
MUDABlue: An Automatic Categorization System for Open Source Repositories

Shinji Kawaguchi†, Pankaj K. Garg††, Makoto Matsushita† and Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{s-kawagt, matusita, inoue}@ist.osaka-u.ac.jp
††Zee Source

1684 Nightingale Avenue, Suite 201
Sunnyvale, California, 94807, USA

garg@zeesource.net

Abstract

Open Source communities typically use a software repos-
itory to archive various software projects with their source
code, mailing list discussions, documentation, bug reports,
and so forth. For example, SourceForge currently hosts over
seventy thousand Open Source software systems. Because
of the size of the rich information content, such reposito-
ries offer numerous opportunities for sharing information
among projects. For example, one would like to know a set
of projects that are related or similar to each other, so that
the project groups can collaborate and share their work.
With thousands of projects in typical repositories, however,
manually locating related projects can be difficult. Hence,
we propose MUDABlue, a tool that automatically catego-
rizes software systems. MUDABlue has three major as-
pects: 1) it relies on no other information than the source
code, 2) it determines category sets automatically, and 3) it
allows a software system to be a member of multiple cate-
gories. MUDABlue has a web interface to visualize deter-
mined categories, which eases browsing a software reposi-
tory. We show the effectiveness of MUDABlue’s categoriza-
tion capability by comparing its generated categories with
that of some other existing research tools.

1 Introduction

The rapid use of Internet and Web-based technology has
given rise to novel, global software archiving services, pi-
oneered in the Open Source community through Source-
Forge [22]. More recently, several large corporations are
realizing the benefits of such services for their own, propri-
etary software development. For example, Hewlett-Packard
Company, IBM, Motorola, Nokia, and Xerox, are some

of the corporations that are known to have deployed such
archival service for their own internal corporate network.

For large software archives, categorizing their contents
for browsing and searching is essential for effective uti-
lization of the software archive. Automatic categorization
would be helpful in several ways:

• Severalsimilar software systems can be grouped to-
gether in a category for ease of browsing. For example,
SourceForge categorizes software according to their
primary function (editors, databases, etc.), and also has
the notion ofsoftware foundriesfor related software.

• Developers working on a software system may be in-
formed about related software. Finding related soft-
ware systems has following advantages.

1. Developers can learn “best practices” and pro-
gramming idioms from existing software sys-
tems. From related software systems, they can
get strategies or hints for developing software.

2. Developers can leverage each other’s work and
promote more reuse. This becomes especially
useful in situations like Corporate Source [8],
where global groups in companies may not be
aware of the relationship among their work [11].

In the past, such relationships have been determined
by hand. Manual categorization generally requires deep
understanding of not only the target software system, but
also other software systems and their categorization policy.
With the increase in the number of software systems, e.g.,
SourceForge now has over seventy thousand software sys-
tems registered and continues to evolve, such manual iden-
tification is not enough.

Automatic categorization of software systems is a novel
and intriguing challenge on software archive. Past work in

1

Software 1

Software 2

Software 3

Software 4

Software 1

Software 2

Software 3

Software 4

Editor

Editor

Editor

Editor

Editor

Editor

Editor

Editor

Editor

Editor

Editor

Editor

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

Spreadsheet

GUI (GTK) GUI (GTK) GUI (GTK) GUI (GTK)

GTK

GUI (GTK) GUI (GTK) GUI (GTK) GUI (GTK)

GTK

support for
regular expression

support for
regular expression

support for
regular expression

support for
regular expression

support for
regular expression

support for
regular expression

regexp

support for
regular expression

support for
regular expression

support for
regular expression

support for
regular expression

support for
regular expression

support for
regular expression

regexp

Explicit categorization Overlapping categorization

GUI (MFC) GUI (MFC) GUI (MFC) GUI (MFC)

MFC

GUI (MFC) GUI (MFC) GUI (MFC) GUI (MFC)

MFC

Figure 1. Categorizations overlapping disallowed and allowed

software engineering (e.g., see [6, 21]), has focused on de-
termining intra-component relationsof one given software
system. We, however, propose findinginter-project rela-
tionsof many software systems.

In this paper, we propose software automatic categoriza-
tion system, MUDABlue. It is based on Latent Semantic
Analysis (LSA). LSA is a method for extracting and repre-
senting the contextual-usage meaning of words by statistical
computations applied to a large corpus of text [14]. LSA has
found a variety of uses ranging from understanding human
cognition [13] to data mining [7]. In software engineering
field, it is used for clustering components in a software sys-
tem [18], and recovering document-to-source links [19].

We apply LSA for automatic categorization of software
systems. To apply LSA, we consider a software system as
a document and an identifier as a word. We use LSA for
retrieving categories, and then determining what software
systems belong to those categories. We also implement the
method and graphical user interface of retrieved categories.
We define Unifiable Cluster Map method to draw a large
number of categories and software systems. It is based on
Cluster Map [9]. Using the MUDABlue interface, a user
can browse a software repository more naturally.

