

社団法人 電子情報通信学会 信学技報
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE
INFORMATION AND COMMUNICATION ENGINEERS

Ripple Down Ruleを用いたソースコード変更の分類 Ripple Down Ruleを用いたソースコード変更の分類
エディ パーキンソン† 川口 真司† 井上 克郎† エディ パーキンソン

†大阪大学大学院情報科学研究科 〒560-8531 大阪府豊中市待兼山町１番３号
E-mail: †{eddy, s-kawagt, inoue} @ist.osaka-u.ac.jp

†大阪大学大学院情報科学研究科 〒560-8531 大阪府豊中市待兼山町１番３号
E-mail: †{eddy, s-kawagt, inoue} @ist.osaka-u.ac.jp

あらまし 開発者は時折大量のコード変更をせまられる．このようなソースコード変更はなるべく少ないほうが望ましい．

Ripple Down Rule (RDR) は実績のある知識獲得手法である．RDR は経験から得られる知識をシンプルに管理するための手法で
あり，一度判定に失敗した事例を再利用することでより適切な判定を下すことを可能にする．本研究では，推薦されたコードの

書き方と，実際に書きなおされたコードを確かめることで，RDR を用いて変更履歴を分類できるかどうかを検証した．まだよ
り多くの作業が必要だが，得られた結果は RDR による分類が有用であることを示唆している．

あらまし 開発者は時折大量のコード変更をせまられる．このようなソースコード変更はなるべく少ないほうが望ましい．
Ripple Down Rule (RDR) は実績のある知識獲得手法である．RDR は経験から得られる知識をシンプルに管理するための手法で
あり，一度判定に失敗した事例を再利用することでより適切な判定を下すことを可能にする．本研究では，推薦されたコードの

書き方と，実際に書きなおされたコードを確かめることで，RDR を用いて変更履歴を分類できるかどうかを検証した．まだよ
り多くの作業が必要だが，得られた結果は RDR による分類が有用であることを示唆している．
キーワード Ripple Down Rules, Personal Software Process, Software Defects

キーワード Ripple Down Rules, Personal Software Process, Software Defects

Ripple Down Rules, a practical method of learning from code rewrites Ripple Down Rules, a practical method of learning from code rewrites
Eddy PARKINSON† Shinji KAWAGUCHI† Katsuro INOUE† Eddy PARKINSON

†Department of Computer Science, Osaka University 1-3, Machikaneyama-cho, Osaka, 560-8531 Japan †Department of Computer Science, Osaka University 1-3, Machikaneyama-cho, Osaka, 560-8531 Japan
E-mail: †{eddy, s-kawagt, inoue} @ist.osaka-u.ac.jp E-mail: †{eddy, s-kawagt, inoue} @ist.osaka-u.ac.jp

Abstract Software developers sometimes rewrite large sections of program code. Reducing the number of rewrites would save
valuable development time. Ripple Down Rules (RDR) has a proven knowledge acquisition track record. RDR looks to offer a simple to
maintain method capturing knowledge gained through experience. RDR allows recommendations identified when a failure occurs, to be
captured and reused. The approach is evaluated by examining recommended ways of writing code and examining rewritten code to see if
modifications can be categorised using RDR. The results suggest the idea is feasible, although more work is needed.

Abstract Software developers sometimes rewrite large sections of program code. Reducing the number of rewrites would save
valuable development time. Ripple Down Rules (RDR) has a proven knowledge acquisition track record. RDR looks to offer a simple to
maintain method capturing knowledge gained through experience. RDR allows recommendations identified when a failure occurs, to be
captured and reused. The approach is evaluated by examining recommended ways of writing code and examining rewritten code to see if
modifications can be categorised using RDR. The results suggest the idea is feasible, although more work is needed.

