
Mega Software Engineering

Katsuro Inoue1, Pankaj K. Garg2, Hajimu Iida3, Kenichi Matsumoto3, and
Koji Torii3

1 Osaka University, Graduate School of Information Science and Technology, 1-3
Machikaneyama, Toyonaka, Osaka 560-8531, Japan

inoue@ist.osaka-u.ac.jp
2 Zee Source, 1684 Nightingale Avenue, Suite 201, Sunnyvale, CA 94087, USA

garg@zeesource.net
3 Nara Institute of Science and Technology, Nara 630-0192, Japan

{iida, matumoto, torii}@is.naist.jp

Abstract. In various fields of computer science, rapidly growing hard-
ware power, such as high-speed network, high-performance CPU, huge
disk capacity, and large memory space, has been fruitfully harnessed. Ex-
amples of such usage are large scale data and web mining, grid comput-
ing, and multimedia environments. We propose that such rich hardware
can also catapult software engineering to the next level. Huge amounts of
software engineering data can be systematically collected and organized
from tens of thousands of projects inside organizations, or from outside
an organization through the Internet. The collected data can be analyzed
extensively to extract and correlate multi-project knowledge for improv-
ing organization-wide productivity and quality. We call such an approach
for software engineering Mega Software Engineering. In this paper,
we propose the concept of Mega Software Engineering, and demonstrate
some novel data analysis characteristic of Mega Software Engineering.
We describe a framework for enabling Mega Software Engineering.

1 Introduction

Over the years, sometimes borrowing from traditional engineering disciplines,
software engineering has adopted several methods and tools for developing soft-
ware products, or more recently, software product families. For example, from
hardware engineering the concept of specifying requirements before design and
implementation have been useful for software engineering. A unique feature of
software products, however, is that the end product has virtually no physical
manifestation. Hence, composing or taking apart a software product has virtu-
ally no cost implications. As a result, software component reuse is a common
practice for code sharing among multiple projects.

We posit that “sharing” among software projects can be extended beyond
code or component sharing to more and varied kinds of “knowledge” sharing.
Such sharing can be achieved using what we call mega software engineering. In-
stead of narrowly engineering a product, or a product family, an organization
can undertake the responsibility and benefits of engineering a large number of

2 Katsuro Inoue et al.

projects simultaneously. Examples of benefits that can accrue from such a per-
spective are: projects that share functionality can benefit from code sharing or
reuse; experts in a particular implementation aspect can contribute their exper-
tise to all projects that can potentially use that expertise (sort of like syndicated
newspaper columnist or cartoonists); historical experiences of projects can be
extrapolated to similar, newer projects to eliminate repeating process mistakes;
and, ‘outliers,’ or projects with behavior deviant from the norm can be easily
distinguished for rapid problem identification and resolution.

Many existing software engineering technologies remain focused on the indi-
vidual project or programmer. For instance, code browsing tools typically allow
a programmer to browse through single project code bases. Similarly, a navi-
gation system might guide a developer utilizing data from her activities alone.
While organizations can utilize global knowledge, for software reuse and other
process improvements, an individual programmer or manager seldom enjoys the
benefits of mega or global knowledge. Often, in large organizations its difficult
for programmers to even discover projects related or similar to their own.

Prevailing organizational software engineering technologies for individuals are
locally optimized to get local benefit for the individual developers or projects
at most. They do not oversee global benefit and do not optimize the technolo-
gies using knowledge and software engineering data of other developers or other
projects.

In modern times, the capacity, connectivity and performance of various net-
works ranging from local area network to the Internet are growing rapidly. Now,
we are able to collect data from not only a single project, but all software devel-
opment activities inside an organization (or company). If the organization has
close relation to other software development organizations, as sub-contractor or
co-developer, we can also collect software engineering data from the other orga-
nizations. A huge collection of Open Source software now exists on the Internet,
which is sometimes a crucial resource for development projects. Such information
is readily available via Internet tools.

