
Integrated Open-Source Software Development Activities Browser CoxR

Makoto Matsushita, Kei Sasaki, Yasutaka Tahara, Takeshi Ishikawa and Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Abstract

Open-source software and its style of software develop-
ment activities [1] are getting attentions to the world[5].
Usually open-source software development itself is also
open, using network-wide tools such as software reposito-
ries, email archive and associated search engine, web sys-
tem, etc. We can check development activities using such
tools, however, each tools are independent each other so it
is very hard to understand the relationships between activ-
ities. In this paper, we propose browsing system CoxR, for
open-source software development activities, and show the
CoxR prototype. This system consists of two parts, the one
supports to understand relationships between source code
changes and email discussion, and the another one supports
to search source code changes. With this browser, open-
source developers can grasp the whole activities of software
development project.

1. Open-Source Software Development

In the last decade of 20th century, a brand-new style of
software, called “open-source software” was getting atten-
tions from the world. In most cases, open-source software is
a software which code are free-to-access to the public, and
lots of people in the world may join to activities of devel-
opment such as writing a new code, adding a new features,
fixing a bug, proposing a new architecture, discussing a cur-
rent design problem, and so on.

There are some tools used in open-source software de-
velopment (OSD for short) environment. CVS is a product
repository system and manages revision history of each file
by check-in/check-out model [2]. Email is a pretty-common
tool for communicating between developers. Since a vari-
ety of development environment and skill of each developer,
other development tools such as CASE tool, video confer-
encing tools are hard to employ to this type of development.
As a result, CVS repository and email archive are the core
storage for OSD.

1.1. Typical Development Styles

It can be considered that whole OSD is a traditional
spiral-model with very short cycle, and each cycle are
driven by independent developers’ parallel activities which
are a series of small task. Each task is roughly categorized
into two area, “writing a product by oneself” and “commu-
nicating with other developers.” just like parallel-processor
system.

While a developer is writing a product (source codes,
manuals, web pages, etc), a developer may want to search
email archive first to read related discussion thread are
there. If a developer try to fix a bug, a developer chase a
code delta and want to find which changes contribute a bug.
While each developer communicate each other, they often
to use email archive, which usually available via ftp or web,
for a playback of previous discussion. A new user who have
an installation problem of the software may want to search
an email list for new users, find a person who also met the
same problem, then send an email to that person. During
each task, people who involved to a software are searching
and/or reading code repository and/or email archive.

1.2. An Open Issue

Unfortunately, many problems around OSD is com-
plicated, searching code repository and/or email archive
doesn’t help developers to solve.

For example, a developerX find a bug in a software,
which comes from past program changesD by another
developerY . X soon understands that revertingD from
source code fixes a problem, but changeD is introduced
while implementing an important feature of this software,
so revertingD means reverting that feature.X want to
know whyD is there;X contactsY by email, but no helps
sinceY is no longer a developer of this software.X tries
to search email archive, but there are lots of emails about
this new features.X must check all emails, to find out dis-
cussions about design discussion of this feature;X wastes
lots of time. Same stories can be found in OSD, such as
“easy to read a design discussion, but hard to find what is

1

the result of code changes”, “find a bugfix change, but hard
to understand why this change actually fix a bug”, and so
on.

We argue that there is an open issue that in OSD, code
repository and email archives exist independently and no
relationship between them. The information all developers
want to know are there, but too hard to find out for many
cases.

In general, and traditional software engineering envi-
ronment research, will propose a new archive system,
which holds both software products and email and provides
search/browse/etc features to developers. It may solve tradi-
tional software development, but it is difficult to apply same
approach to OSD. In OSD, as shown before, developers’
environment are vary from each other; someone can’t run
new tool, and another one insists to change their environ-
ment and/or style. This problem should be solved without
any impacts to existing OSD environment, and should not
change existing archives.

2. CoxR

In this section, we show our OSD activities browser,
CoxR, to solve the Open Issue mentioned in previous sec-
tion. At first, we describe our design policy forCoxR and
show the overview ofCoxR.