2 Software Categorization

Our categorization process consists of two steps: First
step is constructing concepts that define categories for sub-
jects. Second step is categorizing items, i.e., assigning items
to categories.

Existing researches on automatic software categoriza-
tion [17, 25] have focused on only second step, categorizing
items. They do not care, however, about first step, determin-

ing categories. Their methods require manual determination
of category sets. They are inadequate considering that the
definition of category sets have major implications for the
categorization results, and difficulties of constructing cate-
gory sets increases in proportion to the number of subjects.

Categorization made by hand is typically based on us-
age of software systems. We hypothesize, however, that
it is also useful to categorize based on the software’s in-
ner structure. For example, there are categorization based
on its architecture (GUI application, CUI based filter, or
server application) and categorization based on required li-
braries (MFC, GTK or regexp library). To reflect such inner
structures in categorization, we need detailed knowledge of
many libraries and architectures. Thus, automating such
categorization is important.

Additionally, the existing researches categorize each
software system into one category. Therefore it is hard to
accommodate a variety of categorization criteria into a sin-
gle category hierarchy. In Figure 1, software 1 and 2 have
functionality for editing (inserting text, overwriting, delet-
ing, copying, etc.) and are categorized as ’editor’. Further-
more, software 1 and 3 are implemented with MFC library.
Then thus they could be categorized into a same category.

It is hard to represent such characteristics for categoriza-
tion which does not allow overlapping. In our previous
work [12], we have tried to measure similarities between
software systems. We applied LSA to software systems and
found that software similarity values are reflected only by
most influential aspects of software systems. For example,
the similarity value between database software with GTK
interface and editors using GTK is very high, despite dif-
ferences in their usage. The results indicate that software
systems have multiple ‘functional aspects.’ Thus, catego-

2

rization which allows overlapping is more suitable for soft-
ware categorization.

On the basis of stated above, we list the required charac-
teristics for an ideal automatic software categorization:

1. Don’t need pre-defined categorizations.

Category sets should be generated automatically. This
is because a software system has several attributes,
such as usage, architecture and depended library. Mak-
ing category sets reflecting all these attributes is hard
to determinea priori.

2. Allow a software system to be a member of multiple
categories.

Software systems can be categorized with functional
aspects on a non-exclusive basis. If a categorization
is mutually exclusive, the categorization may capture
only a few functional aspects.

3. Rely on source code only.

Some software systems have various artifacts like de-
sign documents, build script, and so on. Although
these artifacts have highly abstracted information com-
pared to source code, the amount and quality of
documents are quite different with software systems.
In contrast, source code is usually available for all
projects, or at least the ones worth categorizing. Thus,
we should use nothing but source code. Depending
on only source code enlarges the applicability of the
method.

3 MUDABlue Method

In this paper, we propose automatic software categoriza-
tion method implementing the three characteristics stated
above. At first, we introduce LSA used by MUDABlue
method. Then, we show key idea of how to retrieve cate-
gories automatically and explain our automatic categoriza-
tion method.

3.1 Latent Semantic Analysis

LSA is a practical method for the characterization of
word meaning. LSA produces measures of word-word, and
passage-passage relations which are well correlated with se-
mantic similarity [14]. The method creates a vector descrip-
tion of documents. This representation is used for compar-
ing and indexing documents, and various similarity mea-
sures can be defined.

Consider the six simple documents in Table 1. In LSA,
these documents are represented by a matrix shown in Ta-
ble 2. Each column represents a document and each row
represents a word which appears in the documents. Cell
entries show the occurrence of the word in the document.

c1 Human machine interface for ABC computer applications
c2 A survey of user opinion of computer system response time
c3 Relation of user perceived response time to error measurement
m1 The generation of random, binary, ordered trees
m2 Graph minors IV: Widths of trees and well-quasi-ordering
m3 Graph minors: A survey

Table 1. Example Input Documents

c1 c2 c3 m1 m2 m3
computer 1 1 0 0 0 0
user 0 1 1 0 0 0
response 0 1 1 0 0 0
time 0 1 1 0 0 0
survey 0 1 0 0 0 1
trees 0 0 0 1 1 0
graph 0 0 0 0 1 1
minors 0 0 0 0 1 1

Table 2. An Example of LSA Matrix

Each row vector of this matrix indicates the characteris-
tics of the word through the whole documents occurrences.
This row vector can be used to determine the similarity
of two words. A simple similarity definition used here is
cosine of two vectors.

In LSA, single value decomposition (SVD) is applied to
the matrix. SVD is a form of factor analysis, and acts as
a method for reducing the dimensionality of the matrices.
Why does LSA apply such translation? This is because a
simple term-by-document matrix does not capture relation-
ship among terms. Two documents show high similarity
only when the documents have some same words; however,
there are many synonyms. Thus similar documents do not
always share completely same words. They may contain
many synonyms. Using SVD, LSA can retrieve such undi-
rected relationship among documents. For more details,
please see [14].

