Fukazawa. “The Pro-
posal and Verification of Component Metrics Based on the
Reuse Characteristic”. In Workshop of Foundation of Soft-
ware Engineering (FOSE2001), 2001. (In Japanese).

T. Yamamoto, M. Matsusita, T. Kamiya, and K. Inoue.
“Measuring Similarity of Large Software Systems Based on
Source Code Correspondence”. Technical Report of Dept.
of ICS, 11P-03-03-02, 2002.

R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsusita,
S. Kusumoto, and K. Inoue. “Proposal of Reusability Eval-
uation Method Using Relations among Software Compo-
nents”. In Proceedings of Software Symposium 2002, pages
216-225, Matsue, Japan, July 2002. (In Japanese).

ZDNet. “http://www.zdnet.com”.

11