2.1. Design Policy

Our design policies ofCoxR are as follows:

Be an Add-on tool, not a replacement tool We are tend
to stay environments which used to, and do not want to
change them. IfCoxR is a replacement of their tools,
they’ll not useCoxR. To minimize the impact, we set
CoxR as an add-on tool for current developers. Devel-
opers may or may not useCoxR, andCoxR should not
force developers to use.

Imports existing archives as it is Instead of creating yet
another code/email archives for OSD, we just import
its archive, and make our internal-use-only database.
If there are something changed in code/email archives,
we fetch the difference and add new entries to our
database. We think “keeping in sync” will not be a
problem, sinceCoxR will be a browser of past devel-
opment activities, not of just-in-time activities.

Has a web interface It is easy and most effective approach
that creating our proprietary tool or user-interface for
CoxR. However, there are portability and data size
problem. Developers’ environment is different each
other, so it is hard to establishCoxR a tool for all de-
velopers over the world. Code and email repository are

fusion info.Database

E-mail info.Create tool

Fusion info management

E-mail info management

Data Display Record System

Database Record System

CoxR(web server)

CGI main

Token compare toolLexical analysis tool

Sourcecode

Token

Search Result

Query Word

Search Result

SPxRCoDS

Related Files / Data
File name
Keyword
Developer name
Time

File name Developer name
 Time Developer name

 Time

Search Result

 Source code

Commit log

Query Word = Source code
 Keyword, Time

Commit Log, File name
Developer name

fusion info.Create tool

E-mail info.DatabaseCVS info.Database

CVS info.Create tool

CVS info management

 CVS
repository

E-mail
Archive

Searching Database

Database Create tool

Similarity
Developer name
Time
File name

CoxR user

Figure 1. Overview of CoxR

tend to be large, so some users can’t have the whole
data. We designCoxR a web-based system; user can
use their own HTML browser, and central database is
enough for all of developers.

2.2. CoxR Overview

CoxR is consisted of main part integrated with web
server, two major subsystem, SPxR[3] and CoDS[4], ex-
ternal CVS repository and email archive (Fig. 1).

SPxR

SPxR (Software Product Xross Reference) analyses both
CVS repository and email archive, and calculate a fusion
information of both. In SPxR, fusion information connects
CVS information (who change which file, when it occurs,
and what comment are tied into each change) and email in-
formation (who send which mailing list, when it is sent, and
what the email sender says), according to same time, same
file, and same developers. Intra-CVS and Intra-email con-
nections are also analyzed. SPxR accepts filename, key-
word, developer’s email address, time, and comment in a
commitlog as a search input, then searches not only CVS
repository and email archive, but also fusion database. The
search result will be a set of filename within the CVS repos-
itory, some threads in email archives, etc.

CoDS

CoDS (Code Differences Search) is a search engine for
source code itself. Unlike other source code oriented search
engine, CoDS has an attention to each change delta of a file,
and accepts a code fragment for query string. CoDS em-
ploys local algorithm to calculate similarity between input

2

Figure 2. CoxR entrance page

code fragment and each change delta of files in CVS repos-
itory. If similarity value exceeds pre-defined value, CoDS
considers that it is “similar” source code. The search re-
sult will be a set of revision number of a filename which is
sorted by similarity value, developer name who committed
the revision, and time when it was committed.

CoxR main

The main part ofCoxR is sitting on the web server, and
acts as CGI program.CoxR handles both SPxR and CoDS
subsystem, and accept user’s input. When a query word
is passed toCoxR, CoxR passes the input to SPxR and/or
CoDS, depends on the input. CoxR also re-query subsys-
tems with their last search result if needed, then send back
to the user a query result.

3. System Prototype

We are now developing theCoxR browser prototype,
using SPxR and CoDS. Figure 2 is theCoxR entrance
web page. “Revision Search” link guides users to tradi-
tional CVS repository and email archive browser. “Key-
word Search” accepts simple word, and returns file and
email which contains the word. “File Search” is used to
shrink search target;CoxR try to search all CVS files by de-
fault, and it may takes long time to finish searching. “Sim-
ilar Code Search” provides code fragment search by CoDS.
Each search result can be re-used as an input of further
search, and if result contains a set of file list it can be used
to shrink the target file to be searched.