3.2 Retrieving Category

To retrieve categories from various software systems, we
focus on identifiers (variable names, function names, and so
on). Such identifiers are usually labeled according to their
contents and deeply relate to the behavior of source code.
For example, identifier
“gtk_window ” represents some window, and source code
near “gtk_window ” will contain some GUI operation on
the window.

As stated above, identifiers may represent a part of
functions implemented in the program. Thus we as-
sume that semantically related identifiers retrieved from
many identifiers represent one “concept.” “gtk_window ”,
“gtk_main ” and “gpointer ” seem to indicate that such

3

Software 1 Software 3

CWindow hWnd

i
cur_pos

paste

re_query

CMenu hWnd
i

column
cell

re_match

Software 2 Software 4

gtk_main
g_print

icur_pos

paste

re_query

gpointer GtkWidget

i column cell

MFC

regexp

GTK

Editor Spreadsheet

Figure 2. Retrieve categories from source code using relationships among identifiers

identifiers would be contained in GTK related software sys-
tem. We define such a derived concept as a “category.”

Then, we define that if a software system has iden-
tifiers contained in a category, that software belongs
to the category (Figure 2). In this way, if we
can retrieve “editor” category which contains identifiers
“cut, copy, paste ” and “MFC” category which con-
tains identifiers “CWindow, CMenu.” Software 1 in Fig-
ure 2 belongs to both “editor” category and “MFC” cate-
gory.

To determine relationships between identifiers, we use
LSA. LSA calculates the similarity values between words.
LSA is purely statistical method and can be applied without
any human knowledge. At the same time, the similarity val-
ues of LSA reflect highly the semantic relationship among
words. Using LSA, we can get right relationships, even if
there are many synonyms and homonyms.

3.3 Overview of MUDABlue Method

As stated in Section 3.2, MUDABlue retrieves highly re-
lated identifiers, and considers them as a category. In this
section, we show how to retrieve categories concretely. Fig-
ure 3 shows a dataflow of MUDABlue method. MUDABlue
method consists of 7 parts, each explained below:

1. Extract identifiers.

First, we extract all identifiers from source codes of
software systems. From identifiers, we exclude re-
served because they have no relation with software
features. We also cut out comments. The reason is
that amount and quality of comments in each software
system vary widely, and many software systems have
copyright notice or license terms in comments.

2. Create identifier-by-software matrix.

Considering a software system as a document and an
identifier as a word, we create an identifier-by-software
matrix, similar to the word-by-document matrix of Ta-
ble 2.

3. Remove useless identifiers.

Before performing LSA, we remove identifiers that
appear in only one software system, or in more than
half of software systems. Identifiers appearing in only
one software system are not meaningful in LSA. And,
identifiers appearing in more than half of software sys-
tems are probably a general term and have no affect on
categorization.

4. Apply LSA.

We perform LSA for the identifier-by-software matrix
without meaningless identifiers.

5. Retrieve categories using similarities between identi-
fiers.

From the matrix of LSA result, we compute similari-
ties between all pairs of identifiers. As stated above,
we usecosine criterion for the similarity of each iden-
tifiers. Thereafter, we apply cluster analysis using cal-
culated similarities. The cluster analysis is a statistical
analysis method that classifies individuals into clusters
based on the similarity among individuals. We call a
cluster of identifiers an “identifier cluster.” We con-
sider each identifier cluster as a category.

6. Make software clusters from identifier clusters.

From each identifier clusters, we retrieve software sys-
tems that contain one or more identifiers in the cluster,
and make them a corresponding software cluster.

7. Make software cluster’s titles.

Although we obtain software clusters by previous
steps, each software cluster needs description that ex-
plains what software systems are included. To gen-
erate titles, we sum all identifier-vectors comprised in
the identifier cluster. We use ten identifiers that have
highest values in the summation vector.

4 MUDABlue System

We implemented the MUDABlue method described in
Section 3.3. To facilitate utilization of categories, we devel-
oped a graphical interface for browsing software repository.