Disk capacity and CPU power of recent computer systems are also rapidly
increasing. Since vast disk space is available, we can archive project data at
a detailed, fine granularity. Every change of a product can be recognized as
a version and stored in a version control system. Every communication made
among developers can be recorded. Not only single project data, but all project
data spread over distributed organizations can be easily archived.

The collected mega software engineering data includes both process and
product information. Various characteristics can be extracted by analyzing the
collected data. Mining a single project data would be a relatively straightfor-
ward and light task. On the other hand, mining through mega data, say tens
of thousands of projects, can be computationally expensive. Since now we have
enormous computational power and memory space compared to, e.g., 10 years
ago, however, such analysis becomes feasible. We may want to analyze, not only
the organizational software engineering data, but also software engineering data

Lecture Notes in Computer Science 3

available on the Internet as Open Source projects, such as various source pro-
grams, associated documents, version control logs, mail archives, and so on.

In computer science research and practice, there are many successful uses
of improved hardware capacity. For example, web data collection and mining
such as Google search engine is a case in the web engineering field. In the high-
performance computation field, GRID technology is an example. We think that
the software engineering field should also share in advantage of the improvement
of network, CPU, disk, etc. We propose to create a novel approach to software
engineering field, by collecting mega software engineering data through networks,
archiving the collected data for a long period, analyzing the huge data deeply,
and providing knowledge for organizational improvement.

Undertaking mega engineering, however, is not straightforward. In addition
to changing the programmer’s mindset from engineering one product to multiple
products, one has to accommodate the complexities of challenging the hierarchi-
cal socio-organizational context in which single product engineering is so deeply
embedded. In this paper, we do not attempt to address such socio-organizational
aspects, which have been addressed elsewhere[1]. Here we focus our efforts in de-
scribing the technology aspects of Mega Software Engineering: the novel analyzes
enabled by performing data analysis on multiple projects, the architecture of a
Mega software engineering environment, and a framework for collecting analysis
data from the environment.

We depict the distinction between Mega Software Engineering and traditional
software engineering in Section 2. In Section 3 we introduce some examples of
core technologies of Mega Software Engineering. Section 4 outlines the framework
based on Mega Software Engineering Environment. In Section 5 we compare
this work to some related work, and conclude our discussion in Section 6 with a
summary.

�� �� �� �� �� ��
�� �� �� ��

Personal activity data Problem detection Tool customisation/
activity navigation

Single project data Progress estimation
Process/product
 improvement

Multiple project data Project comparison/
expertise extraction

Organizational asset
reuse

scale

Collection Analysis Improvement

Fig. 1. Scale classification of SE

4 Katsuro Inoue et al.

2 Overview of Mega Software Engineering

Figure 1 shows a classification of software engineering technologies based on the
scale of engineering targets. The horizontal axis shows improvement feedback
steps, composed of collection (measurement) step, analysis (evaluation) step,
and feedback (improvement) step. The vertical axis represents the scale of the
target for software engineering, which we explain in the rest of this section.

Individual Developer Software Engineering: The first scale level in-
cludes traditional software engineering technologies which target individual de-
velopers. Data and knowledge for each developer is collected and analyzed, then
the resulting analysis is fed back to the individual developer. For instance, com-
mand history of a tool for a developer can be collected and analyzed to improve
the arrangement of the tool’s menu bar, or to create a command navigation fea-
ture for the developer. Many software engineering tools such as software design
tools, debug support tools, or communication support tools fall in this category.

Single Project Software Engineering: The second scale level includes
current software engineering technologies which target a single software devel-
opment project, or a set of closely related development projects such as product-
line development projects. The engineering data for the project is collected and
analyzed to improve the project’s processes and products. For example, we may
collect product data such as the number of completed modules in a project, and
then compare to the scheduled number. Such data can be used to monitor the
project’s progress and corrective action can be taken as necessary. Process en-
gineering tools and distributed development support tools are examples of the
Single Project Software Engineering scale.

