
Measuring Similarity of Large Software Systems
Based on Source Code Correspondence

Tetsuo Yamamoto1, Makoto Matsushita2, Toshihiro Kamiya3 and Katsuro Inoue2

1 College of Information Science and Engineering, Ritsumeikan University,
Kusatsu, Shiga 525-8577, Japan

Phone:+81-77-561-5265,Fax:+81-77-561-5265
tetsuo@cs.ritsumei.ac.jp

2 Graduate School of Information Science and Technology, Osaka University,
Toyonaka, Osaka 560-8531, Japan

Phone:+81-6-6850-6571,Fax:+81-6-6850-6574
matusita@ist.osaka-u.ac.jp,inoue@ist.osaka-u.ac.jp

3 Presto,Japan Science and Technology Agency.
Current Address:Graduate School of Information Science and Technology, Osaka University,

Toyonaka, Osaka 560-8531, Japan
Phone:+81-6-6850-6571,Fax:+81-6-6850-6574

kamiya@ist.osaka-u.ac.jp

Abstract. It is an important and intriguing issue to know the quantitative sim-
ilarity of large software systems. In this paper, a similarity metric between two
sets of source code files based on the correspondence of overall source code lines
is proposed. A Software similarity MeAsurement Tool SMAT was developed and
applied to various versions of an operating system(BSD UNIX). The resulting
similarity valuations clearly revealed the evolutionary history characteristics of
the BSD UNIX Operating System.

1 Introduction

Long-lived software systems evolve through multiple modifications. Many different
versions are created and delivered. The evolution is not simple and straightforward.
It is common that one original system creates several distinct successor branches dur-
ing evolution. Several distinct versions may be unified later and merged into another
version. To manage the many versions correctly and efficiently, it is very important
to know objectively their relationships. There has been various kinds of research on
software evolution[1–4], most of which focused on changes of metric values for size,
quality, delivery time or process, etc.

Closely related software systems usually are identified as product lines, so develop-
ment and management of product lines are actively discussed[5]. Knowing development
relations and architectural similarity among such systems is a key to efficient develop-
ment of new systems and to well-organized maintenance of existing systems[6].

We have been interested in measuring the similarity between two large software
systems. This was motivated by our scientific curiosity such as what is the quantitative
similarity of two software systems. We would like to quantify the similarity with a



solid and objective measure. The quantitative measure for similarity is an important
vehicle to observe the evolution of software systems, as is done in the Bioinformatics
field. In Bioinformatics, distance metrics are based on the alignment of DNA sequences.
Phylogenetic trees using this distance are built to illustrate relations among species[7].
There are huge numbers of software systems already developed in the world and it
should be possible to identify the evolution history of software assets in a manner like
that done in Bioinformatics.

Various research on finding software similarities has been performed, most of which
focused on detecting program plagiarism[8–10]. The usual approach extracts several
metric values (or attributes) characterizing the target programs and then compares those
values.

There also has been some research on identifying similarity in large collections of
plain-text or HTML documents[11, 12]. These works use sampled information such as
keyword sequences or “fingerprints”. Similarity is determined by comparing the sam-
pled information.

We have been interested in comparing all the files. It is important that the software
similarity metric is not based on sampled information as the attribute value (or finger-
print), but rather reflect the overall system characteristics. We are afraid that using sam-
pled information may lose some important information. A collection of all source code
files used to build a system contains all the essential information of the system. Thus,
we analyze and compare overall source code files of the system. This approach requires
more computation power and memory space than using sampled information, but the
current computing hardware environment allows this overall source code comparison
approach.

In this paper, a similarity metric called Sline, is used, which is defined as the ratio
of shared source code lines to the total source code lines of two software systems being
evaluated.

Sline requires computing matches between source code lines in the two systems,
beyond the boundaries of files and directories. A naive approach for this would be to
compare all source file pairs in both systems, with a file matching program such as
diff[13], but the comparison of all file pairs does not scale so that it would be impractical
to apply to large systems with thousands of files.

Instead, an approach is proposed that improves efficiency and precision. First, a fast,
code clone (duplicated code portion) detection algorithm is applied to all files in the two
systems and then diff is applied to the file pairs where code clones are found.

Using this concept, a similarity metric evaluation tool called SMAT(Software sim-
ilarity MeAsurement Tool) was developed and applied to various software system tar-
gets. We have evaluated the similarity between various versions of BSD UNIX, and
have performed cluster analysis of the similarity values to create a dendrogram that
correctly shows evolution history of BSD UNIX.

