
Design and Implementation of Bytecode-based Java Slicing System

Fumiaki Umemori†, Kenji Konda††, Reishi Yokomori††, Katsuro Inoue†
†Graduate School of Information Science and Technology, Osaka University

††Graduate School of Engineering Science, Osaka University
{umemori,inoue}@ist.osaka-u.ac.jp,

{konda,yokomori}@ics.es.osaka-u.ac.jp

Abstract

Program slice is a set of statements that affect the value
of variable v in a statement s. In order to calculate a pro-
gram slice, we must know the dependence relations between
statements in the program. Program slicing techniques are
roughly divided into two categories, static slicing and dy-
namic slicing, and we have proposed DC slicing technique
which uses both static and dynamic information.

In this paper, we propose a method of constructing a
DC slicing system for Java programs. Java programs have
many elements which are dynamically determined at the
time of execution, so the DC slicing technique is effective
in the analysis of Java programs. To construct the system,
we have extended Java Virtual Machine for extraction of dy-
namic information. We have applied the system to several
sample program to evaluate our approach.

1 Introduction

Program slice is a set of statements that affect the
value of variable v in a statement s. Program slicing is
a very promising approach for program debugging, test-
ing, understanding, merging, and so on[5, 6, 9, 11, 20].
We have empirically investigated effectiveness of program
slicing for program debugging and program maintenance
processes, and its significance was validated by several
experiments[12].

In order to calculate a program slice, we must know the
dependence relations between statements in the program.
Program slicing techniques are roughly divided into two
categories, static slicing[13, 20] and dynamic slicing[1, 21].
The former is based on static analysis of source program
without input data. The dependence of program statements
is investigated for all possible input data. The latter is based
on dynamic analysis with a specific input data, and the de-
pendence of the program statements is explored for the pro-
gram execution with the input data. The size of the static

slice is larger than that of the dynamic one in general, since
the static slice considers all possible input data. The size of
the dynamic slice is smaller in general, but the dynamic one
requires a large amount of CPU time and memory space to
obtain it.

We thought that using both static and dynamic informa-
tion would be better than using only dynamic information,
and have proposed DC slicing technique which uses both
static and dynamic information, and have shown that we
can obtain suitable compromises of slice precision and slic-
ing performance.

In software development environment in recent years,
object-oriented languages, such as Java, are used in many
cases. Although we would like to adapt the program slicing
techniques to Java programs, Java programs have many fea-
tures which are dynamically determined at the time of ex-
ecution. Therefore, applying the static slicing technique to
the object-oriented languages will cause a problem in slice
precision. Also the dynamic slicing has a problem in analy-
sis cost. We consider that the DC slicing technique is effec-
tive in the analysis of Java programs.

In this paper, we propose a method of constructing a DC
slicing system for Java programs. To construct the system,
we extended Java Virtual Machine for extraction of dynamic
information. Since the execution is on bytecode, we define
the slice calculation method on bytecode.

This DC slicing system consists of 4 subsystems, an ex-
tended Java Compiler that can generate a cross reference
table between the source code and the bytecode, an ex-
tended Java Virtual Machine(JVM) that can perform the
dynamic data dependence analysis for the bytecode, a static
control dependence analysis tool for the bytecode, and a
slicer. A slice in the bytecode calculated by the slicer is
mapped onto a slice in the source code by using the cross
reference table .

In section 2, we will briefly overview program slicing.
In section 3, we will present a method of constructing a
DC slicing system, and discuss an implementation of the
sysytem. In section 4, we will evaluate the proposal method

by comparison with traditional slicing methods. In section
5, we will conclude our discussions with a few remarks.

2 Program Slice

In this section, we briefly show static slicing, dynamic
slicing and dependence-cache(DC) slicing for further dis-
cussions.

2.1 Static Slice

Consider statements s1 and s2 in a source program P .
When all of the following conditions are satisfied, we say
that a control dependence (CD) relation, from statement s1

to statement s2, exists:

• s1 is a conditional predicate, and

• the result of s1 determines whether s2 is executed or
not.