4

Soft1

Soft2

Soft3

Soft4

Soft5

Soft6

Soft1

A B B F J

Soft2

A B C D E

Soft3

B C C C D

Soft4

G G I J

Soft5

F G H H J

Soft6

E G H J
10110100006

10211000005

11020000004

00000013103

00000111112

10001000211

10110100006

10211000005

11020000004

00000013103

00000111112

10001000211

A B C D E I JF G H

110100006

211000005

020000004

000013103

000111112

001000211

110100006

211000005

020000004

000013103

000111112

001000211

A B C D E F G H

0.91.00.40.30.0-0.10.20.16

1.41.50.60.40.0-0.20.20.15

0.90.90.40.20.0-0.20.10.14

-0.2-0.20.20.41.02.31.50.63

0.10.10.20.30.61.41.00.42

0.30.30.20.30.40.90.70.31

0.91.00.40.30.0-0.10.20.16

1.41.50.60.40.0-0.20.20.15

0.90.90.40.20.0-0.20.10.14

-0.2-0.20.20.41.02.31.50.63

0.10.10.20.30.61.41.00.42

0.30.30.20.30.40.90.70.31

A B C D E F G H

A B C D

F G H

Soft1 Soft2 Soft3

Soft4 Soft5 Soft6Soft1

Soft1 Soft2 Soft3

Soft4 Soft5 Soft6Soft1

ClusterTitle1

ClusterTitle2

1.Extract
Identifiers

2. Make Identifier-by-
-Software Matrix

3. Remove useless
Identifiers

4. Apply LSA

5. Retrieve Categories
Using Simirarities
between Identifiers

6. Make
Software
Clusters

7. Make
Software
Clusters’s
Title

Figure 3. Algorithm of Retrieving Categories

Using our GUI, one can grasp a good overall picture of a
software repository.

MUDABlue system consists of two parts: (1) database,
and (2) user interface. Database part retrieves categories
from source code contained in a software repository, and
stores them into the database. User interface part enables
browsing the software repository using categories stored in
the database.

In this section, we give an explanation of Unifiable Clus-
ter Map (UCM). UCM is developed to display relationships
among categories and software systems graphically. Then
we describe each part of MUDABlue system.

4.1 Unifiable Cluster Map

To draw categories retrieved by MUDABlue method,
two requirements must be fulfilled. It must draw multiple
memberships and have high scalability. Considering such
requirements, we define a Unifiable Cluster Map method
to draw categories and software systems based on Cluster
Map [9].

In Cluster Map, a category is represented as a node (right
side of Figure 5). A category is represented as a black node
with a light-gray label. A charcoal gray square represents a
cluster of elements. Elements belonging to the same cate-
gories are grouped into one cluster. The numeric characters
inside the squares shows what elements are contained in the
clusters. Edges between a category node and a cluster cir-
cle indicate elements inside the circle belonging to the cat-
egory. In the right side of Figure 5, the item 1 and 2 belong
to the category A and B. Cluster Map method draws multi-
ple memberships in smart way. However, it does not have
enough scalability.

To adapt for dozens of categories, we define UCM. In
UCM, you can refine categories by unifying categories in-
teractively. For instance, UCM draws some categories lo-
cated higher position in the category hierarchy at first. If

the user has some interest in a category, the user can expand
it and get more detailed categories. If a particular category
is not what the user wants, the user can collapse it.

Figure 4 shows how to unify categories. We would unify
the category B and C. If the category B and C are unified,
the cluster 1, 2 and 3 relate same categories. Thus, cluster
1, 2 and 3 are unified. Generally, if two categories are uni-
fied, we also unify all clusters which relate same categories.
Repeating such unification, a highly abstracted figure is ob-
tained like Figure 5.

4.2 Database

Database part retrieves categories using the method de-
scribed in Section 3.3, and stores them into a database.
Database part requires name of software systems and their
source codes. It assumes that there is a directory for each
software system, and source code is placed under the di-
rectory. All these directories are placed under a directory
specified in a configuration file.

4.3 User Interface

Our system has a web-based interface (Figure 6). This
interface consists of four parts. The top part is a keyword
input box. The middle of the page is Unifiable Cluster
Map view (UCM view). The left side of bottom is cate-
gory hierarchy view, and at the right side of bottom is cate-
gory/software list view.

Keyword input box provides the ability to search cate-
gories and software systems with given keyword.

UCM view provides the whole picture of a software
repository. It draws categories, software systems, and their
relationships. In UCM view, categories are arranged in a
hierarchy by their similarities. UCM provides the brief map
of categories and aids the exploration of details for inter-
ested users.

5

7,8,9

DD EE

B,CB,C

10,11

1,2,3 4,5,6

127,8,9

DD EE

B,CB,C

10,11

1,2 3 4,5,6

12

AAAA

7,8,9

DD EE

BB CC

10,11

1,2 3 4,5,6

12

AA

Figure 4. Unification of categories

7,8,9

DD EE

BB CC

10,11

1,2 3 4,5,6

12
7,8,9,12

A,D,EA,D,E B,CB,C

1,2,3,10,11 4,5,6

AA

Figure 5. Collapsed categories

Category hierarchy view is another hierarchical view of
categories. It presents category tree in direct way. If a user
already has a desired category, he or she can access the cat-
egory directly using this view.

Category/software list view shows the result of keyword
search or selected category/software in the UCM view or
category hierarchy view. The list of category shows se-
lected categories and their software systems and the list of
software systems shows selected software systems. In both
pages, the category name and software name are links for
detailed information pages.

All components in MUDABlue interface collaborate
closely with each other. If a category was selected in UCM,
the category is selected in category hierarchy view and cat-
egory/software list view, too, and vice versa.