In following examples, we use FreeBSD CVS repository
and its mailing list archive for the original archive. Due to
the limit of spaces, we only shows some typical usages.

Figure 3. Similar code search result

Figure 4. Revisions matched within a file

3.1. Similar code search

Imagine a developer try to solve a bug. After debugging,
a developer find a code fragment which seems to contain a
bug itself. However, there are many way to fix and a de-
veloper want to know that how this type of bug is fixed by
past developers. InCoxR, similar code search can be used
to search how to fix.

Figure 3 is a result of similar code search. Input code
fragment, search status, and matched file name are shown.

The anchors on the filename guides to another page
which shows the matched revisions within a file (figure 4.

If user selects arbitrary one revision, CVSweb-like code
delta browser are shown, with input code fragment initalic
font.

CoxR also supports recursive search in general. In figure
6, user can search with a key of yet another code fragment,
from files which last matched with the previous code frag-
ment (shown in figure 3).

3

Figure 5. Matched code fragment

Figure 6. Recursive similar code search

3.2. Walking an archive forest

We imagines that both CVS repository and email archive
are like a forest; many source codes and emails are there,
a series of email discussion and a sequence of code delta
and branches become a tree, they are floating each other
but binded with time, authors, keywords, filenames, and so
on. Understanding OSD activities is considered as walking
these forests and finding out what’s are there.CoxR sup-
ports to walk a forest easily.

There are many starting points of your choices including
file and/or directories, code fragment mentioned above, a
keyword appeared in the source code, etc. In this example,
we start with a keyword (fig. 7). CoxR provides both CVS
and email result which contains a input keyword.

If a developer interested in the time scale, click a
date string. CoxR shows source codes and emails which
matches the time frame, and other associated files found in
fusion database of SPxR (figure 8).

It’s easy to chase a specified developer’s activity, just
click a username andCoxR shows the developer’s emails

Figure 7. Keyword search result

Figure 8. Time search result

and committed revisions (fig. 9, push “CVS” button to show
files committed by this developer).

If a filename itself is selected,CoxR acts as CVS repos-
itory browser (fig. 10). Note that there are many anchors
in revisions, time, developer, etc; clicking them makes yet
another search with various viewpoints.

If search result contains a file list, similar code search
shown in previous example can be performed against to that
list.

4. Conclusion

In this paper, we propose our OSD activities browser
CoxR, and demonstrates with current prototype.CoxR
guides open-source software developers to CVS repository
and email archive forests, and help to understand what ac-
tivities are performed in past development.

As a further works,CoxR usability and performance
evaluation should be required. Current prototype only sup-
ports list-style of result data, however it can be shown as

4

Figure 9. Author search result

Figure 10. Revision history

multi-dimension space with file, developer, time axis and
so on.

References

[1] Asklund, U., Magnusson, B., and Persson, A.: “Expe-
riences: Distributed Development and Software Con-
figuration Management”, In Proceedings of SCM9,
LNCS-1675, pp.17-33 (1999).

[2] Estublier, J.: “Software Configuration Management:
A Roadmap”, The Future of Software Engineering in
22nd ICSE, pp.281–289 (2000).

[3] Ishikawa, T., Yamamoto, T., Matushita, M., and In-
oue, K.: “Design of Communication Supporting Sys-
tem with Revision Control System”, IPSJ Technical
Report, 2001-SE-133, pp.23–30 (2001).

[4] Tahara, Y., Matushita, M., and Inoue, K.: “Support-
ing Method for Source Code Modification with the

Changes of Existing Software”, IPSJ Technical Re-
port, 2002-SE-136, pp. 57–64 (2002).

[5] Raymond, E.S.: “The Cathedral and the Bazaar”,
O’Reilly (1999).

5