This relation is denoted by s1 �s2.
When the following conditions are all satisfied, we say

that a data dependence (DD) relation, from statement s1 to
statement s2 by a variable v, exists:

• s1 defines v, and

• s2 refers to v (we say s uses v), and

• at least one execution path from s1 to s2 without re-
defining v exists.

This relation is denoted by s1 �v s2.
A Program Dependence Graph (PDG)[16] is a directed

graph whose nodes represent statements such as conditional
predicates or assignment statements in a source program,
and whose edges denote dependence relations (CD or DD)
between statements. A DD edge is labeled with a variable
name “a” if it denotes sx �a sy . An edge drawn from node
Vs to node Vt represents that “node Vt depends on node
Vs”. For the Java source program shown in Figure 1 (which
computes an absolute value of the squared or cubed value
selected by an input), we have a PDG presented in Figure
2. To handle constructor/method invocations, we employed
additional nodes for the input and output parameters.

A Static Slice with respect to a variable v on a statement
s (this pair (v, s) is called a slicing criterion) is a collection
of statements corresponding to the nodes in the PDG, which
possibly reach s using CD and DD edges transitively.

The static slice for variable d at line 24 as the slicing
criterion for the program is a collection of all statements
except for the message output statements (lines 12, 14, 16)
shown in Figure 3.

1 class sample {
2 static int Square(int x) {
3 return x*x;
4 }
5 static int Cube(int x) {
6 return x*x*x;
7 }
8 public static void main(String args[]) {
9 int a, b, c, d;

10 BufferedReader br = new BufferedReader
(new InputStreamReader(System.in));

11 try {
12 System.out.println("Squared Value ?");
13 a = Integer.valueOf(br.readLine()).

intValue();
14 System.out.println("Cubed Value ?");
15 b = Integer.valueOf(br.readLine()).

intValue();
16 System.out.println

("Select Feature! Square:0 Cube:1");
17 c = Integer.valueOf(br.readLine()).

intValue();
18 if (c == 0)
19 d = Square(a);
20 else
21 d = Cube(b);
22 if (d < 0)
23 d = -1 * d;
24 System.out.println(d);
25 }
26 catch (IOException e) {
27 System.out.println("IO Error occuerd!");
28 }
29 }
30 }

Figure 1. A Sample Source Program

x-para

return x * x

Square

x-para

return x * x * x

Cube

if c == 0

if d < 0

d = Square(a)

d = -1 * d

d = Cube(b)

println(d)

a = Int…

println(“Sq…

println(“Cu…

println(“Sel…

br = new Bu…
b = Int…

c = Int…

Main

try {…

catch (…

println(“IO …

Figure 2. Program Dependence Graph (PDG)
of the Program shown in Figure 1.

1 class sample {
2 static int Square(int x) {
3 return x*x;
4 }
5 static int Cube(int x) {
6 return x*x*x;
7 }
8 public static void main(String args[]) {
9 int a, b, c, d;

10 BufferedReader br = new BufferedReader
(new InputStreamReader(System.in));

11 try {
12
13 a = Integer.valueOf(br.readLine()).

intValue();
14
15 b = Integer.valueOf(br.readLine()).

intValue();
16

17 c = Integer.valueOf(br.readLine()).
intValue();

18 if (c == 0)
19 d = Square(a);
20 else
21 d = Cube(b);
22 if (d < 0)
23 d = -1 * d;
24 System.out.println(d);
25 }
26 catch (IOException e) {
27 System.out.println("IO Error occuerd!");
28 }
29 }
30 }

Figure 3. Static Slicing Result by d at Line 24

2.2 Dynamic Slice

For dynamic slicing, the analysis target is an execution
trace in contrast to a source program for static slicing. An
execution trace is a sequence of statements that are actually
executed for an input data. The rth-executed statement in
an execution trace is called execution point r.