Mega Software Engineering: At the ultimate scale level, we gather multi-
ple project data sets from the entire organization, and compare among projects
to draw meaningful conclusions. Analyzed data for project processes and prod-
ucts can be archived as assets of the organization. We note that there have been
little software engineering research proposed and realized at this scale, since tra-
ditionally there has been limitations on network capacity, CPU power, and so
on. Now those limitations have gone away; we can collect and analyze a large
volume of data, and we can consider optimization strategies beyond individual or
project boundaries. The results of such optimization will benefit the entire soft-
ware development organization and its members, rather than benefiting simply
a single developer or project.

As shown in Figure 2, we consider that Mega Software Engineering is com-
posed of the following steps:

1. huge data collection for a large number of projects,

2. intensive data analysis beyond boundary of projects, and

3. information feedback for organizational improvement.

Technologies in Mega Software Engineering relate to one of these three steps.
We will show examples of such technologies in the following section.

Lecture Notes in Computer Science 5

1. Huge data
collection

3. Feedback
for organizational

Improvement

2. Intensive data
analysis

Software development organization
Related organizations

1.

1.
Other data resources,

e.g., Open Source
software

Fig. 2. Fundamental steps of Mega Software Engineering

3 Component Technologies of Mega Software Engineering

3.1 Mega Software Engineering Environment

An essential component of Mega Software Engineering is the ability to system-
atically collect and organize large amounts of data, from tens of thousands of
software projects. This requires: (1) mechanisms for defining the data to be col-
lected from each project, (2) systematic organization of the collected data, and
(3) mechanisms for easily obtaining the data from each project.

For each of these questions, we learn from the experiences of the Open Source
and Free Software communities that have demonstrated an environment for col-
lecting and organizing vast amounts of mega data, through the pioneering efforts
such as Open Source Development Network (OSDN) and the Gnu software tools.
Hence, similar to the OSDN, for each project we capture complete versioned
source code trees, email discussion archives, bug report and their workflow, and
documents associated with the project including web pages. We use the a com-
bination of the hierarchical file system and relational database to organize the
large amounts of data.

Rather than collect such data a posteriori, we collect and organize such data
in situ. A critical aspect of this is to collect data as a side-effect rather than
as an after-thought. This implies the existence of a Mega Software Engineering
Environment (MSEE) that can easily accommodate the development effort of
tens of thousands of projects. In the following, we briefly describe the architecture
of one such MSEE, SourceShare [2][3], with which we are most familiar. Other
MSEE’s (e.g., see [4]) have similar architecture.

Figure 3 shows the main components of SourceShare. As the figure shows,
SourceShare is a web-based service. Through the web interface, SourceShare
provides capabilities to:

6 Katsuro Inoue et al.

Internet/
Intranet

Web
Server

Version
Control
(CVS)

Bugtracking
(GNATS)

Mailing Lists
(Mailman)

Search Engine
(Swish−e)

File
System

Database

Web
Clients

CVS
Clients

Mail
Clients

Fig. 3. MSEE architecture

- Add a new software project to the collection
- Browse through existing projects, using various sorting orders like categories,

software name, contact name, or date of submission.
- Search through the software projects, either through the source code, software

descriptions, mailing list archives, or issues and bug reports.

When a user adds a new software project, SourceShare requires the user to
input a set of information about the software, e.g., who were the authors of the
software, some keywords, a brief software description and title, etc. SourceShare
stores this information in an XML file associated with the project. It also in-
stantiates a version control repository, a mailing list, and a bug tracking system
for that software project. Henceforth, users of SourceShare can start working
on the project using the version control repository for their source code man-
agement. As in the case of Open Source software, SourceShare requires that all
decision making and discussions about the software project be carried out using
the email discussion list associated with the project. In this manner, SourceShare
maintains an archive of the history of project decision making.

An MSEE provides some important features:

- Maintain and make visible tens of thousands of software projects.
- Systematically collect and organize fine-grained data on each project for source

code versions, problem reports and their resolution, and project discussions.
- Provide a uniform web-based interface to all information.
- Collect data as side-effect of normal project activities.

3.2 Automatic Categorization

MSEE provides a fundamental vehicle for collecting thousands of project data
sets. Within the large project data stored in archives, users frequently want to
find clusters of “similar” projects. Hence, we need mechanisms to determine
related projects in a large corpus of multi-projects.

