
Effort Estimation Tool Based on Use Case Points Method

Shinji KUSUMOTO†, Fumikazu MATUKAWA†, Katsuro INOUE†,

Shigeo HANABUSA‡, Yuusuke MAEGAWA‡

† Graduate School of Information Science and Technology, Osaka University,

1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Tel: +81-6-6850-6573, Fax +81-6-6850-6574

E-mail: {kusumoto, matukawa, inoue}@ist.osaka-u.ac.jp
‡ Hitachi Systems & Services, Ltd.

Abstract

Use case point (UCP) method has been proposed

to estimate software development effort in early phase

of software project and used in a lot of software orga-

nizations. Intuitively, UCP is measured by counting

the number of actors and transactions included in use

case models. Several tools to support calculating UCP

have been developed. However, they only extract ac-

tors and use cases and the complexity classification of

them are conducted manually. We have been intro-

ducing UCP method to software projects in Hitachi

Systems & Services, Ltd. To effective introduction of

UCP method, we have developed an automatic use

case measurement tool, called U-EST. This paper de-

scribes the idea to automatically classify the complex-

ity of actors and use cases from use case model. We

have also applied the U-EST to actual use case models

and examined the difference between the value by the

tool and one by the specialist. As the results, UCPs

measured by the U-EST are similar to ones by the

specialist.

1 Introduction

As the role of software in the society becomes larger

and more important, it becomes necessary to develop

high-quality software cost-effectively within a short

period. In order to achieve this goal, the entire soft-

ware development processes need to be managed based

on an effective project plan.

It is essential to estimate various undesirable phe-

nomena which happened during the project and take

measures to prevent them in advance to construct dis-

tinct plan. The subjects of estimation in the area of

software development are size, effort invested, develop-

ment time, technology used and quality. Particularly,

development effort is the most important issue. So far,

several effort models [4][5][13] have been proposed and

most of them include software “size” as an important

parameter.

Function point is a measure of software size that

uses logical functional terms business owners and users

more readily understand [1]. Since it measures the

functional requirements, the measured size stays con-

stant despite the programming language, design tech-

nology, or development skills involved. Up to the

present, various FPA versions based on the Albrecht’s

version have been proposed (e.g. IFPUG method[8],

MarkII[12], COSMIC-FFP [6]) and they have been ac-

cepted as ISO/IEC standards.

However, in order to precisely measure function

point, it is necessary to use the detailed information

about the target software. Such information is defined

in the detailed software design specification. On the

other hand, software development period for recent

software (e.g. Web application and embedded soft-

ware) becomes too short to spare time to count func-

tion point from the detailed design specification. So,

it is difficult to apply function point to such software.

To estimate the effort in earlier phase, use case

point method has been proposed[10]. Use case point

(UCP) is measured from a use case model that defines

the functional scope of the software system to be de-

veloped. It is influenced by the function point methods

and is based on analogous use case point. There are

several experience reports that show the usefulness of

use case point for early estimation of software size.

We have been involved in the activity to introduce

effort estimation method to Hitachi Systems & Ser-

vices, Ltd. In the company, the period of software

development project is becoming shorter and also a

method to estimate the effort in the early phase is ex-

pected. This paper describes the actual experience of

introducing use case point method to software projects

in the company. To effective introduction of use case

point method, at first, we develop a use case measure-

ment tool. Since the main activity of calculating UCP

is to classify the complexity of actors and use cases and

is conducted manually, we address the automatic clas-

sification of them. Then, we apply the tool to actual

use case models developed in the company and com-

pare the UCP values calculated by the tool to ones by

the specialist. As the results, UCPs measured by the

U-EST are similar to ones by the specialist.

Section 2 briefly explains use case point method.

Next, Section 3 proposes the use case point measure-

ment tool and Section 4 describes the case study. Fi-

nally, Section 5 concludes the paper.

2 Use Case Point Method

This section briefly explains the measurement steps

in the use case point method described in [10].

2.1 Use case model

Use case point (UCP) is calculated from use case

model[10]. The use case model mainly consists of

two documents, system or subsystem documents and

use case documents that include the following items:

system name, risk factors, system-level use case di-

agram, architecture diagram, subsystem descriptions,

use case name, brief description, context diagram, pre-

conditions, flow of events, post conditions, subordi-

nate use case diagrams, subordinate use cases, activity

diagram, view of participating classes, sequence dia-

grams, user interface, business rules, special require-

ments and other artifacts.