When all of the following conditions are satisfied, we say
that a dynamic control dependence (DCD) relation, from
execution point r1 to execution point r2, exists:

• r1 is a conditional predicate, and

• the result of r1 determines whether r2 is executed or
not.

When the following conditions are all satisfied, we say
that a dynamic data dependence (DDD) relation, from exe-
cution point r1 to execution point r2 by a variable v, exists:

• r1 defines v, and

• r2 uses v, and

• the execution path after r1 dose not before r2 re-define
v.

A dynamic dependence graph (DDG) is created using
the dynamic dependence relations: DCD and DDD.

Consider an execution point r and variable v in an exe-
cution trace e whose input data set is X . A triple (X , r, v)
is called the dynamic slicing criterion.

A dynamic slice for the dynamic slicing criterion (X , r,
v) is computed by tracing DDG’s edges backward from the
node for r, and by mapping all reachable nodes into the
source program.

Figure 4 shows a dynamic slice of the program shown in
Figure 1. The dynamic slicing criterion is an input data set
(a = 2, b = 3, c = 0), an execution point corresponding to
line 24, and variable d.

Dynamic slicing is based on a single execution path, and
it can give narrower slices than static slices. This is prefer-
able in debugging situation, since it is easier for debugger
to focus his/her attention on the smaller slices.

1 class sample {
2 static int Square(int x) {
3 return x*x;
4 }
5
6
7
8 public static void main(String args[]) {
9 int a, b, c, d;

10 BufferedReader br = new BufferedReader
(new InputStreamReader(System.in));

11
12
13 a = Integer.valueOf(br.readLine()).

intValue();
14
15
16

17 c = Integer.valueOf(br.readLine()).
intValue();

18 if (c == 0) {
19 d = Square(a);
20
21
22
23
24 System.out.println(d);
25
26
27
28
29 }
30 }

Figure 4. Dynamic Slicing Result by d at Line
24 with input (a = 2, b = 3, c = 0)

2.3 DC(Dependence-Cache) Slicing

When we statically analyze a source program that has
array variables, too many DD relations might be extracted.
This is because it is difficult for us to determine the val-
ues of array indices without program execution if they are
not constant values but variables. Also, in the case of ana-
lyzing a source program that has pointer variables, aliases
(an expression refers to the memory location which is also
referred to by another expression) resulting from pointer
variables might generate implicit DD relations. In order to
analyze such relations, pointer analysis should be needed.
Many researchers have already proposed static pointer anal-
ysis methods[8, 17, 18]; however, it is difficult for static
analysis to generate practical analysis results of the pointer
alias problem.

On the other hand, dynamic slicing is based on a sin-
gle execution path, and it can give narrower slices than
static slices. However, the dynamic slicing requires a large
amount of execution time, and the execution trace grows to
an enormous size.

We have proposed a technique called DC slicing which
combined both the static and dynamic slicing [4, 15, 19].

Consider a variable v on a statement s and input variables
set at execution is X . The triple (X , s, v) is called a DC
slicing criterion.

[DC Slice Computation Process]
Computation process of a DC slice is as follows.

Phase 1: Static Control Dependence Analysis
We extract CD relations between statements statically.
After the extraction, we prepare nodes for each state-
ment or predicate statement, and then draw control de-
pendence edges between nodes, as we do when con-
structing a PDG for the static slicing. No data depen-
dence edges are added to the graph at this step.

Phase 2: Dynamic Data Dependence Analysis
The target program is executed with an input data set
X . Along the execution, dynamic data dependence re-
lations are collected using the data dependence col-
lection algorithm shown below, and data dependence
edges are added to the graph. When the program exe-
cution terminates, the PDG has been completed.

Phase 3: Slice Extraction
We extract the node which can reach the DC slicing
criterion by following transitive CD and DDD edges.