In this section, we present explanation about category
hierarchy view, and how to construct hierarchy among cat-
egories at first. Then we explain UCM view.

4.3.1 Category hierarchy view

In category hierarchy view, the automatically determined
categories are reconstructed into hierarchy and similar cate-
gories are arranged close to each other. In this way, the user
can grasp the outline of categories more easily.

To determine category hierarchies, we define quantita-
tive similarity between categories. In this paper, we use
odds ratio with some modification. The odds ratio is a gen-
eral measure for relationship between two categories. Say
there is populationS and its subsetsA,B ⊂ S, our odds
ratioor′(A,B) is defined as below:

or′(A,B) =
{

ad/bc if bc 6= 0
ad|S|2 otherwise

where

a = |Ā ∩ B̄|, b = |A ∩ B̄|, c = |Ā ∩B|, d = |A ∩B|.
We apply cluster analysis to categories usingor′(A,B).

Then we make the dendrogram of categories used for the
category hierarchy view.

4.3.2 Unifiable cluster map view

Category hierarchy view enables viewing categories along
with their relationships with each other. This view, however,

does not present any information about the contained soft-
ware systems. To grasp the overview of a software reposi-
tory, such a view is insufficient.

In Figure 6, the middle of the interface is UCM part. A
category is represented as a black node with a light-gray
label. A group of software systems is represented as a char-
coal gray square. An edge between a category node and
a software group square depicts the fact that the software
systems belong to the pointed category. The retrieved cat-
egories are unified using UCM method described in Sec-
tion 4.1. The user can expand and collapse the categories
interactively. The user can double-click the category node
and expand it to determine its children categories. If the
user turns the mouse wheel up, the selected category is col-
lapsed again.

We use TouchGraph [24] library to implement UCM
view. TouchGraph is graph drawing library. It dynami-
cally arranges nodes by their edge connection, and allows
the user to move nodes around the screen.

5 Experimentation

We have conducted some experiments with the MUD-
ABlue software categorization system. The overall goals of
our experiment were: Does our prototype properly catego-
rize by target systems compared with existing manual cat-
egorization? Can our prototype categorize by the libraries
used by the subject software systems?

5.1 Experiment Process

We collected sample data from SourceForge, selecting
41 C programs in five categories from SourceForge. The
list of categories and software systems are shown in Table 3.
Then we ran MUDABlue for the 41 programs.

Next, we evaluate the result usingprecisionandrecall.
For this work, we define precision and recall from the view
point of “Compared to anidealcategorization, how specific
and exhaustive is the categorization determined by MUD-
ABlue?” LetS be a set of all software systems contained in
a repository. Precision and recall are defined as:

precision =
∑

s∈S precisionsoft(s)
|S|

6

Figure 6. MUDABlue Interface

Category Software

boardgame Sjeng-10.0, bingo-cards, btechmux-1.4.3, cinag-1.1.4, faile1 4 4, gbatnav-1.0.4, gchch-1.2.1, icsDrone, libgmonopd-0.3.0,
netships-1.3.1, nettoe-1.1.0, nngs-1.1.14, ttt-0.10.0

compilers clisp-2.30, csl-4.3.0, freewrapsrc53, gbdk, gprolog-1.2.3, gsoap2, jcom223, nasm-0.98.35, pfe-0.32.56, sdcc
database centrallix, emdros-1.1.4, firebird-1.0.0.796, gtmV43001A, leap-1.2.6, mysql-3.23.49, postgresql-7.2.1
editor gedit-1.120.0, gmas-1.1.0, gnotepad+-1.3.3, molasses-1.1.0, peacock-0.4

videoconversion dv2jpg-1.1, libcu30-1.0, mjpgTools, mpegsplit-1.1.1
xterm R6.3, R6.4

Table 3. The list of sample software systems

precisionsoft(s) =
|CMUDABlue(s) ∩ CIdeal(s)|

|CMUDABlue(s)|

recall =
∑

s∈S recallsoft(s)
|S|

recallsoft(s) =
|CMUDABlue(s) ∩ CIdeal(s)|

|CIdeal(s)| ,

whereCMUDABlue(s) is a set of categories containing
softwares, generated by MUDABlue,CIdeal(s) is a set of
categories containing softwares, determined manually by
the experimenters. In both of the criteria, larger value is
preferable.

Besides precision and recall, we also employ F-Value to
be an integrated measure for performance evaluation. F-
value is harmonic average of precision and recall, denoted
as 2pr

p+r where p:precision, r:recall.

5.2 Result

Table 4 shows excerpt of categories generated by MUD-
ABlue. A row represents one category. Each column rep-
resents title of the category, software systems belong to the
category and the number of identifiers constructing the cat-
egory. We got 40 categories in this experimentation. 18 cat-
egories are the same as defined manually in SourceForge,
and 8 categories are new categories based on depending li-
braries and architectures. All 8 new categories are No.3, 35
(YACC category), No.8, 9 (GTK category), No.22 (regexp
category), No.25 (JNI category), No.30 (getopt category)
and No.32 (Python/C category).

