
Java Program Analysis Projects in Osaka University: Aspect-Based Slicing
System ADAS and Ranked-Component Search System SPARS-J

Reishi Yokomori †, Takashi Ishio †, Tetsuo Yamamoto ††,
Makoto Matsushita †, Shinji Kusumoto † and Katsuro Inoue †

† Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

†† Japan Science and Technology Corporation, 4-1-8, Honmachi,
Kawaguchi, Saitama 332-8531, Japan

{yokomori, t-isio, t-yamamt, matusita, kusumoto, inoue}@ist.osaka-u.ac.jp

Abstract

In our research demonstration, we show two develop-
ment support systems for Java programs. One is an Aspect-
oriented Dynamic Analysis and Slice calculation system
named ADAS, and another is a Software Product archiving,
Analyzing, and Retrieving System for Java named SPARS-J.

1. Introduction

In our research demonstration, we will show two types of
development support systems for Java programs. The one is
a slicing system for Java programs named ADAS(Aspect-
oriented Dynamic Analysis and Slice calculation system),
and another is a retrieval system for Java components
named SPARS-J(Software Product archiving, Analyzing,
and Retrieving System for Java). ADAS supports debug-
ging tasks for Java programs based on program slicing tech-
nique, and SPARS-J provides a retrieval result with the eval-
uation value based on actual use relations among compo-
nents.

2 Aspect-oriented Dynamic Analysis and
Slice Calculation System: ADAS

ADAS is a tool, which aids debugging tasks based on
program slicing technique.

Program slicing has been proposed to localize faults ef-
ficiently in the program[7]. By definition, slicing is a tech-
nique which extracts all statements that possibly affect some
set of variables in the program. The set of all extracted state-
ments is called a slice.

We have been extended the program slicing to DC slic-
ing, using dynamic data dependence information to calcu-
late accurate slices with lightweight costs [6].

In process of DC slice calculation, it is an important is-
sue how to analyze dynamic data dependence. In the past
research, such function have not been encapsulated in a sin-
gle module. Actually, the function was implemented as a
pre-processor which inserts analysis operations in the tar-
get program code, or as a customized Java Virtual Machine
(JVM). But these approaches are hard to implement and to
maintain. We have applied Aspect-Oriented Programming
(AOP) to collect dynamic information. Since collection of
dynamic information affects over all target program, this
functionality becomes a typical crosscutting concern, which
is modularized as an aspect in AOP [4].

ADAS is a DC slicing tool for Java. This system con-
sists of three subsystems, the Dynamic Information Ana-
lyzer subsystem, the PDG (Program Dependence Graph)
Constructor subsystem and the Slice Calculation subsys-
tem.

The Dynamic Information Analyzer subsystem is imple-
mented as an aspect. A programmer debugging a Java pro-
gram adds this aspect to the target program and compiles
all sources using AspectJ[1]. When the programmer exe-
cutes the target program with a test case input, the added
aspect collects runtime information, such as field data de-
pendence, method polymorphism resolution and exception
handling, and outputs the result to a file. AOP approach is
independent of JVM features, and we prefer this approach
for usability and adaptability. Since the module of the dy-
namic analysis is written as an aspect, a programmer can
easily extend the analysis aspect using inheritance mecha-
nism of AspectJ and add the analysis aspect to the file list to
be compiled. Recent IDEs, support to manage configuration
of the files.



The PDG Constructor subsystem reads information from
the file and analyze Java source files to construct a PDG,
a directed graph whose nodes represent statements in the
source program, and whose edges denote dependence re-
lations (data dependence or control dependence) between
statements[5].

The Slice Calculation subsystem provides a graphical
user interface. A source code viewer shows source code
and slice criterions contained in the file. When a program-
mer selects a slice criterion, the system calculates the slice
and indicates it in the viewer.

3. SPARS-J : Software Product Archiving, An-
alyzing, and Retrieving System for Java

SPARS-J is a retrieval system for Java components. It
would be easily imagined that similar programs have been
developed independently in different locations of the world
or in different times in the history, without sharing knowl-
edge of other programs. It is considered that a well-
organized collection of programs or program components
will improve productivity of the development and quality
of the developed software products.

SPARS-J might be considered as a Google-like[2] sys-
tem for software engineers. In this system, various Java
source programs are collected, and they are stored in a com-
ponent archive. Those components are ranked by the eval-
uation values (called Component Ranks[3]), which are de-
termined by their use relations. A component searcher who
wants to know about a definition or a usage of a component
will give queries by keywords to SPARS-J. These queries
are analyzed and the matched results are listed by the Com-
ponent Ranks. By the Component Ranks, we consider that
components with high reusability can be found effectively.

SPARS-J consists of two subsystems, Constructing
Databases subsystem and Searching Components subsys-
tem.

In Constructing Databases subsystem, a database for
component search is built from Java source code files. Col-
lected various Java source programs are analyzed syntac-
tically and stored in the archive with information, such as
all the appearance words, use class names and the metrics
in each component. The appearance words are indexed to
make a reverse dictionary for retrieval. The use class names
are analyzed to determine use-relations between compo-
nents. The metrics are used for measurement of a similarity
between components. In software development process, we
can imagine that a component may be reused with minor
changes, by not simple copying. In order to calculate these
components as one group, this subsystem measures similar-
ity between components. As an example of a metric value,
we use LOC, cyclomatic complexity, and so on. Similar
components are packed into one group, and use relations

associated to those components are also merged. All com-
ponents(groups) are ranked by the evaluation values called
Component Ranks, which are determined by their use rela-
tions, and the Component Rank of each component is also
stored in the archive.

On the other hand, Searching Components subsystem
provides a retrieval function for user. Basically, this sub-
system performs component retrieval from all the appearing
words including comments in source code files. However,
a user can request to perform an advanced search according
to the purpose of the user. For example, this subsystem can
remove the components with which keywords appear only
in its comment from a result, or extract the only components
with which keywords appears in the definition of a class or
a method, or extract only the use example.

A query specified by a user is analyzed and decomposed
into a set of keywords. For each keyword, this subsystem
checks the component with which the keyword appears by
referring to reverse dictionary. A result is ordered by the
Component Ranks, the user receives the result through the
browser with the information of each components and a part
of its code. Furthermore, the user may click the results to
get detailed information on the search components, or may
add keywords to perform further retrieval. In this way, the
user can effectively find a component that is used most fre-
quently and has high reusability.

References

[1] AspectJ Team, “The AspectJ Programming Guide”,
http://aspectj.org/doc/dist/progguide/

[2] google, http://www.google.com/

[3] K. Inoue et al.: “Component Rank: Relative Signif-
icance Rank for Software Component Search”, to be
appeared in Proceedings of ICSE 2003, Portland, Ore-
gon, 2003.

[4] G. Kiczales et al.: “Aspect Oriented Programming”,
Proceedings of ECOOP, vol.1241 of LNCS, pp.220-
242(1997).

[5] K. J. Ottenstein and L. M. Ottenstein: “The program
dependence graph in a software development environ-
ment”, Proceedings of SESPSDE, pp.177–184, Pitts-
burgh, Pennsylvania, April (1984).

[6] T. Takada et al.:“Dependence-Cache Slicing: A Pro-
gram Slicing Method Using Lightweight Dynamic In-
formation”, Proceedings of IWPC2002, pp.169-177,
Paris, France, June (2002).

[7] M. Weiser: “Program slicing”, IEEE Transactions on
Software Engineering, SE-10(4):352-357(1984).