Lecture Notes in Computer Science 7

In the Open Source and Free Software communities, categorization is carried
out by human input, usually at the beginning of the project. It is unrealistic, how-
ever, to consider human categorization given the multitude of software systems
that can be expected in a typical mega environment. For example, SourceForge
is a huge web site for Open Source software development projects, and as of this
writing it contains about 78,000 projects. Human categorization would require
not only a good understanding of the individual project to be categorized, but
the potential categories that can be created by upto 78,000 projects.

To this end, we are studying automatic categorization of software systems [5][6].
The first approach performs cluster analysis for the sets of source code [6]. This
is based on the similarity of two sets of source code, which is defined as the ratio
of the numbers of similar code lines to that of the overall lines of two software
systems. The similar code lines are detected by a combination of a code-clone
detection tool CCFinder [7] and a difference extraction tool diff.

For categorization of software systems with little shared code, we propose
another approach of categorization of software systems using LSA (Latent Se-
mantic Analysis) [8] for keywords appearing in the source code of the target
systems [5]. LSA is a method for extracting and representing the contextual-
usage meaning of words by statistical computations applied to a large corpus of
text. It has been applied to a variety of uses ranging from understanding human
cognition to data mining.

��� �	� ��
 �� ��� ��
 ��� �	� ��
 ��� ���
����� � � � ����� � ������� ��� � � !�"�# $ � � � ��� � � � � � � � � � � � � �
�	� � %'&�(*)+ �
 � ��
 � ,-" � � � $ ��� � � � � � � � � � � � � �
��
�� .0/�(�1 2� �0(*)+ � ! � � � � � � � � � � $ � � � � � � � � 3 � � �
��-� 240/01 ��.050�6������
 �
 � � � $ $ $ � � � � �
����� %7/-+ 50(*(*�0(*����� ��� � � � ��� � $ $ $ � � � � � � �
�0
�� .0�05089/�8;:<� ��� , � � � $ $ $ � � � � �
���-� �0=��*>?.02������ � � � � � � � � � � � $ @�A B $ � �
����� + � �08;C0
����D��� � � � � � � � ��� 3 � � � � � @�A B $ @EA B � �
��
�� %F>?.02HG�/�/+ (� � � � � � $ @�A B $ � �
�E��� ��G���� %JI# �
 � � � � � � � � � $ $
��� � ��G���� %JI# � , � � � � � � � � � $ $

Table 1. Categorization by LSA

We have chosen 11 software systems from SourceForge, and software groups
D1–D3, E1–E3, and V1–V3, and X1–X2 are categorized by hand in the same
groups at SourceForge. Table 1 shows the similarity values which are the cosines
of the column vectors of the resulting matrix by LSA. Two systems having a 1
entry implies they are very similar, and those with 0 mean no similarity in the
keyword lists.

Groups E, V, and X have very high similarities inside the groups. The result
shows that although there are some outliers, it would give us a good intuition of
categorization of software groups. We further continue this approach to improve
the categorization precision.

8 Katsuro Inoue et al.

By adding such automated categorization tool as an analysis feature, man-
agers and developers can easily find similar or related projects to a target project,
and they can obtain useful knowledge of similar past projects.

3.3 Selecting Similar Cases by Collaborative Filtering

In the approach described above, we are able to identify cluster of software
systems that are similar to each other. We cannot, however, specify which one
system is the most similar to any given software system. Collaborative filtering
can answer this question of finding the project most related to a given system [9].
We are studying such collaborative filtering as a means of identifying software
features from activity data [10]. Here, we propose to apply the collaborative fil-
tering technique to find a similar system (or project) from thousands of systems.

We assume that there is a list of α metrics M = {m1, m2, . . . , mα} and a
list of β systems P = {p1, p2, . . . , pβ}. Value vij can be obtained by applying
metric mi to the data set of system pj . In similarity computation between two
systems pa and pb, we first isolate the metrics, which had been applied to both
of these systems, and then apply a similarity computation to the value of the
isolated metrics. For example, two systems are thought of as two vectors in
the α-dimensional metric-space. The similarity between them is measured by
computing the cosine of the angle between these two vectors. Once we can isolate
the set of the most similar systems based on the similarity measures, we can
estimate metric value vij even when a metric mi is not available. In such case,
an estimation value, such as a weighted average of the metric values of these
similar systems, is employed.