[Dynamic Data Dependence Analysis for DC slicing]
In DC slicing, a DDD relation is extracted at the time of

execution of a target program like a dynamic slicing. DDD
relation of variable v from statement s to statement t can be

extracted when v defined at s is used at t. We create a table
named Cache Table that contains all variables in a source
program and most-recently defined statement information
for each variable. When variable v is referred to, we extract
DDD relation of v using the cache table. The following
shows the extraction algorithm for DDD relations for DC
slicing.

Step 1: We create cache C(v) for each variable v in the
source program.
C(v) represents the statement which most-recently de-
fined v.

Step 2: We execute a source program and proceed the fol-
lowing methods on each execution point.
For the execution of s

• when variable v is referred to, we draw an DDD
edge from the node corresponding to C(v) to the
node corresponding to s for v, or

• when variable v is defined, we update C(v) to s.

Since DC slicing compute the DDD relation along with
the program execution, array indices and indirect references
by the pointers can be resolved easily. DDD relations ob-
tained by DC slicing include surplus ones compared with
the dynamic slicing, since DC slicing cannot distinguish in-
stances of the execution of each statement. However, this
drawback is not so significant, as shown in the next section.

2.4 Comparison with Static, Dynamic and
DC Slices

Table 1 shows the difference among static slice, dynamic
slice and DC slice.

Table 1. Comparison of analysis method among
static, dynamic and DC slicing

Static Slicing Dynamic Slicing DC Slicing
CD static dynamic static
DD static dynamic dynamic

PDG node statement execution point statement

Figure 5 depicts static, dynamic and DC slices for slicing
criterion <28, d>. For dynamic and DC slicing, we give in-
teger “2” to readLine() statement at line 20. “

√
” represents

a statement in the slices, and “S”, “D” and “DC” represents
static, dynamic and DC slices, respectively. In this case,
dynamic slicing and DC slicing compute the same slices.

Nature of each slicing method is summarized as follows.

analysis accuracy (slice size)
Static Slice ≥ DC Slice ≥ Dynamic Slice

S D DC√ √ √
1: class sample2 {√ √ √
2: static int SIZE = 5;√ √ √
3: static int Cube(int x) {√ √ √
4: return x*x*x;√ √ √
5: }√ √ √
6: public static void main(String args[]) {√ √ √
7: int a[] = new int[SIZE];√ √ √
8: int b[] = new int[SIZE];√ √ √
9: int c = 0, d, i;√ √ √
10: BufferedReader br = new BufferedReader√ √ √

(new InputStreamReader(System.in));√
11: a[0] = 0;√
12: a[1] = −1;√ √ √
13: a[2] = 2;√
14: a[3] = −3;√
15: a[4] = 4;√ √ √
16: for (i = 0; i < SIZE; i++) {√ √ √
17: b[i] = a[i];√ √ √
18: }√ √ √
19: try {√ √ √
20: c = Integer.valueOf(br.readLine()).intValue();√ √ √
21: }√
22: catch (IOException e) {√
23: System.out.println(”IO Error occuerd!”);√ √ √
24: }√ √ √
25: d = Cube(b[c]);√ √ √
26: if (d < 0)√
27: d = −1 * d;√ √ √
28: System.out.println(d);√ √ √
29: }√ √ √
30: }

Figure 5. Static, Dynamic and DC slices for
slicing criterion <28, d> and Input c=2

analysis cost (dependence relations analysis time and space)

Dynamic Slice � DC Slice > Static Slice

3 Implementation of DC Slicing for Java

In order to show the usefulness of DC slicing method for
object-oriented languages such as Java, we have studied an
implementation methods. In [15], we proposed a method of
implanting analysis codes to the target source code before
compilation. However, it has some drawbacks; it does not
work properly for complex statements with nested method
calls. Therefore, its applicability is limited.

In this paper, we propose an implementation method
of DC slicing system, by extending Java Virtual Machine
which processes bytecodes, so that the virtual machine can
extract dynamic data dependencies during execution. Since
the analysis target is bytecode, we will define a slice cal-
culation method on bytecode while the conventional slice
calculation method is defined on source code. User can-
not understand the slice on bytecode. Thus, a slice of the

bytecode is mapped back onto a slice of the source code
by referring to the cross reference table which is created by
Java compiler.