Section 2 presents a formal definition of similarity and its metric Sline. Section 3
describes a practical method for computing Sline and shows the implementation tool
SMAT. Section 4 shows applications of SMAT to versions of BSD UNIX. Results of our
work and comparison with related research are given in Section 5. Concluding remarks
are given in Section 6.



Software system P Software system Q
Correspondence Rs

p1

p2

p3

pm

q1
q2

qn

Fig. 1. Correspondence of elements Rs

2 Similarity of Software Systems

2.1 Definitions

First we will give a general definition of software system similarity and then a concrete
similarity metric.

A software system P is composed of elements p1, p2, · · · , pm, and P is represented
as a set {p1, p2, · · · , pm}. In the same way, another software system Q is denoted by
{q1, q2, · · · , qn}. We will choose the type of elements, such as files and lines, based on
the definitions of the similarity metrics described later.

Suppose that we are able to determine matching between pi and qj (1 ≤ i ≤ m, 1 ≤
j ≤ n), and we call Correspondence Rs the set of matched pair (pi, qj), where Rs ⊆
P ×Q(See Figure 1). Similarity S of P and Q with respect to Rs is defined as follows.

S(P,Q) ≡ |{pi|(pi, qj) ∈ Rs}|+ |{qj |(pi, qj) ∈ Rs}|
|P |+ |Q|

This definition means that the similarity is the ratio of the total number of p’s and
q’s elements composing Rs to the total number of elements of P and Q. The numerator
is the total number of pi and qi possibly related to Rs, and the denominator is the total
number of pi and qi. If Rs becomes smaller, S will decrease, and if Rs = φ then
S = 0. Moreover, when P and Q are exactly the same systems, ∀i(pi, qi) ∈ Rs and
then S = 1.

2.2 Similarity Metrics

The above definition of the similarity leaves room for implementing different concrete
similarity metrics by choosing the element types or correspondences. Here, we show a
concrete operational similarity metric Sline using equivalent line matching.

Each element of a software system is a single line of each source file composing the
system. For example, if a software system X consists of source code files x1, x2, · · ·
and each source code file xi is made up of lines xi1, xi2, · · ·. Pair (xij , ymn) of two
lines xij and ymn between system X and system Y is in correspondence when xij and



ymn match as equivalent lines. The equivalency is determined by the duplicated code
detection method and file comparison method that will be discussed in detail later in
this paper. Two lines with minor distinction such as space/comment modification and
identifier rename are recognized as equivalent.

Sline is not affected by file renaming or path changes. Modification of a small part in
a large file does not give great impact to the resulting value. On the other hand, finding
equivalent lines generally would be a time consuming process. A practical approach for
this is given in Section 3.

It is possible to consider other definitions of similarity and its metrics. A comparison
to other such approaches is presented in Section 5.

3 Measuring Sline

3.1 Approach

A key problem of Sline is computation of the correspondence. A straightforward ap-
proach we might consider is that first we construct appended files x1; x2; · · · and y1; y2; · · ·
which are concatenation of all source files x1, x2, · · · and y1, y2, · · · for systems X
and Y , respectively. Then we extract the longest common subsequence (LCS) between
x1;x2; · · · and y1; y2; · · · by some tool, say diff [13], which implements an LCS-finding
algorithm[14–16]. The extracted LCS is used as the correspondence.

However, this method is fragile due to the change of file concatenation order caused
by internal reshuffling of files, since diff cannot follow line block movement to dif-
ferent positions in the files. For example, for two systems X = a; b; c; d; e and Y =
d; e; a; b; c, the LCS found by diff is a; b; c. In this case, a subsequence d; e cannot be
detected as a common sequence.

Another approach is that we try to greedily apply diff to all combination of files
between two systems. This approach might work, but the scalability would be an issue.
The performance applied to huge systems with thousands of files would be doubtful.

Here, an approach is proposed that effectively uses both diff and a clone detection
tool named CCFinder[17].

CCFinder is a tool used to detect duplicated code blocks (called clones) in source
code written in C, C++, Java, and COBOL. It effectively performs lexical analysis,
transformation of tokens, computing duplicated token sequences by a suffix tree algo-
rithm[18], and then reports the results. The clone detection is made along with normal-
ization and parameterization, that is, the location of white spaces and lines breaks are
ignored, comments are removed, and the distinction of identifier names is disregarded.
By the normalization and parameterization, code blocks with minor modification are
effectively detected as clones.