Here, we explain the main items used to calculate

UCP. They are system-level use case diagram and flow

of events. System-level use case diagram includes one

or more use case diagrams showing all the use cases

and actors in the system. Flow of events includes a

section for the basic path and each alternative path in

each use case. Figure 1 shows an example of system-

level use case diagram of “Order Processing System”.

Figure 2 shows a part of flow of events of the use case

“Place order” in Figure 1.

2.2 Counting use case point

Intuitively, UCP is measured by counting the num-

ber of actors and transactions included in the flow of

events with some weight. A transaction is an event

that occurs between an actor and the target system,

the event being performed entirely or not at all.

Effort estimation based on UCP method is con-

ducted through the following Steps 1 - 6:

Step1 (Counting actors weight): The actors in the

use case model are categorized as simple, average

or complex. A simple actor represents another

system with a defined API. An average actor is

Order Processing System

Customer

Place order

Return product

Figure 1: Use case diagram

1 � The customer presses a button to select “Place Order” .
2 � The system supplies an input screen.
3 � The customer enters product codes for products to be ordered.
4 � The system supplies the products description and price.
.
.
.

Figure 2: Flow of events

either another system that interacts through a

protocol such as TCP/IP or it is a person inter-

acting through a text-based interface (such as an

old ASCII terminal). A complex actor is a person

interacting through a GUI interface.

Then, the number of each actor type that the tar-

get software includes is calculated and then each

number is multiplied by a weighting factor shown

in Table 1. Finally, actors weight is calculated by

adding these values together.

Step2 (Counting use cases weight) Each use case is

categorized as simple, average or complex. The

basis of this decision is the number of transaction

in a use case, including alternative paths. For

this purpose, a transaction is defined to be an

atomic set of activities, which is either performed

entirely or not at all. But, included or extending

use cases are not considered. A simple use case

has 3 or fewer transactions, an average use case

has 4 to 7 transactions, and a complex use case

ha more than 7 transactions.

Then, the number of use case type that the target

software includes calculated and then each num-

ber is multiplied by a weighting factor shown in

Table 2. Finally, use case weight is calculated by

adding these values together.

Step3 (Calculating UUCP) Un adjusted use case

points (UUCP) is calculated by adding the total

weight for actors to the total for use cases.

Step4 (Weighting Technical factors and Environmen-

tal factors) The UUCP are adjusted based on the

values assigned to a number of technical and envi-

ronmental factors shown in Tables 3 and 4. Each

factor is assigned a value between 0 and 5 de-

pending on its assumed influence on the project.

A rating of 0 means the factor is irrelevant for

this project and 5 means it is essential.

The technical factor (TCF) is calculated by

multiplying the value of each factor (T1-T13)

in Table 3 by its weight and then adding all

these numbers to get the sum called the TFac-

tor. Finally, the following formula is applied:

TCF=0.6+(0.01*TFactor).

The environmental factor (EF) is calculated ac-

cordingly by multiplying the value of each fac-

tor (F1-F8) in Table 4 by its weight and adding

all the products to get sum called the Efac-

tor. Finally, the following formula is applied:

EF=1.4+(-0.03*EFactor)

Step5 (Calculating UCP) The adjusted use

case points (UCP) are calculated as follows.

UCP=UUCP*TCF*EF.

Step6 (Estimating Effort) By multiplying the specific

value (man-hours) by the UCP, estimated effort

can be obtained. In [10], a factor of 20 man-hours

per UCP for a project is suggested.

Table 1: Actor Weighting Factors

Type Description Factor

Simple Program interface 1

Average Interactive, or protocol-driven, inter-

face

2

Complex Graphical Interface 3

Table 2: Transaction-Based Weighting Factor

Type Description Factor

Simple 3 or fewer transactions 5

Average 4 to 7 transactions 10

Complex More than 7 transactions 15

Table 3: Technical Factors for System and Weight

Factor Number Description Weight

T1 Distributed system 2

T2 Response or throughput performance ob-

jectives

1

T3 End-user efficiency (online) 1

T4 Complex internal processing 1

T5 Code must be reusable 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portable 2