DC slices are extracted as follows.

Phase 0: Cross Reference Table between source code and
bytecode is created by the Java compiler

Phase 1: Static control dependence is analyzed and a PDG
without DDD edges is constructed

Phase 2: Dynamic data dependence is analyzed during the
program execution by JVM and the PDG is completed

Phase 3: Slices on bytecode is extracted and they are
mapped back to the source code

3.1 Cross Reference Table between
Source Code and Bytecode

In the proposal method, we create a cross reference ta-
ble, in order to get a mapping between bytecode and source
code.

We have extended the Java compiler so that the cross
reference table can be obtained. When building a syntactic-
analysis tree from the source code, the Java compiler holds
the information of each token in the source code. When the
Java compiler generates the bytecode from the syntactic-
analysis, the correspondance relation as is extracted.

In general, the Java compiler optimizes the bytecode.
However, the correspondence relation between the source
code and the bytecode is lost by the optimization. Thus, we
turn off the the optimaization here.

We show an example of the cross reference table in Fig-
ure 6. By referring to this cross reference table, we can
point the slice criterion specified on the source code into
the slice criterion on the bytecode, and calculate the slice
on the bytecode.

3.2 Control Dependence Analysis

In the DC slicing method, control-dependence analysis
is made statically. Here we define control dependence rela-
tion on the bytecode as follows[3]. This control dependence
relations are computed by applying the algorithm on Figure
7 to each method in the bytecode.

Defintion Control Dependence
Consider two bytecode statements s and t. When s and
t satisfy the following conditions, we say that a control
dependence relation exists from s to t.

1. s is a branch command, and the last command of
a basic block[2] X.

int i = 2;
if (i > 2) {

i++;
} else {

i--;
}
int j = i;

bytecode statements a corresponding token set

iconst 2 ”2”
istore 1 ”i =”
iload 1 ”i”
iconst 2 ”2”
if icmple L13 ”>”
iinc 1 1 ”i++”
goto L18 ”if”

L13: nop ””
nop ”if”
iinc 1 -1 ”i−−”

L18: nop ”if”
iload 1 ”i”
istore 2 ”j =”
return ”main”

Figure 6. Cross Reference Tables

2. Assume that X branches to basic blocks U and
V , and consider an execution path p from U to
the exit and q from V to the exit. t satisfies the
following.

(a) Any p includes t

(b) No q includes t.

3.3 Data Dependence Analysis for DC
Slicing

In the DC slicing method, the target program in bytecode
is executed on an extended JVM(Java Virtual Machine), and
the data dependence relation is extracted at the execution
time. We prepare a cache area for each data field to identify
the bytecode statement which defines the latest value of the
data field. Examples of the data field are member variables
in each instance, stack elements on JVM, and local variables
in each method.

When a data field d is referred to at execution of byte-
code on JVM, we extract a DDD relation for d using the
cache of d. A DDD relation is obtained from the statement
specified by the cache of d to the statement which made this
reference. When a value of a data field d is defined, the
cache of d is updated by the statement which made the def-

Input Bytecode
Output Control dependence relations between bytecode statements
Process Compute static control dependence relations for bytecode

(1) Divide bytecode into Basic Block, and construct its control
flow graph G

(2) Add an entry node R, an exit node E, and their associated
edges to G, and add each edge fromR to first node in G, last
node in G to E, from R to E

(3) Construct reverse control flow graph G′ for G(N : set of
nodes in G′)

(4) Construct dominator tree[10, 14] for G′(the root is E)

(5) foreach basic block x in N begin

(6) find Dominance Frontier[7]a DF G′[x]

(7) foreach y in DF G′[x]

(8) Compute and output pairs of last statement in y and each
statement in x regarded as control dependence relations

(9) end

aThe Dominance Frontier of a node s is the set of all nodes t
such that s dominates a predecessor of t, but does not strictly domi-
nate t.