Keyword Ripple Down Rules, Personal Software Process, Software Defects

Keyword Ripple Down Rules, Personal Software Process, Software Defects

1. Introduction 1. Introduction

Software development suffers from budget overruns
and project failures. A report by [StandishGroup01] states
20% of software development projects are cancelled and
50% of projects have an average cost of 189% of the
original estimate. Personal software process (PSP), see
[Humphrey95], has successfully achieved dramatic
improvements in controlling budget overrun and
improving the quality of the software delivered to
customers, see [Ferguson99] for a case study. PSP is a
gradual learning process that focuses on developers
keeping notes to help them learn from previous mistakes.
The idea described here is to combine PSP with Multiple
Classification Ripple Down Rules. MCRDR helps novices

learn from the choices of experts in a systematic way, see
[Preston93] for a case study. Software development suffers from budget overruns

and project failures. A report by [StandishGroup01] states
20% of software development projects are cancelled and
50% of projects have an average cost of 189% of the
original estimate. Personal software process (PSP), see
[Humphrey95], has successfully achieved dramatic
improvements in controlling budget overrun and
improving the quality of the software delivered to
customers, see [Ferguson99] for a case study. PSP is a
gradual learning process that focuses on developers
keeping notes to help them learn from previous mistakes.
The idea described here is to combine PSP with Multiple
Classification Ripple Down Rules. MCRDR helps novices

learn from the choices of experts in a systematic way, see
[Preston93] for a case study.

2. Understanding MCRDR 2. Understanding MCRDR
MCRDR works on the principle there are exceptions to

every rule. When a failure occurs and some
recommendation is made to help prevent such failures, the
recommended action is added to the rule base. The
recommended action exists to prevent a particular failure
and only applies in certain situations. MCRDR is an
extended version of RDR.

MCRDR works on the principle there are exceptions to
every rule. When a failure occurs and some
recommendation is made to help prevent such failures, the
recommended action is added to the rule base. The
recommended action exists to prevent a particular failure
and only applies in certain situations. MCRDR is an
extended version of RDR.

Figures 1 is a simple example used here to describe Figures 1 is a simple example used here to describe

† 川口 真司† 井上 克郎†

† Shinji KAWAGUCHI† Katsuro INOUE†

Key: Attribute – Conclusion Case:
 Normal day - Wear shorts and t-shirt Case1: Hot and sunny

 Raining - Wear coat Case2: Cold and raining
 Hot - T-shirt, shorts and take umbrella Case4: Hot and raining

 Windy - Take kite Case3: Windy and sunny
Figure 1

RDR and MCRDR. On the first day, the first line “normal
day” is created because on the first day it was hot and
sunny so we decided to wear shorts and a t-shirt. When it
is cold and raining, wearing shorts and t-shirt is not a
good solution. The indentation indicates an exception to
the rule, so the second day “cold and raining” is an
exception, needing a different conclusion. Because
wearing shorts and a t-shirt was not a good solution, the
exception, “raining - wear coat” is added. To add the
exception a difference between the first “Normal day” and
the second day is needed. Either raining or cold can be
used as an attribute to distinguish between the two cases.
When picking attributes an expert tends to perform better
than a novice. Experts tend to be better at picking
attributes to distinguish between cases and as a result end

up
Ex
dis
pic
inc

O

con
add
nex
thi
Ta

N

rul
rai
“H
is
exc
att
Fig

T

tru
“R
eva
me

and so when “Hot - T-shirt, shorts and take umbrella” is
true, “Raining - Wear coat” is evaluated as false. RDR
only allowed one conclusion in the tree to be true and so
it was sometimes necessary to combine several
conclusions into one, MCRDR solves this problems and
has replaced RDR

Figure 2 shows that the order of the cases does not

have a significant impact on knowledge acquisition. With
the two rules, “Raining - T-shirt, shorts and take
umbrella” and “Cold - Wear coat”, in figure 2, it is still
necessary to distinguish between hot and cold days and
when it is raining and not raining. The same conclusions
are reached and the same distinctions between cases also
occur, just in a different order.