T9 Easy to change 1

T10 Concurrent 1

T11 Includes special security features 1

T12 Provides direct access for third parties 1

T13 Special user training facilities are required 1

Table 4: Environmental Factors for Team and Weight

Factor Description Weight

F1 Familiar with the Rational Unified Pro-

cess

1.5

F2 Application experience 0.5

F3 Object-Oriented Experience 1

F4 Lead analyst capability 0.5

F5 Motivation 1

F6 Stable requirements 2

F7 Part-time workers -1

F8 Difficult programming language -1

2.3 Related works

Until now, several researches and case studies have

been reported about the use case point method and

effort estimation based on use case model. Smith pro-

posed a framework to estimate LOC from use case

diagram[11]. The framework takes account of the idea

of use case level, size and complexity, for different cate-

gories of system and does not resort to fine-grain func-

tional decomposition. Arnold and Pedross reported

that the use of the use case point method is accepted

to estimate the size[3]. They also described that since

the language concepts for documentation are not well

understood, it would be important to define the lan-

guage concepts more precisely in advance. Anda et al.

applied use case point method to three kinds of soft-

ware project[2]. The results showed that the estimated

effort for each project was quite similar between use

case point method and the specialist. They suggested

that use case point method should use with other es-

timation method (e.g. function point, COCOMO).

Also, for the novice manager, use case point method

is easy to use in the estimation.

There are several tools to support use case point

counting (e.g. Enterprise Architect[17], Estimate Easy

Use Case[18]). The tools extract actors and use cases

from use case diagrams. By inputting the complexity

of the actors and use cases, technical factors, environ-

mental factors, the use case point and the estimated

efforts are calculated.

3 Use Case Point Measurement Tool

3.1 Overview

In order to effectively introduce use case point

method to the actual software development, we de-

cided to develop a use case point measurement tool.

As described in Section 2.3, there exist several tools.

But, they are not supported to judge the complexity

of actors and use cases. The judgment is the most im-

portant activity to count use case point and should be

automated. So, we aim to develop an automatic use

case point measurement tool as possible. Especially,

it is necessary to develop a way of decide the weight

for each actor and use case in the use case model of

the target software system. To attain it, we propose

several rules to classify the weight for actor and use

case in Section 3.2 and 3.3

Also, it is necessary to write the use case model

in machine-readable format. So, we assume that the

use case model is written in XMI(XML Metadata

Interchange)[9]. Because most CASE tools for writing

UML diagrams support to export the them as XMI

files. Fortunately, Hitachi Systems & Services is going

to use UML design tool, Describe[16] that exports the

use case model as XMI files.

3.2 Rules for weighting actors

As described in Section 2.2, weight for each actor is

determined by the interface between the actor and the

target system. But, the description of actor described

in use case model does not include information of the

interface. That is, we can get only the name of actor.

So, we propose the following three steps to classify the

complexity of actor.

Step1: Classification based on actor’s name:

Generally, actor is a person or an external system.

According to Table 1, in case that the actor is a

person, the weight can be average or complex.

Also, in case that the actor is a external system,

the weight can be simple or average. So, at first,

based on the name of the actor, we judge whether

the actor is a person or an external system. That

is, beforehand, we prepare the list of keywords

which can be included in the name of software

system. For example, the keywords “system” and

“server” are used in the system’s name.

In our tool, we set the following keywords for an

external system through the discussions with the

engineers in Hitachi Systems & Services.

Keywords for Step1 (KLa): system, server,

application, tool.

Step2: Classification based on keywords included in

use case:

Here, we focus on the flow of events included in

use case to which the actor is relevant. At first,

we prepare three kinds of keywords list for each

complexity of actor. For example, keyword list

for complex actor includes “GUI”, “button”, and

so on. Then, we extract all words included in the

flow of events and then match them with each

keyword in the lists. Finally, the actor’s weight

is assigned as the complexity for the keyword list

that is most fitted to the words in the flow of

events.

In our tool, we set the following keywords for each

complexity through the discussions with the en-

gineers in Hitachi Systems & Services.

Keywords for Simple actor (KLsa): request,

send, inform

Keywords for Average actor(system) (KLaas):

message, mail, send

Keywords for Average actor(person) (KLaap):

command, text, input, CUI

Keywords for Complex actor (KLca): enter,

button, press, push, select, show, GUI, win-

dow

Step3: Classification based on experience data:

In case that we cannot determine the actor’s

weight at Step2, we determine it based on the

experience data. The experience data includes

the information about the use case model and

the use case point developed in the past software

projects. If there exits several actors whose names

are the same as the target actor, then we decide

the weight whose value commands an absolute

majority.