This means that collaborative filtering is robust to the defective data sets.
In contrast, the conventional regression analysis requires the complete matrix of
metric values, and it is unrealistic to assume complete data sets for all systems.

If a project manager finds a deviation from the scheduled project plan, she
has to take corrective action to bring future performance in line with the project
plan [11]. In such a situation, the project manager may want to know a viable
solution for the problem. Collaborative filtering can present a set of the most
similar systems to the ongoing system, so that we can explore the product and
process data collected in these similar systems, and find a concrete solution.
Hence, to proceed with Mega Software Engineering effectively, we need to provide
not only a bird’s-eye view of software systems and projects, but also concrete
information useful for software developers and project managers.

3.4 Code-Clone Detection

As an example of deep analysis for the large collection of software engineer-
ing data beyond project boundaries, we will show code-clone detection tool
CCFinder and its GUI Gemini for large scale of source code [7].

Code clone is a code fragment in a source file that is identical or similar to
another fragment. CCFinder takes a set of source-code files as an input, and
generates a list of code-clone locations as the output.

Lecture Notes in Computer Science 9

Fig. 4. Scatterplot between Qt and GTK

Figure 4 is an example of the display of Gemini. This is the scatterplot of
detected clones between two GUI libraries Qt and GTK. These two libraries are
developed independently in different organizations. Qt (version 3.2.1) is com-
posed of 929 files and about 686K lines in total. GTK (version 2.2.4) consists of
658 files and 546K lines in total.

Each dots in the scatterplot represents existence of code clones with more
than 30 tokens. Smaller tokens less than 30 tokens are eliminated here. The left-
upper pane shows clones inside Qt, and the right-lower pane shows clones insider
GTK. The result is symmetrical to the main diagonal line, so the right-upper
half is omitted.

The left-lower pane shows clones between Qt and GTK. The overall clone
density in this pane is generally lower than others, but there is one exceptional
portion annotated by “a”, where there are many clones, meaning that two sys-
tems share most code. This portion is the font handler for both Qt and GTK,
and we know by reading README files that the font handler of Qt is imported
from GTK.

Using these tools, we can quantify similarity of source codes, leading to cat-
egorization of software systems and to measurement of code reuse. Also, we can
create an effective search tool for similar code portion to the huge archive of
organizational software assets.

3.5 Software Component Search

Automation of reusable software component libraries is an important issue in
organization. We have designed an automatic software component library that
analyzes a large collection of software components, indexing them for efficient

10 Katsuro Inoue et al.

retrieval, and ranking them by the importance of components. We have pro-
posed a novel method of ranking software components, called Component Rank,
based on the analysis of actual use relations of components and also based on
convergence of the significance values through the use relations [12].

Using the component rank computation as a core ranking engine, we are cur-
rently developing Software Product Archiving, analyzing, and Retrieving System
for Java, called SPARS-J.

Fig. 5. SPARS-J for “bubblesort”

Figure 5 shows a display result for a query keyword “bubblesort” for SPARS-
J. The result is returned almost instantly to the searcher through a web browser.
There are 28 classes having the keyword. Similar or the same classes are merged
into 19 groups out of 28 classes, and these 19 groups are sorted by the component
ranks. The details of listed classes, which include the source code, various metric
values, and various links to other classes, can be viewed simply by clicking on
the web browser.

This system can become a very powerful vehicle to manage organizational
mega software assets. It is easy to collect all source code created in an organiza-
tion at the raw component archive. Then, the analysis for the ranking and the
retrieval for the query are performed fully automatically, without using human

Lecture Notes in Computer Science 11

hand. So the cost of the software asset management can reduce drastically, and
developers can leverage past assets for efficient development of reliable products.