Figure 7. Static Control Dependence Analysis
Algorithm

inition. The cache for a dynamically allocated data field is
created at the same time when the data field is created.

Figure 8 shows the dynamic data dependence analysis
algorithm. In this algorithm, each instance generated from
the same class has independent cache, so that we can ana-
lyze the DDD relation of each instance independently. Ta-
ble 2 shows a transition of caches and DDD relations during
the execution of bytecode shown in Figure 9.

Input Bytecode
Output Data dependence relations of statements s
Process Compute dynamic data dependence relations for execution

of each statement s
(1) foreach feild data n referred to at s

(2) output the pair of the statement specified by the cache for
n and s

(3) foreach field data n defined at s begin

(4) if no cache for n exists then

(5) generate a cache for n

(6) update the content of cache for n to s

(7) end

Figure 8. Dynamic Data Dependence(DDD)
Analysis Algorithm

A program dependence graph(PDG) is constructed by
using the control dependences and the dynamic data depen-

Table 2. Transitions of the caches for figure9
statement local variable[0] stack[0] stack[1] dependence

relations

1 - 1 -
2 2 - - 1 → 2
3 2 3 -
4 2 3 4 2 → 4
5 2 - - 3,4 → 5
6 6 - - 2 → 6
7 6 - -
9 6 9 - 6 → 9
10 6 - - 9 → 10

dences. Figure 9 shows an example of PDG. In this method,
each node represents a bytecode statement, each edge rep-
resents a dependency relation. To compute DC slices, we
need only dependence relations of statements. On the other
hand, dynamic slices require huge execution trajectory[20].
Therefore the analysis cost of DC slices is much smaller
than that of dynamic slices.

3iconst_31:

i =istore_02:

10:

9:

8:

7:

6:

5:

4:

3:

iiload_0L2:

ifgoto L2

i--iinc 0 -1L1:

return

i++

<

i

5

ireturn

iinc 0 1

if_cmpge L1

iload_0

iconst_5

Control Dependence

Data Dependence

int i = 3;
if (i < 5) {

i++;
} else {

i--;
}
return i;

if_cmpge L1

goto L2

iinc 0 1

ireturn

iload_0

iconst_5

iinc 0 -1

iload_1

istore_0

iconst_3

Figure 9. Example of Program Dependence
Graph for Bytecode

3.4 Computation of a Slice

After constructing the PDG, we compose a slice from
given a DC slicing criterion. The method is essentially the
same as usual ones. We collect a set of reachable nodes
through edges reversely from the node corresponding to the
DC slicing criterion.

3.5 System Architecture

In this section, we show a DC slicing system for Java
programs we have developed. Figure 10 shows its architec-
ture. Figure 11 is a screenshot of the main window of the
system.

Java compiler produces the cross reference table between
the source code and bytecode. Control dependence rela-

Extended
JavaCompiler

bytecode

Extended JVM
PDG（bytecode）

slice
（bytecode）

source program slice（source program）

source program⇔bytecode
cross reference table

slice criterion

CD Analysis Tool

DDD relations

CD relations

slicer

execution result

Figure 10. System Architecture

Figure 11. System Main Window

tions is statically analyzed by CD analysis tool, and data
dependence relations is dynamically analyzed by the ex-
tended JVM while execution. Based on the dependence
relations extracted by these processes, a PDG of the byte-
code is constructed. A DC slice criterion on the source pro-
gram is specified by the user, and it is translated to the byte-
code statement with the cross reference table. The reachable
statements are collected by traversing the PDG. Finally, the
slice result is mapped back on the source program by the
cross reference table.