By using Figures 1 and 2, we show a simple ex-

ample of classification of actor. In Figure 1, there is

one actor named “Customer”. In Step 1, since no key-

words in KLa is included in the name of the actor, the

actor “Customer” is classified as a person. In Step2,

events 1 and 3 are extracted because “Customer” is

related to them. Then, as the result of matching the

keywords of KLaap and KLca with the words in the

events, the keywords (“press”, “button”, “enter”) in

KLca are more included in the events. So, the com-

plexity of the actor “Customer” is judged as “Com-

plex”.

3.3 Rule for weighting use cases

As described in Section 2.2, the complexity of use

case is determined by the number of transaction. So,

we focus on the flow of events in the use case model.

Intuitively speaking, the simplest way to count the

transaction is to count the number of event. But, since

there are no standard to write the flow of events, the

developer can write the description freely using natu-

ral language. It is quite possible that several transac-

tions are described in one event.

On the other hand, several guidelines to write

events in use case model have been proposed [7]. There

are ten guidelines to write a successful scenario(flow of

events). Among them, we focus on the following two

guidelines.

(G1) Use simple grammar: The sentence structure

should be absurdly simple. That is, it is easily

understand what is the subject, verb, direct ob-

ject and prepositional phrase.

(G2) Include a reasonable set of actions: Jacobson

has described a step in a use case as representing a

transaction. He suggests the following four pieces

of a compound interactions should be described.

(1)The primary actor sends request and data to

the system, (2)The system validates the request

and the data, (3)The system alters its internal

state and (4) The system responds to the actor

with the result.

So, based on the above guidelines, we propose the

way to analyze the events using the morphological

analysis and syntactic analysis. Through these analy-

ses, we can get the information of morpheme from the

statement and dependency relation between words in

the statement.

We conduct the morphological analysis for all

events(statements) and get the information of the sub-

ject word and predicate word from each event (state-

ment).

Then, we apply the following rules:

• Rule U-1: We regard each set of the sub-

ject and predicate word as a candidate of a

transaction.

• Rule U-2: Among the candidates, we iden-

tify the one that related to actor’s opera-

tion and system response as a transaction.

For each use case, we conduct the above processing

and then get the number of transactions. Then, based

on the number of transaction, we judge the complexity

of each use case.

In case that there is no flow of events in a use case,

we determine the complexity based on the experience

data. The experience data includes the information

about the use case model and the use case point de-

veloped in the past software projects. If there exits

several use cases whose name are the same as the tar-

get use case, then we decide the weight whose value

commands an absolute majority.

3.4 Implementation

Based on the proposed method, we have imple-

mented a prototype tool called U-EST(Use case based

Estimation Supporting Tool). The input is a XMI file.

The U-EST is implemented in Java and Xerces2 Java

Parser[14] is used to analyze the model file. Since the

U-EST is mainly used in Japanese engineers, it has to

deal with the Japanese description. In order to con-

duct morphological analysis and syntactic analysis for

event written in Japanese in the use case, we adopt a

tool called CaboCha[15]. CaboCha is the most famous

and precise syntactic analyzer for Japanese.

Figure 3 shows an architecture of U-EST.

Here, we explain the processing of UCP counting

based on the U-EST. At first, the user (designer)

writes use case models and saves it as XMI files. Then,

XMI analyzer automatically extracts actors and use

cases from the input file(use case model). Then, Com-

plexity analyzer judges the complexity of them and

calculates UUCP. Here, the U-EST shows the list of

actors and use cases with their complexity by the re-

quest of the user. With respect to the use case, the

U-EST shows the list of events, sets of the subject and

the predicate word (candidates of transaction) in the

use case and the sets that are identified as transac-

tions. If necessary, the user can modify the classifica-

tion results and re-calculate UUCP. Then, by setting

Experience
Database

Describe
Modeling

Model File�
XMI �

G
U

I

XMI analyzer
Use case information

(actor, use case, flow of events, etc)

Complexity
analyzer

Un adjusted use case points

UCP Calculator

Technical factors

Environmental
factors

Past project
information

Data

Calculation
Result

Data flow

Control flow

Result

User

Figure 3: Architecture of U-EST

the technical and environmental factors, UCP calcu-

lator outputs the results and the results are stored in

the Experience database.