4 Mega Software Engineering Framework

To investigate various technologies in Mega Software Engineering, we are cur-
rently developing a tool collection environment called Mega Software Engineering

Framework, as shown in Figure 6. We do not intend to build a single huge system
to perform all the steps in Mega Software Engineering, but we construct a plug-
gable framework in which individual technologies for Mega Software Engineering
can easily be incorporated.

Versioning
(CVS)

Mailing
(Mailman)

Other tool
data

Format
Translator

Format
Translator

Format
Translator

Format
Translator

Process data archive
(XML format)

Product data archive
(CVS format)

Code clone
detection

Component
search

Metrics
measurement

Project
categorization

Collaborative
filtering

Source
Share
GUI

Managers

Developers

Project x
Project y
Project z

. . .

Issue
tracking

(GNATS)

Fig. 6. Architecture of Mega Software Engineering Framework

This framework is composed of following three tool collections: (1) Source-
Share as a Mega Software Engineering Environment, which manages project
progress and collects project data, (2) Product and Process data archives, and
(3) analysis tools which extract various feedback information.

As described in Section 3.1, SourceShare employs version management tool
CVS, mail management tool Mailman, and issue (bug) tracking tool Gnats [13].
SourceShare provides control and unified GUI for these tools; however, we can
employ other tools for version control, mailing, or issue tracking. Note that
the data collection by SourceShare is done non-intrusively. Checking into CVS
repositories, sending mails, and tracking issues are performed as daily activities
for software development and maintenance, not as special activities for the data
collection.

As the central archives of this framework, we prepare a product data archive
in the CVS format and a process data archive in an XML format. The product

12 Katsuro Inoue et al.

data archive directly reflects to the repositories of each project in the CVS
format. The process data is obtained by transforming log files of CVS, Mailman,
and Gnats into a standard format in XML, and it is stored into an XML database
that is implemented by PostgreSQL with XML extension. This framework can
easily handle process data obtained by other tools if the data is transformed into
the standard format in XML.

The process data and product data in the archives are analyzed by a tool for
measuring various metrics data and by the tools presented in previous sections.
The analysis results are given back to the developers and managers. We are
designing a unified GUI for analysis results, which would accomplish effective
feedback to developers and managers.

Now we briefly show an example scenario of using the mega software engi-
neering framework.
Step 1: Progress Monitoring under the Framework
A project, say Project X, starts with the mega software engineering framework.
The progress is monitored by the metrics measurement tool in the framework,
and the current metric values are compared with scheduled metrics values, so
that the current status of the project is recognized. Now we assume that the
project is behind schedule.
Step 2: Similar Project Search
In order to investigate the cause of the problem on Project X, we find projects
similar to X. This is performed with the project categorization tool and collab-
orative filtering tool. The project categorization tool, based on the automatic
categorization method, provides a set of similar projects to X. The collaborative
filter chooses a past project Y as the most similar from the “similar” set.
Step 3: Investigation by Various Metric Views
The evolution of various metric values of Y through its beginning to end is inves-
tigated, and compared to the metrics values of X. Some outlier metric values are
identified. Assume here that X’s metric value for reuse rate of software compo-
nents is much worse than that of Y. This can be detected by measuring amount
of code clones between Project X and past projects including Y.
Step 4: Improvement
Since we know that the reuse in Project X is not as actively done as Project
Y, we try to promote the reuse actively in X by using the software component
search tool. The developers start to browse the product data archive and to
search useful legacy software components in Y or similar projects. The reuse
rate of X increases to the similar level of Y, and the schedule delay is recovered.

5 Related Work

- Global Software Development
Due to the rapidly increasing network capacity and speed, and differentiated
cost structures, Global Software Development is an active area of software engi-
neering research and practice [14]. Although analysis shows deficiency of global
software development, compared to same site work [15], the importance of Global

Lecture Notes in Computer Science 13

Software Development will continue to increase and strong support tools to ease
site distance barrier are required. For example, Herbsleb and Mockus have pro-
posed an “expertise browser” to help locate far flung experts and contributors
of software modules [16]. The Mega Software Engineering framework provides
a fundamental environment of code sharing and message exchanging for Global
Software Development. Also, our approach provides directly needed knowledge
or asset to developers or managers, rather than a point solution of e.g., providing
assistance in finding expertise.