Key: Attribute – Conclusion Case:
 Normal day - Wear shorts and t-shirt Case1: hot and sunny

 Raining - T-shirt, shorts and take umbrella Case2: Hot and raining
 Cold - Wear coat Case4: Cold and raining

 Windy - Take kite Case3: Windy and sunny
with a more compact set of rules, see [Kang95].
perts are able to define complex attributes that
tinguish between cases. Also by examining attributes
ked by novices it has been possible to identify
orrect assumptions made by the novice.

n the third day it is windy, hot and sunny, so the first
clusion is possible, but instead a new exception is
ed, “Windy - Take kite”. By adding this exception the
t time it is windy the conclusion take kite will be used,

s is because there are no exceptions to the “Windy -
ke kite” rule in the rule base.

ext a hot and raining day is encountered, because the
e “Raining - Wear coat” evaluates to true for a hot and
ning day, an exception to this conclusion is added,
ot - T-shirt, shorts and take umbrella”. The structure
such than any rule can have an exception and the
eption is itself a rule. Each rule is made up of an

ribute condition and a conclusion, as can be seen in
ure 1.

he MCRDR approach allows several conclusions to be
e. For example on a raining and windy day both
aining - Wear coat” and “Windy - Take kite” are
luated as being true. When an exception is true it
ans the parent conclusions are accepted as being false,

The simplicity comes from only having to identify a

difference between two cases, rather than trying to create
some complex problem solving method. When attempting
to create problem solving methods [Compton98] notes
that:

“we invariably attempted to develop something that
was far more complex than is actually required.”

The quote highlights the problem of developing simple

rules that take into account exceptions. The rules in
figures 1 & 2 show how MCRDR allows exceptions to be
added to existing simple rules without restructuring.

Figure 2

3. Conclusion Classification with MCRDR
Medical experts have successfully used MCRDR to

capture knowledge [Khan03], [Preston93]. When MCRDR
was evaluated for use as a method for creating diets to fit
patient preferences [Khan03], a senior dietician said the
method offered “considerable potential to improve the
daily routine”. The work suggests problems that are suited
to Case Based Reasoning (CBR) approaches are better
tackled using MCRDR.

While the identification of conclusions can in many
cases be automated, in some a partially manual search is
needed. With a 1600 rule knowledge base such as
[Preston93], a manual search of the rule base would be
time consuming. It looks as if the time needed to find
conclusions limits the scope of MCRDR. To help deal
with this problem the MCRDR help desk system which
[Kang97] describes contains a search mechanism to help
search the large case base rather than relying on a manual
search of the MCRDR tree. Another approach to the
problem of searching through a large MCRDR case base
was introduced by [Vazey04]. The method used is a
sequence of requests for specific information, gradually
refining the search for a conclusion.

4. Maintenance of MCRDR
One of the advantages of MCRDR over Expert Systems

is that it does not require knowledge engineers to
maintain the rule base, see [Khan03], [Preston93]. For an
introduction to Expert Systems see [Jackson99]. The
problem of maintaining an Expert System is that new
knowledge is difficult to add because it tends to conflict
with the existing rules in the system, this is highlighted in
[Preston93]. In contrast to Expert Systems, MCRDR
allows new knowledge without impacting on existing rule
base. This advantage is highlighted by the quote:

 “Rule addition of the order of 20 per hour could
be achieved with very low error rates. It was realised that
error rates could be eliminated by validating the rules as
they were added.” [Preston93]

5. Personal Software Process and Team
Software Process (PSP & TSP)
PSP was developed by [Humphrey95], it has achieved

impressive improvements in predicting schedules and
reducing defects. The company technical report
[Ferguson99] reported:

 “Our average project schedule overrun has been
reduced from 112% to 5%, and our average budget
overrun from 87% to -4%.”

This was achieved over several years and involved

training all programmers in PSP. Several books were used
in the training process and the training process looks to
be central to PSP [Ferguson97]. Team Software Process
(TSP) was developed by [Humphrey 99] after PSP to help

with overall project management, see [Seshagiri03] for a
case study.