In Table 4, categories No.1, 2, 4, 5, 6, 7 and 10 are the
same category as SourceForge, and categories No.3, 8 and
9 are new categories. Category No.3 contains software sys-
tems using YACC, and category No.8 and 9 contain soft-
ware systems using GTK library.

7

No. Title of cluster Software # of tokens

1 AOP, emitcode, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT, pic14emitcode,
iCode, etype

compilers/gbdk, compilers/sdcc 8597

2 CASE IGNORE, CASEGROUND STATE, screen, CASEPRINT,
CASE BYP STATE, Widget, TScreen, CASEIGNORE STATE,
CASE PLT VEC, CASEPT POINT

xterm/R6.3, xterm/R6.4 2160

3 YY BREAK, yyvsp, yyval, DATA, yycurrentbuffer, tuple, yycurrentstate,
yy c buf p, yy cp, uint32

compilers/gbdk, database/mysql-3.23.49,
database/postgresql-7.2.1

223

4 AVI, cinfo, OUTLONG, avi t, AVI errno, hdrldata, OUT4CC, nhb, ERREXIT,
str2ulong

videoconversion/dv2jpg-1.1, videoconversion/libcu30-1.0,
videoconversion/mjpgTools

177

5 domainname, msgid1, binding, msgid2, domainbinding, pexp,builtin expect,
transmemlist, codeset, codesetp

boardgame/gbatnav-1.0.4, boardgame/gchch-1.2.1 165

6 board, nummoves, ply, pawnfile, npiece, pawns, moves, whiteto move, moves,
promoted

boardgame/Sjeng-10.0, boardgame/cinag-1.1.4,
boardgame/faile1 4 4

154

7 xdrs, blob, DB, UCHAR, XDR, mutex, keylength, logp, pageno, bdb database/firebird-1.0.0.796, database/mysql-3.23.49 118
8 domainname, N, binding, gchar, GtkWidget, PARAMS, codeset, gpointer,

loadedl10nfile, argz
boardgame/gbatnav-1.0.4, boardgame/gchch-1.2.1,
editor/gnotepad+-1.3.3, editor/peacock-0.4

118

9 GtkWidget, gchar, gpointer, gint, widget, gtkwidget show, N, g free, dialog,
g return if fail

boardgame/gbatnav-1.0.4, editor/gedit-1.120.0, editor/gmas-
1.1.0, editor/gnotepad+-1.3.3, editor/peacock-0.4

104

10 AOP, emitcode, esp, ICRESULT, IC LEFT, obstack, aop, mov, aopGet,
IC RIGHT

compilers/clisp-2.30, compilers/gbdk, compilers/sdcc 100

.

.

.
40 clause, cinfo, pred, ci, Group, Np, word, X, A, tmp4 compilers/gprolog-1.2.3, database/postgresql-7.2.1, video-

conversion/mjpgTools
6

Table 4. MUDABlue Result (excerpt)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

MUDABlue
GURU

SVM

Figure 7. Precision-recall graph

Figure 7 shows the result of recall and precision. We also
shows the result of GURU [17] and SVM based method pro-
posed by Ugurel et al. [25] (SVM stands for Support Vec-
tor Machine). They proposed automatic software catego-
rization methods using information retrieval (IR) technique
similar to MUDABlue. GURU applied free-text indexing
approach for software categorization. They retrieved infor-
mation from Unix man pages and categorized Unix tools.
Ugurel et al. applied SVM to documents of software sys-
tems to categorize software systems based on their usage.

In this graph, points located in the upper right area im-
ply good result i.e. both precision and recall are high. This
graph indicates that MUDABlue categorizes software with
higher precision and recall, when compared to some ex-
isting systems. Actually, the F-Value of MUDABlue is
0.72 while the best F-Value of GURU is 0.6591 (where
precision = 0.9 andrecall = 0.52) and of SVM is 0.6531
(whereprecision = 0.66 andrecall = 0.65)

6 Discussion

6.1 MUDABlue categorization method

In this paper, we have confirmed that MUDABlue can
properly categorize based on not only usages but also archi-
tectures and depended libraries. For instance, MUDABlue
retrieved GTK category, YACC category and JNI category.
Considering MUDABlue needs no human knowledge about
software systems, if a new library would appear, MUD-
ABlue will follow the new library without any human oper-
ation.

While MUDABlue got higher score over other research
tools for precision and recall, comparing such values di-
rectly does not capture the essence of MUDABlue’s ad-
vantage over them. The reason is that MUDABlue is com-
pletely different in some regards, as described below.

MUDABlue generates categories by itself, and does not
use a pre-defined category set. Additionally, MUDABlue
allows a software system to belong to multiple categories.
Such differences are desirable characteristics for software
categorization. Thus, the result indicates that MUDABlue
has better precision and recall, and provides some additional
suitable characteristics.