The effort is calculated by multiplying the specific

value (man-hours) by the UCP. Currently, the value

is set as 20 man-hours per UCP shown in [10]. But,

the value can be modified through the GUI.

4 Case study

4.1 Outline

In order to evaluate the usefulness of the U-EST, we

applied it to actual use case models developed in Hi-

tachi Systems & Services. We collected use case mod-

els from five software projects where middle-size Web

application programs were developed. As they are for

Japanese use, the name of actors, use case and the

descriptions of flow of events are written in Japanese.

Later, when we refer the actual names of actors or

event descriptions in the evaluation, we translate the

Japanese descriptions into English and use them. All

use case models were developed on a UML-design tool

called “Describe”[16]. Table 5 shows the characteristic

of each project.

In the evaluation, we focused on the results of the

automatic complexity classification of actors and use

cases. So, we compared the measurement results cal-

culated by our tool and ones calculated by a specialist

of use case point counting.

Table 5: Project Data

Project Language No. of actor No. of use case

P1 Java 5 15

P2 Java 5 14

P3 Java, VB.NET 2 20

P4 Java 5 28

P5 Java 8 13

4.2 Classification of actors

Tables 6 shows the measurement results of actors.

In Tables 6, “S”, “A” and “C” indicate “Simple”, “Av-

erage” and “Complex”, respectively. Also, “Precision”

means the ratio that the classification results by the U-

EST and the specialist are the same. As a whole, the

values measured by the tool are similar to the ones by

the specialist. But, there are some differences between

them and, especially, for project P2, the precision is

low (0.40). So, we examined the differences for project

P1, P2, and P4. As the result, the actors that caused

Table 6: Classification result(actor)

Project Tool Specialist Precision

S A C S A C

P1 0 1 4 1 0 4 0.80

P2 0 3 2 3 0 2 0.40

P3 0 0 2 0 0 2 1.0

P4 0 1 4 1 0 4 0.80

P5 0 0 8 0 0 8 1.0

the inconsistency are external-systems.

Figure 4 shows the example. In Figure 4, the ex-

ternal system Y is just appeared in the event where

the system S is the subject. In other words, there

are no events that the external system Y is the sub-

ject. We asked the specialist why he judged the actor

as simple and found that he judged it based on his

own experience since there were no information about

the interface between the external system Y and the

system S.

In order to effectively operate our proposed rule,

the second event should be rewritten such as “The sys-

tem S sends inquire to the External system Y about

the product corresponding to the number. The Ex-

ternal system retrieves the information of the product

and sends it to the system S. The system S gets the

information and supplies it to the Person X .

So, in order to improve the classification of ac-

tor’s complexity, it is necessary to get the information

about interface between the external system and the

target system from other documents(e.g. other UML

diagrams) or to ask the developers to write the event

description to get the processing of the external sys-

tem.

System S

Person X

Use case Z

External system Y

1. The Person X enters a number.
2. The system S sends inquire to the External system Y

about the product corresponding to the number, gets the
information and supplies it.

3. The Person X checks the information and…

Figure 4: Example of inconsistency of actor classifica-

tion

4.3 Classification of use cases

According to Table 7, the values measured by the

tool are similar to the ones by the specialist. Espe-

cially, for Projects P1 and P5, the consistency is 1.0.

But, there are also some differences between them and

for project P2 the consistency is relatively low (0.64).

That is, the complexity measured by the tool is bigger

than one by the specialist. So, we examined the differ-

ences for P2, P3 and P4. As the result, all differences

were caused by the fact that the specialist did not

count the events that the system supplies something

to the actor as a transaction.

For example, one of the use cases includes the fol-

lowing event: “The system supplies the information

to the actor”. The specialist judged that since the

system just shows the retrieved information to the ac-

tor, this processing is too simple to identify a transac-

tion. Surely, this kind of judgment (practice) would be

happened in actual software development. But, since

our tool shows the list of the events and the results

whether each event is identified as a transaction, the

user can check the results and exclude some trans-

actions based on the practices of the organization, if

necessary. So, we consider that the differences are in-

significant for practical use.