PSP involves developers keeping track of defects they

find and when they are removed, with the aim of trying to
find ways of removing defects sooner in the development
process. Methods such as requirements reviews and code
reviews are employed to try and spot defects early and
remove them long before unit testing and integration
testing. PSP involves making developers aware of the
types of defects that exist and the costs of removing them.

PSP & TSP also uses estimated LOC to help predict the

number of defects that will exist. Such estimation
techniques are continually refined by comparing actual
LOC and actual defects to those estimated. The difference
between the predicted and actual schedule and budget in
[Ferguson99] had a standard deviation of about 25% for
budget and 12% for the schedule spread over 14 projects.

6. Usefulness of combining MCRDR & PSP
Training is cited as a key part of PSP [Ferguson97].

The training includes the writing of 10 small programs
and this case data is then used to train developers. The
knowledge in MCRDR is also captured using case data.
The advantage of using MCRDR is that it provides
novices with the information they need to make expert
like decisions right from the very beginning, rather than
them having to relearn it from scratch.

While MCRDR does not claim to be a perfect method

of passing on knowledge, it does appear to offer a better
method of passing on expert knowledge than other
approaches, see [Preston93], [Khan03]. Passing
knowledge from an expert to a novice is difficult to do.
This problem is highlighted by the following statement:

"[After] long term experience of maintaining an expert

system. What became clear ... when an expert is asked
how they reached a conclusion they do not and cannot
explain how they reached their conclusion." see
[Preston93].

To help deal with this problem RDR was developed, it

uses actual case data to capture expert knowledge. PSP
highlights the value of using past cases to guide the
creation of schedules and aid the removal of defects.

Combining these two ideas lead to:

Hypothesis 1: Novices using MCRDR to predict

budgets and schedules are able to achieve the same
standard as experts in 95% of cases.

Hypothesis 2: Novices using MCRDR are able to be as
effective at removing defects as experts in 95% of cases.

The 95% comes from the MCRDR literature, see

[Preston93], and is an estimate of the percentage accuracy
that MCRDR achieved in a domain. While the reality of
what can actually be achieved is far from clear, the above
hypothesises give a rough benchmark that can used to
assess progress.

7. Evaluating code re-writes
The code modifications described in Figure 3 comes

from sourceforge.net and appear to be typical of such
projects. Even though only 18 cases are listed, many of
the modifications are similar, which suggests MCRDR is
able to separate modifications into simple categories. The
process of using MCRDR to categorise modifications has
highlighted two weaknesses:
1. As the rule base gets larger it becomes harder to add

new rules, because much searching is needed to check
if a similar case has been seen before.

2. The conclusions are labels that have little value; they
describe modifications, but do not say what should be
done to improve the situation.

The difficulty of searching the rule base means that

there is a need for high reward conclusions to balance the
time spent searching the rule base with the reward gained
from implementing the conclusion. While several methods
exist that speed up the searching of the rule base, these do

not remove the issue of the time spent searching for
conclusions. This suggests the conclusions added to the
rule base would gain from having some measure of their
time and quality value attached. Equally it means that
having low value conclusions in the rule base could
potentially have a negative impact on the value of the rule
base. It may be possible to use some form of formal
notation to help resolve the problem of searching the rule
base, but this requires further investigation.

Because the conclusions are labels without a value, it

makes it hard to decide if a conclusion is right or wrong.
Until the categories reach the stage where the conclusions
are useful in some way the choice of which categories are
worth creating is arbitrary. This suggests that using
MCRDR to categorise modifications provides little more
than a rough list and the real advantage of using MCRDR
will come when recommendations are created that
improve things.

8. Conclusion
To test the idea of using MCRDR to pass software

development knowledge from experts to novices there is a
need to examine not only actual modifications made to
code but also to identify cases where experts have been
able to reduce the impact of project modifications.
Identifying cases where an expert disagrees with a choice
made by a novice should allow expert recommendations
to be identified. Following this up by asking the expert to
identify an attribute in the case that lead them to conclude
an alternative action was needed should allow an MCRDR
rule tree to be created.