Applying CCFinder to two sets of files {x1, x2, · · ·} and {y1, y2, · · ·} finds all possi-
ble clone pairs (bx, by), where bx is a code block in x1, or x2, · · ·. and by is that of y1, or
y2, · · ·, and bx and by are identical without considering difference of line breaks, white
spaces, comments, user-defined identifiers, constant values, and so on. This process is
performed by simply specifying two sets of file names or directory names containing
{x1, x2, · · ·} and {y1, y2, · · ·}. CCFinder reports all clone pairs among the files. Those
clone pairs found are members of the correspondence.



File A’

File A’’

File B

File C

File A

File B

Software system X Software system Y

Fig. 2. How to find a correspondence

Code clones are only non-gapped ones. Closely similar code blocks with a gap
block(unmatching to them) such as l1l2 and l1lxl2 are not detected as a larger clone
l1 ∗ l2 but identified as two smaller clones l1 and l2. When the lengths of l1 and l2 are
less than threshold of CCFinder(usually 20 tokens4), then CCFinder reports no clones at
all. To reclaim such small similar blocks and similar directives undetected by CCFinder,
diff is applied to all pairs of the two files xi and yj , where CCFinder detects a clone
pair (bx, by) and bx is in xi and by is in yj , respectively. The result of diff is the longest
common subsequences, which also are considered members of the correspondence. The
combined results of CCFinder and diff is to increase Sline by about 10%, compared to
using only CCFinder.

3.2 Example of Measurement

A simple example of computing Sline with CCFinder and diff is given here. Consider
a software system X and its extended system Y as shown in Figure 2. X is composed
of two source code files A and B, while Y is composed of four files A′, A′′, B, and C.
Here, A′ and A′′ are evolved versions of A, and C is a newly created file.

At first, CCFinder is applied to detect clones between two file sets {A,B} and
{A′, A′′, B, C}. This finds clones between A and A′, A and A′′, and B and B. Assume
that no clones are detected between other combination of files. Each line in the clones
found across files is put into the correspondence.

Next, diff is applied to the file pairs A and A′, A and A′′, and B and B. Then, the
lines in the resulting common subsequences by diff are added to the correspondence

4 The threshold 20 used here is determined by our experiences of CCFinder[17]. Based on the
analyses of our experiences, a practical threshold is 20 to 30. If we set a further lower number,
say 5, a lot of accidentally similar substrings (e.g., a=b+c is a clone of x=y+z ) are detected as
clones, and the precision of the resulting similarity value is degraded.



Execution of
CCFinder

Execution of
diff

Construction of
Correspondence

X

Y

Step2 Step3

Step4

Step1

Calculatng
Sline

Step5

Sline

Preprocessing

Fig. 3. Similarity measuring process

obtained by the clone detection. The correspondence finally we obtain includes all the
clones found by CCFinder and all the common subsequences found by diff.

This approach has benefits in both computation complexity and precision of the
results. We do not need to perform diff on all the file pair combinations. Also, we can
chase movement of lines inside or outside the files, which cannot be detected by diff
alone.

3.3 SMAT

Based on this approach, we have developed a similarity evaluation tool SMAT which
effectively computes Sline for two systems. The following is the detailed process of the
system. An overview is illustrated in Figure 3.
INPUTS: File paths of two systems X and Y , each of which represents the subdirectory
containing all source code.
OUTPUTS: Sline of X and Y (0 ≤ Sline ≤ 1).

Step 1 Preprocessing:
All comments, white spaces, and empty lines are removed, which do not affect the
execution of the programs. This step helps to improve the precision of the following
steps, especially Step 3.

Step 2 Execution of CCFinder:
We execute CCFinder between two file sets X and Y . CCFinder has an option for
the minimum number of tokens of clones to be detected, and whose default is set
to 20.

Step 3 Execution of diff:
Execute diff on any file pair xi and yj in X and Y respectively, where at least one
clone is detected between xi and yj .



Step 4 Construction of Correspondence:
The lines appearing in the clones detected by Step 2 and in the common subse-
quences found in Step 3 are merged to determine the correspondence between X
and Y .

Step 5 Calculating Sline:
Sline is calculated using its definition; i.e., the ratio of lines in the correspondence to
those in whole systems. Note that the number of lines after Step 1 is used hereafter,
where all comments and white spaces are removed.