Table 7: Classification Results(use case)

Project Tool Specialist Precision

S A C S A C

P1 13 2 0 13 2 0 1.0

P2 6 7 1 10 4 0 0.64

P3 11 9 0 14 6 0 0.85

P4 23 4 1 27 1 0 0.82

P5 2 8 3 2 8 3 1.0

5 Discussions

Here, we discuss the followings points: validity and

limitation of our results.

(1) Description of events

The use case models used in the case study were

constructed by the engineers who have some ex-

perience of writing use case models. So, actually,

events descriptions of use case were mostly sat-

isfied with the guidelines described in [7]. Thus,

the U-EST might get the precise complexity clas-

sification of use case. So, in order to confirm the

applicability of the U-EST, we have to apply it to

more use case models developed by the many en-

gineers who have various experience in the actual

projects. Also, it would be necessary to prepare

formal guidelines how to write use case models to

effectively use the U-EST in the company.

(2) Language

The input use case models to the U-EST must

be written in Japanese. Thus, if the description

of events is written in English, the complexity

classification cannot operate correctly. But, as

you know, in the research area of natural lan-

guage analysis, there are many research studies

of morphological analysis and syntactic analysis

for English. So, if there are some morphological

analysis and syntactic analysis tools for English,

we can use it in the Complexity analyzer of the

U-EST and automatically classify the complexity

of use cases.

6 Conclusions

This paper proposed an automatic use case point

tool, the U-EST. The U-EST calculates use case point

from use case models written in XMI files. We have

also applied the U-EST to five use case models devel-

oped in the actual software projects. As the results,

the UCP calculated by the U-EST are considerably

adequate.

We are going to introduce the effort estimation

based on UCP method to the company. In order to

show the usefulness of the U-EST, we will apply it to

many software development projects. Also, we are go-

ing to analyze the relationship among UCP, function

point and actual software development effort and eval-

uate the usefulness and applicability of the estimation

by UCP method.

Acknowledgements

We would like to thank Mr. Michio Tsuda and

Ms. Mayumi Takahashi of Hitachi Systems & Services,

Ltd. for their discussions and advises in this paper.

References

[1] A.J. Albrecht: “Function Point Analysis”, Ency-

clopedia of Software Engineering, Vol.1, pp. 518-

524 (1994).

[2] B. Anda, H. Dreiem, D.I.K. Sjoberg, M. Jor-

gensen: “Estimating Software Development Ef-

fort based on Use Cases - Experiences from Indus-

try”, Proc. of Fourth International Conference on

the UML, pp. 487-504(2001).

[3] M. Arnold, P. Pedross: “Software Size Measure-

ment and Productivity Rating in a Large-Scale

Software Development Department”, Proc. of the

20th ICSE, pp. 490-493(1998).

[4] V. R. Basili and K. Freburger: “Programming

measurement and estimation in the Software En-

gineering Laboratory”, Journal of Systems &

Software, 2, pp. 47-57 (1981).

[5] B. W. Boehm: Software Engineering Economics,

Prentice-Hall(1981).

[6] Common Software Measurement International

Consortium, COSMIC-FFP Version 2.0 (2000).

http://www.cosmicon.com/.

[7] Alistair Cockburn: Writing Effective Use Cases

(Agile Software Development Series), Addison-

Wesley (2000).

[8] International Function Point Users Group (IF-

PUG), “Function Point Counting Practices Man-

ual, Release 4.1.1”, (2002).

[9] Object Management Group (OMG), “XML

Metadata Interchange (XMI) Specification Ver-

sion 2.0”, (2003).

[10] G. Schneider and J. P. Winters: “Applying Use

Cases, Second Edition”, Addison Wesley (2001).

[11] J. Smith: “The Estimation of Effort Based on Use

Cases”, Rational Software white paper, (1999).

[12] C. Symons: Software Sizing and Estimating. John

Wiley & Sons (1991).

[13] C. E. Walston and C. P. Felix: “A method of pro-

gram measurement and estimation”, IBM Sys-

tems Journal, 16(1), 54-73(1977).

[14] Apache, http://xml.apache.org/.

[15] CaboCha : Yet Another Japanese Depen-

dency Structure Analyzer, http://cl.aist-

nara.ac.jp/ taku-ku/software/cabocha/.

[16] http://www.embarcadero.com/products/describe/

index.html

[17] http://www.devdirect.com/

[18] http://www.duvessa.com/