The study of modified code shows that when

classifying conclusions using MCRDR, the classification

Key: Attribute– Conclusion Case:
1. Complete line(s) of code moved statements that existed in more than one place are centralisation & enhanced 1, 8

(ア) Replaced variable/ constant with method process used to produce a particular value type is centralised 2
2. Changed constant simplistic name/text/visual enhancement or fix 3, 5, 17
3. Removed complete line(s) of code feature had negative impact 4, 14
4. Apply function to many constants/variables process to produce a particular value type is centralised 6, 7, 10,11
5. Modified a single section of code Added simple feature/removed defect 9, 15

(ア) Inserted if + else statement around code Added simple feature/removed bug 14, 16
6. Removed method call Centralisation removed the need for the method call 12, 13
7. Inserted new lines of code Added simple feature/removed bug 14
8. New methods inserted containing new code Added feature 15, 16

Figure 3 – MCRDR classification of code modification

has little value, when the conclusion is not useful.

The examination of the MCRDR and PSP literature and

code re-writes shows that using MCRDR to pass on expert
PSP knowledge to novices is a promising idea. What
remains unclear is the detail of actual recommendations
discovered while using PSP. Adding actual PSP
recommendations to a MCRDR rule base should reveal
more about the value and feasibility of the hypothesises
described above.

9. References
[Compton98] A Trade Off Between Domain Knowledge

and Problem Solving Method Power 、 Eleventh
Workshop on Knowledge Acquisition, P. Compton, Z.
Ramadan, P. Preston, T. Le-Gia, V.Chellen, M.
Mulholland, D.B. Hibbert, P.R. Haddad, B. Kang 1998.

[Ferguson97] Results of Applying the Personal Software
Process, IEEE Computer, Vol. 30, No. 5, P. Ferguson,
W. Humphrey, S. Khajenoori, S. Macke, and A. Matvya
1997

[Ferguson99] Software Process Improvement Works, SEI
Technical Report, CMU/SEI-TR-99-27 Ferguson P.,
Leman G., Perini P., Renner S. & Seshagiri G. 1999

[Humphrey95] A Discipline for Software Engineering,
Addison-Wesley, Watts Humphrey 1995.

[Humphrey99] Introduction to the Team Software Process,
Addison-Wesley, Watts Humphrey 1999

[Jackson99] Introduction to Expert Systems, 3rd ed.,
Addison-Wesley, Harlow, England, Peter Jackson 1999.

[Kang95] Multiple Classification Ripple Down Rules
Evaluation and Possibilities, in Proceedings 9th Banff
Workshop on Knowledge Acquisition, B.H. Kang, P.
Compton, and P. Preston 1995

[Kang97] Help Desk System with Intelligent Interface, in
Applied Artificial Intelligence, 11: 611-631, Kang, B.
H., Yoshida, K., Motoda, H. and Compton, P. 1997

[Khan03] Building a case based diet recommendation
system without a knowledge engineer, in Artificial
Intelligence in Medicine 27(2): 155-179, Abdus Salam
Khan, Achim G. Hoffmann 2003

[Preston93] A 1600 Rule Expert System Without
Knowledge Engineers, in J. Leibowitz, editor, Second
World Congress on Expert Systems, P. Preston, G.
Edwards, and P. Compton 1993

[Seshagiri03] Walking the Talk Building Quality into the
Software Quality Management Tool, Third International
Conference On Quality Software, Girish V. Seshagiri, S.

Priya 2003
[StandishGroup01] CHAOS Chronicles II, The Standish

Group, www.standishgroup.com, 2001
[Vazey04] Achieving Rapid Knowledge Acquisition in a

High-Volume Call Centre, in Proceedings of the Pacific
Knowledge Acquisition Workshop, 2004