Another major difference between MUDABlue and other
research tools is subject of IR method. MUDABlue applies
LSA to source codes. In contrast, the existing tools (SVM
and GURU) apply IR method to software documents. As
mentioned in Section 2, depending on documents is not rea-
sonable in the Open Source context because of the disparity
of their amount and quality.

About titles of a cluster, some titles are easy to under-

8

stand, and others are not. Categories No.4 and 6 have ti-
tles easy to understand, like “AVI” and “board, ply”. Gen-
erally, categories based on depending libraries or architec-
tures tend to have comprehensible titles. In contrast, cate-
gories which are based on software usage tend to have ob-
tuse titles like category No.1. This is because identifiers
typically have names related to the domain, not the domain
name itself.

6.2 MUDABlue interface

MUDABlue provides several ways to browse a software
repository. Such hybrid methods are implementable and
useful. Frakes et al. [10] empirically investigated what sev-
eral presentation methods’ effectiveness. They state that
“There were no significant differences in search effective-
ness.” and “Even though the methods were not significantly
different in terms of recall and precision, they found differ-
ent items.” Hence, we believe that more than one method
should be presented to the user, rather than any given single
browsing interface.

To draw overlapping categories, we used Cluster Map
method, derived from the concept of Venn diagrams, with
some customizations. InfoCrystal [23] is another research
derived from Venn diagrams. In InfoCrystal, a Venn dia-
gram is exploded into disjoint subsets. Next, the subsets
were represented by icons whose shapes reflect the num-
ber of criteria satisfied by their contents. Dividing to the
subsets, InfoCrystal adapts to the growth of categories. In-
foCrystal, however, draws an n-polygon as outer frame of
the figure, thus if there were dozens of categories, the fig-
ure would be hard to read. Also, InfoCrystal has no way of
collapsing categories.

Another way to draw overlapping categories is arrang-
ing all elements according to their belongings. Sakai et
al. [20] and Allan et al. [1] propose such methods. These
research works arrange elements belonging to same cate-
gory closely and vice versa. In these ways, elements visu-
alization is achieved reflecting relations in overlapping cat-
egories. They, however, treat categories as just constraints
and do not visualize what elements belong to the categories.

7 Related Work

In this section, we will review researches about appli-
cation of IR method for software engineering world. Re-
searches about automatic software categorization and about
UCM are mentioned at section 6.

From the viewpoint of retrieving information from
source code, some existing clustering methods cluster one
software system into some functional parts for program
understanding. Such software clustering methods use La-
tent Semantic Analysis [18], Self-Organizing Map [4], file

structure and file names [2] or structure of program like call
graph [5, 16]. They divide one software systems into some
“component” (i.e. source file, function, and so forth).

Some research works apply IR method to retrieving
reusable components from a software system. These
method search components highly related with a given
query. For example, CodeBroker [26] is one of the com-
ponent retrieving systems for Java language. CodeBroker
present methods highly related with a given query. To deter-
mine relationship between a method and a query, it applies
LSA to a query and JavaDoc comment of methods.

Marcus et al. [19] proposed a method automatically re-
covering links between source codes and design documents.
Their method applies LSA to comments of source codes and
design documents. Then, they calculate similarity and re-
cover the links.

Lucca et al. [15] apply SVM to bug tracking system.
They use SVM to decide responsible person of new bug en-
try. They compare new bug entry and all submitted entries
using SVM and suggest the person who is responsible for
similar entries.

Brun [3] uses SVM and decision tree for software fault
identification. At first, some test software systems are pre-
pared. Half of them contain errors and the others are not.
Next, some properties are retrieved from the test software
systems and SVM and decision tree learner are trained with
the properties. The learner is used to determine whether
given software system contains error or not.

8 Conclusion

In this paper, we have proposed MUDABlue method, an
automatic categorization method for a large collection of
software systems. MUDABlue method does not only cat-
egorize software systems, but also determines categories
from the software systems collection automatically. We
have shown MUDABlue method can categorize without any
knowledge about target software systems. Then, we im-
plemented MUDABlue interface, a category-based software
repository browsing system. MUDABlue enables browsing
a repository categorized, where a software system can be-
long to multiple categories.

For future works, we will apply our method to various,
more large-scale data sets. While we examine our method
with 41 software systems, real software archives are larger.
Increase of software systems would improve the result of
LSA because LSA retrieves latent relation using statisti-
cal method. To experiment with a large-scale data set, im-
proving scalability of MUDABlue will be essential. At the
present time, most time-consuming process is cluster anal-
ysis of all identifiers. We need to use some approximate
algorithm and reduce the computational effort.

Although MUDABlue automates categorization of a

9

software archive, it does not accept any human guidance.
Combining our automated categorization and human guid-
ance may result in a powerful classification.