Table 5. Analysis Cost
JVM execution time[ms] JVM memory usage[Kbytes] PDG construction time and

program
original extended original extended slice calculation time[ms]

P1 325 2,058 3,780 15,980 525
P2 341 3,089 4,178 26,091 450

Table 3. Slice target program
program classes total lines

P1 (database management) 4 262
P2 (sorting) 5 231

4 Evaluation

In this section, we evaluate the proposal approach by a
comparison with traditional slicing methods. We have made
an experiment, and we have evaluated the slice size and
analysis cost. Table 3 lists the target programs for the eval-
uation. Program P1(which consists of 4 classes, 262 state-
ments) is a database management program, and the program
P2(which consists of 5 classes, 231 statements) is a sorting
program.

We have applied our DC slicing system to P1 and P2, and
measured the slice size, used memory, PDG construction
time, slice calculation time, and the number of PDG nodes.

4.1 Slice Size

We have measured the slice sizes for the static slicing,
dynamic slicing, and DC slicing. Table 4 shows the sizes of
slices for two slice criteria. The static and dynamic slices
were counted by hand.

From the viewpoint of fault localization, we prefer
smaller slice sizes. DC slice sizes are smaller than static
slice sizes. In this experiment, the DC slice sizes are almost
equivalent to the dynamic slice sizes.

The DC slice sizes are about 50% to 93% of the static
slice sizes, and DC slices provide a better focus to falut lo-
cations. Since the target programs used here are small-scale
ones, the difference between static slices and DC slices is

Table 4. Slice Size [Lines]
Static Slice Dynamic Slice DC Slice

P1-slice criterion 1 60 24 30
P1-slice criterion 2 19 14 15
P2-slice criterion 1 79 51 51
P2-slice criterion 2 27 23 25

not so large. However, if class inheritances, overrides and
overloads of methods are used in a large-scale program,
we would guess that the difference becomes larger. This
is because static slicing has to consider all possible cases,
but our approach considers actually used inheritances, over-
rides, and overloads.

4.2 Analysis Cost

We have compared the extended JVM with the original
JVM with respect to the execution time and the memory
usage. The target programs are listed ones in Table 3. Table
5 shows the results.

As you can see from these tables, the extended JVM re-
quires more execution time and space. The extended JVM
is 6-9 times slower and 4-6 times space consuming than the
original JVM. One reason for this is that the DDD analysis
is performed not only for the traget program but for associ-
ated JDK libraries. Moreover, the extended JVM executes
bytecodes without any optimization, but the origined one
performs JIT(Just In Time) optimization.

Table 6 shows the number of nodes in PDG created by
the DC slicing and dynamic slicing. Dynamic slicing re-
quired 30-50 times more nodes, which drastically increase
the memory usage at the execution. Compared to the dy-
namic slicing, DC slicing is less costly and more practical
approach to get reasonable slices.

We are planning to improve analysis speed with less
memory, although, current system is considered practical
enough.

Table 6. PDG nodes
program DC slicing dynamic slicing ratio

P1 34,966 1,198,596 1 : 34.3
P2 34,956 1,808,051 1 : 51.7

5 Summary

In this paper, we have proposed an implementation
method of the DC slicing for Java program.

The major characteristics of this method is that the anal-
ysis of control dependences and data dependences are per-

formed at the bytecode level, and the slice results are
mapped back to the source program.

The proposed method has been actually implemented by
extended JVM to collect the dynamic data dependences. To
validate this approach, we have applied the developed sys-
tem to sample programs. The result shows that our approach
to implement DC slicing for Java is very practical and real-
istic one to get effective slices.

As a future work, we are planning to improve JVM fur-
ther for more efficient dynamic data dependence analysis.

References

[1] H. Agrawal and J. Horgan: “Dynamic Program Slic-
ing”, SIGPLAN Notices, Vol.25, No.6, pp.246–256
(1990).

[2] A. V. Aho, R.Sethi and J. D. Ullman: “Compilers
Principles, Techniques, and Tools”, Addison-Wesley,
(1986).

[3] A. W. Appel and M. Ginsburg: “Modern Compiler
Implementation in C”, Cambridge University Press,
Cambridge (1998).