- Knowledge Sharing
There are several researchers investigating light-weight knowledge extraction and
sharing among developers. For example, Curanic et al. analyze link information
to provide related knowledge [17], while Ye and Fischer describe a system for
automatically providing source-code components that is not well identified or
understood by a developer [18]. The light weight approach focuses on a single
developer or a single project. Our approach explores knowledge or information
which is based on deeper analyses of multiple projects, and a huge collection of
software engineering data.

- Measuring and Analyzing Open Source Project Data
German and Mockus have proposed a measurement tool collection for CVS and
mail data [19]. They generate various statistical values for Open Source devel-
opment projects. Similarly, Draheim and Pekacki use CVS data to determine
several process metric values [20]. Finally, Mockus and Votta use CVS data to
classify the causes of changes made to software products [21]. These approaches
are also considered to be examples of analysis techniques in Mega Software En-
gineering. However, their systems are more specific to getting the objective sta-
tistical values or classification. We are trying to build a more flexible framework
for a large collection of projects, in which we can extract both inter-project
knowledge of process and product for various objectives. Thus, we employ an
exchangeable standard format in XML for process data, and use a standard
database to archive it. Once the data is in the form of a standard database, we
can apply various techniques for data mining for traditional data.

- Measurement-Based Improvement Framework
There is a large body of research and practical implementation of measurement
and improvement frameworks. Goal Question Metrics paradigm is an example
in which suitable metrics are derived from measurement objectives [22]. The
frameworks of software process improvement such as CMM and SPICE are also
cases that aim measurement-based improvement for organization, and Personal
Software Process targets improvement for personal capability [23]. We might
consider that Mega Software Engineering would be an improvement framework
similar to those. However, Mega Software Engineering is different in the sense
that it assumes organizational-wide huge data collection of many projects and
software systems, rather than a single person or single project. Also, the anal-
yses made by Mega Software Engineering are more intensive and deeper ones
compared to per-project metric values made by earlier frameworks.
Also, Mega Software Engineering can be considered as a framework in the context
of software process improvement such as CMMI or ISO-9001. Applicability and

14 Katsuro Inoue et al.

effectiveness of Mega Software Engineering in such context have to be explored
further in various industrial environments.

- Experience Factory
Vic Basili’s group has developed and successfully applied the concept of an
“Experience Factory,” where organizations systematically collect and reuse past
experiences [24]. Indeed, Neto et al. propose a “knowledge management” frame-
work for storing such experience base for organizations [25]. Dingsoyr et al.
report practical experiences and recommendations for “knowledge reuse” [26].
We believe that Mega Software Engineering is an evolution of the Experience
Factory concept, enriched from the “communal” aspects of Open Source software
development. Hence, instead of requiring a separate organizational element that
captures and packages relevant “experience elements,” we propose to directly
capture the contents of software engineering activities, and make “experience”
available through deep analysis of this raw data.

6 Summary

We have proposed a novel concept of Mega Software Engineering, and presented
several of its core technologies. We described a framework that allows for plug-
gable technologies for mega software engineering. Previous work in software en-
gineering research has given limited attention to data collection and analysis of
tens of thousands of projects. Rapid advances in hardware and communication
technologies allow the application of various technologies to huge data collection
and intensive analysis. Therefore, we believe that we are at the best starting
point to utilize the benefits of Mega Software Engineering.

This work is supported by Ministry of Education, Culture, Sports, Science
and Technology of Japan, the Comprehensive Development of e-Society Foun-
dation Software program.

References

1. Melian, C., Ammirati, C., Garg, P.K., Sevon, G.: Collaboration and Open-
ness in Large Corporate Software Devlopment. In: Presented at the European
Academy of Management Conferenec, Stockholm, Sweden (2002) Available from
http://www.zeesource.net/kc.shtml.