References

[1] J. Allan, A. V. Leouski, and R. C. Swan. Interactive cluster
visualization for information retrieval. Technical Report IR-
116, Center for Intelligent Information Retrieval, University
of Massachusetts, Amherst, 1997.

[2] N. Anquetil and T. Lethbridge. Extracting concepts from
file names; a new file clustering criterion. InInternational
Conference on Software Engineering,(ICSE’98), pages 84–
93, Apr 1998.

[3] Y. Brun. Software fault identification via dynamic analysis
and machine learning. Master’s thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge,
MA, August 16, 2003.

[4] A. Chan and T. Spracklen. Discoverying common fea-
tures in software code using self-organising maps. In
International Symposium on Computational Intelligence
(ISCI’2000), Kosice, Slovakia, August 2000.

[5] K. Chen and V. Rajlich. Case study of feature location us-
ing dependency graph. In8th International Workshop on
Program Comprehension (IWPC’00), pages 231–239, Lim-
erick, Ireland, June 2000.

[6] S. C. Choi and W. Scacchi. Extracting and restructuring the
design of large systems.IEEE Software, 7(1):66–71, Jan
1990.

[7] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. Indexing by latent semantic analy-
sis.Journal of the American Society of Information Science,
41(6):391–407, 1990.

[8] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Progres-
sive Open Source. InProceedings of the International Con-
ference on Software Engineering, Orlando, Florida, 2002.

[9] C. Fluit, M. Sabou, and F. van Harmelen. Supporting user
tasks through visualisation of light-weight ontologies. In
S. Staab and R. Studer, editors,Handbook on Ontologies in
Information Systems. Springer-Verlag, 2003.

[10] W. B. Frakes and T. Pole. An empirical study of rep-
resentation methods for reusable software components.
IEEE Transactions on Software Engineering, 20(8):617–
630, 1994.

[11] J. Herbsleb and A. Mockus. An Empirical Study of Speed
and Communication in Globally-Distributed Software De-
velopment. IEEE Transactions. Software Engineering,
2003.

[12] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic categorization algorithm for evolvable software
archive. In2003 International Workshop on Principles of
Software Evolution(IWPSE 2003), Sep 2003.

[13] T. K. Landauer and S. T. Dumais. Latent Semantic Anal-
ysis and the Measurement of Knowledge. InEducational
Testing Service Conference on Natural Language Process-
ing Techniques and Technology in Assessment and Educa-
tion, princeton, 1994.

[14] T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to
latent semantic analysis.Discourse Processes, 25:259–284,
1998.

[15] G. Lucca, M. D. Penta, and S. Gradara. An approach to clas-
sify software maintenance requests. InInternational Confer-
ence on Software Maintenance (ICSM’02), Montreal, Que-
bec, Canada, Oct 2002.

[16] G. A. D. Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and
U. D. Carlini. Comprehending web applications by a clus-
tering based approach. InProc. of 10th International Work-
shop on Program Comprehension(IWPC’02), pages 261–
270, Paris, France, June 2002.

[17] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An informa-
tion retrieval approach for automatically constructing soft-
ware libraries.IEEE Transactions of Software Engineering,
17(8):800–813, 1991.

[18] J. I. Maletic and A. Marcus. Using latent semantic analysis
to identify similarities in source code to support program
understanding. In12th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’00), pages 46–53,
November 2000.

[19] A. Marcus and J. I. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic index-
ing. In Proceedings of the 25th International Conference on
Software Engineering(ICSE2003), pages 125–135, Portland,
OR, May 2003.

[20] E. Sakai, K. Yamaguchi, and S. Kawai. Visualization
model of hierarchical sets based on perception distance
(p-distance) of graphical objects. InSixth International
Conference on Computational Graphics and Visualization
Techniques(COMPUGRAPHICS ’97), pages 397–407, Dec
1997.

[21] R. Schwanke. An intelligent tool for re-engineering software
modularity. InProc. of 13th International Conference on
Software Engineering, pages 83–92, Austin, Texas, USA,
May 1991.

[22] SOURCEFORGE.net.http://sourceforge.net/ .
[23] A. Spoerri. Infocrystal: a visual tool for information re-

trieval. In Proceedings of the second international confer-
ence on Information and knowledge management, pages 11–
20, Washington, D.C., United States, Nov 1993.

[24] TouchGraph.http://www.touchgraph.com/ .
[25] S. Ugurel, R. Krovetz, C. L. Giles, D. M. Pennock, E. J.

Glover, and H. Zha. What’s the code? automatic clas-
sification of source code archives. InProceedings of the
eighth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 632–638, Edmonton,
Alberta, Canada, Jul 2002.

[26] Y. Ye and G. Fischer. Supporting reuse by delivering
task-relevant and personalized information. In24th inter-
national conference on Software engineering(ICSE 2002),
pages 513–523, Orlando, Florida, USA, May 2002.

10