[4] Y. Ashida, F. Ohata and K. Inoue: “Slicing Methods
Using Static and Dynamic Information”, Proceedings
of the 6th Asia Pacific Software Engineering Con-
ference (APSEC’99), pp.344–350, Takamatsu, Japan,
December (1999).

[5] D. Atkinson and W. Griswold: “The design of whole-
program analysis tools”, Proceedings of the 18th Inter-
national Conference on Software Engineering, Berlin,
Germany, pp.16-27, (1996).

[6] D. Binkley, S. Horwitz, and T. Reps: “Program in-
tegration for languages with procedure calls”, ACM
Transactions on Software Engineering and Methodol-
ogy 4(1), pp.3-35, (1995).

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman
and F. K. Zadeck: “Efficiently Computing Static Sin-
gle Assignment Form and the Control Dependench
Graph”, ACM Transactions on Programming Lan-
guages and Systems, Vol.13, No.4, pp.461-486, Oc-
tober (1991).

[8] M. Enami, R. Ghiya and L. J. Hendren: “Contextsen-
sitive interprocedural points-to analysis in the pres-
ence of function pointers”, Proceedings of the ACM
SIGPLAN94 Conference on Programming Language
Design and Implementation, pp.242-256, Orlando,
Florida, June (1994).

[9] K.B.Gallagher: “Using Program Slicing in Software
maintenance”, IEEE Transactions on Software Engi-
neering, 17(8), pp.751-761 (1991).

[10] D. Harel: “A liner time algorithm for finding domina-
tor in flow graphs and related problems”, Proceedings
of 17th ACM Symposium on Theory of computing,
pp.185–194, May (1985).

[11] M. Harman and S. Danicic: “Using program slicing to
simplify testing”, Journal of Software Testing, Verifi-
cation and Reliability, 5(3), pp.143-162 (1995).

[12] S. Kusumoto, A. Nishimatsu, K. Nishie, K. In-
oue: “Experimental Evaluation of Program Slicing
for Fault Localization”, Empirical Software Engineer-
ing (An International Journal), Vol.7, No.1, pp.49-76,
March (2002).

[13] L. Larsen and M. J. Harrold: “Slicing Object-Oriented
Software”, Proceedings of the 18th International Con-
ference on Software Engineering, pp.495-505, Berlin,
March (1996).

[14] T. Lengauer and E. Tarjan: “A fast algorithm for
finding dominators in a flow graph”, ACM Transac-
tions on Programming Languages and Systems, Vol.1,
No.1, pp.121-141, July (1979).

[15] F. Ohata, K. Hirose and K. Inoue: “A Slic-
ing Method for Object-Oriented Programs Using
Lightweight Dynamic Information”, Proceedings of
Eighth Asia-Pacific Software Engineering Conference
(APSEC2001), pp.273–280, Macau, China, Decem-
ber (2001).

[16] K. J. Ottenstein and L. M. Ottenstein: “The program
dependence graph in a software development environ-
ment”, Proceedings ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software
Development Environments, pp.177–184, Pittsburgh,
Pennsylvania, April (1984).

[17] Shapiro, M. and Horwitz, S.: “Fast and accurate
flowinsensitive point-to analysis”, Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pp.1-14, Paris,
France, January (1997).

[18] B.Steensgaard: “Points-to analysis in almost linear
time”, Technical Report MSR-TR-95-08, Microsoft
Research (1995).

[19] T. Takada, F. Ohata and K. Inoue: “Dependence-
Cache Slicing: A Program Slicing Method Using
Lightweight Dynamic Information”, Proceedings of
the 10th International Workshop on Program Compre-
hension(IWPC2002), pp.169-177, Paris, France, June
(2002).

[20] M. Weiser: “Program Slicing”, IEEE Transaction on
Software Engineering, 10(4), pp.352–357 (1984).

[21] J. Zhao: “Dynamic Slicing of Object-Oriented Pro-
grams”, Technical Report SE-98-119, Information

Processing Society of Japan (IPSJ), pp.11-23, May
(1998).