2. Dinkelacker, J., Garg, P., Nelson, D., Miller, R.: Progressive Open Source. In:
ICSE, Orlando, Florida (2002)

3. ZeeSource: (SourceShare) http://www.zeesource.net.
4. Halloran, T.J., Scherlis, W.L., Erenkrantz, J.R.: Beyond Code: Content Manage-

ment and the Open Source Development Portal. In: 3rd WS Open Source SE,
Portland, OR, USA (2003)

5. Kawaguchi, S., Garg, P.K., Matsushita, M., Inoue, K.: Automatic Categorization
for Evolvable Software Archive. In: Int. WS Principles of Software Evolution,
Helsinki, Finland (2003) 195–200

6. Yamamoto, T., Matsusita, M., Kamiya, T., Inoue, K.: Measuring Similarity of
Large Software Systems Based on Source Code Correspondence. In: PROFES
2005, Oulu Finland (2005)

Lecture Notes in Computer Science 15

7. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A Multi-Linguistic Token-based
Code Clone Detection System for Large Scale Source Code. IEEE TSE 28 (2002)
654–670

8. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to latent semantic analysis.
Discourse Processes 25 (1998) 259–284

9. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering
Recommendation Algorithms. In: Int. World Wide Web Conf. (WWW10), Hong
Kong (2001) 285–295

10. Ohsugi, N., Monden, A., Morisaki, S.: Collaborative Filtering Approach for Soft-
ware Function Discovery. In: Int. Symp. Empirical SE (ISESE), vol.2, Nara, Japan
(2002) 45–46

11. : Project Management Institute, A Guide to the Project Management Body of
Knowledge 2000 Edition (2000)

12. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto,
S.: Component Rank: Relative Significance Rank for Software Component Search.
In: ICSE, Portland, OR (2003) 14–24

13. Gnu: (Gnats Project) http://www.gnu.org/software/gnats.
14. Herbsleb, J.D., Moitra, D.: Global Software Development. IEEE Software 18

(2001) 16–20
15. Herbsleb, J.D., Moitra, D.: An Empirical Study of Speed and Communication in

Globally Distributed Software Development. IEEE TSE 29 (2003) 481–494
16. Mockus, A., Herbsleb, J.D.: Expertise Brower: A Quantitative Approach to Iden-

tifying Expertise. In: ICSE, Orlando, FL (2002) 503–512
17. Cubranic, D., Holmes, R., Ying, A., Murphy, G.C.: Tool for Light-weight Knowl-

edge Sharing in Open-source Software Development. In: 3rd WS Open Source SE,
Portland, OR, USA (2003) 25–30

18. Ye, Y., Fischer, G.: Supporting Reuse by Delivering Task-Relevant and Personal-
ized Information. In: ICSE, Orlando, FL (2002) 513–523

19. German, D., Mockus, A.: Automating the Measurement of Open Source Projects.
In: 3rd WS Open Source SE, Portland, OR (2003) 63–68

20. Draheim, D., Pekacki, L.: Process-Centric Analytical Processing of Version Control
Data. In: Int. WS Principles of Software Evolution, Helsinki, Finland (2003) 131–
136

21. Mockus, A., Votta, L.G.: Identifying Reasons for Software Changes Using Historic
Database. In: ICSM, San Jose, CA (2000) 120–130

22. Basili, V.R. In: Goal Question Metrics Paradigm, in Encyclopedia of Software
Engineering (J. Marciniak ed.). John Weily and Sons (1994) 528–532

23. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley
(1996)

24. Basili, V.R., Caldiera, G.: Improve Software Quality by Reusing Knowledge and
Experience. Sloan Management Review Fall (1995) 55–64

25. Neto, M.G.M., Seaman, C.B., Basili, V., Kim, Y.: A Prototype Experience Man-
agement System for a Software Consulting Organization. In: SEKE 2001, Buenos
Aires, Argentina (2001)

26. Conradi, R., Dingsoyr, T.: Software Experience Bases: A Consolidated Evaluation
and Status Report. In: 2nd PROFES 2000, Oulu, Finland (2000) 391–406