SMAT works for the source code files written in C, C++, Java, and COBOL.
For given two systems, each of which has m files of n lines, the worst case time

complexity is as follows: CCFinder requires O(mn log(mn))[17]. diff requires
O(n2 log n)[13] for a single file pair and we have to perform O(m2) execution of diff
for all file pairs. So in total, O(m2n2 log n) is the worst case time complexity.

However, in practice, the execution of diff is not performed for all file pairs. In many
cases, code clones are not detected between all file pairs, but only a few file pairs.

Practically, the execution performance of SMAT is fairly efficient, since it grows
super-linearly. For example, it took 329 seconds to compute Sline of about 500K line C
source code files in total on a Pentium III 1GHz CPU system with 2G Bytes memory,
and 980 seconds for 1M line files. On the other hand, in the case of using only diff for
all file pairs, it took about 6 hours to compute Sline for 500K line files.

4 Applications of SMAT

4.1 BSD UNIX Evolution

Target systems To explore the applicability of Sline and SMAT, we have used many
versions of open-source BSD UNIX operating systems, namely 4.4-BSD Lite, 4.4-BSD
Lite2[19], FreeBSD5, NetBSD6, OpenBSD7. The evolution histories of these versions
are shown in Figure 48. As shown in this figure, 4.4-BSD Lite is the origination of
the other versions. New versions of FreeBSD, NetBSD, and OpenBSD are currently
being developed in open source development style. 23 major-release versions, as listed
in Figure 4, were chosen for computing Sline of all pair combinations. The evaluation
was performed only on source code files related to the OS kernels written in C(i.e., *.c
or *.h files).

Results Table 1 shows the number of files and total source code lines of each ver-
sion after the preprocessing of Step 1. Table 2 shows part of the resulting values Sline

for pairs of each version. Note that Table 2 is symmetric, and the values on the main
diagonal line are always 1 by the nature of our similarity.

5 http://www.freebsd.org/
6 http://www.netbsd.org/
7 http://www.openbsd.org/
8 http://www.tribug.org/img/bsd-family-tree.gif



4.4BSD Lite(1994/03)

FreeBSD 2.0(1994/11)

FreeBSD 2.0.5(1995/06)

FreeBSD 2.1(1995/11)

FreeBSD 2.2(1997/03)

FreeBSD 3.0(1998/10)

FreeBSD 4.0(2000/03)

NetBSD 1.0(1994/10)

NetBSD 1.3(1998/01)

NetBSD 1.4(1999/05)

NetBSD 1.5(2000/12)

NetBSD 1.1(1995/11)

4.4BSD Lite2(1995/06)

OpenBSD 2.3(1998/05)

OpenBSD 2.4(1998/12)

OpenBSD 2.5(1999/05)
OpenBSD 2.6(1999/12)

OpenBSD 2.7(2000/06)
OpenBSD 2.8(2000/12)

OpenBSD 2.2(1997/12)

OpenBSD 2.0(1996/10)

OpenBSD 2.1(1997/06)

NetBSD 1.2(1996/10)

Fig. 4. BSD UNIX evolutional history

Table 1. The number of files and LOC of BSD UNIX

FreeBSD
Version 2.0 2.0.5 2.1 2.2 3.0 4.0

No. of files 891 1018 1062 1196 2142 2569
LOC 228868 275016 297208 369256 636005 878590

NetBSD
Version 1.0 1.1 1.2 1.3 1.4 1.5

No. of files 2317 3091 4082 5386 7002 7394
LOC 453026 605790 822312 1029147 1378274 1518371

OpenBSD
Version 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

No. of files 4200 4987 5245 5314 5507 5815 6074 6298 6414
LOC 898942 1007525 1066355 1079163 1129371 1232858 1329293 1438496 1478035

4.4BSD
Version Lite Lite2

No. of files 1676 1931
LOC 317594 411373



Table 2. Part of Sline values between BSD UNIX kernel files

F 2.0 F 2.0.5 F 2.1 F 2.2 F 3.0 F 4.0 Lite Lite2 N 1.0 N 1.1 N 1.2 N 1.3

FreeBSD 2.0 1.000
FreeBSD 2.0.5 0.833 1.000
FreeBSD 2.1 0.794 0.943 1.000
FreeBSD 2.2 0.550 0.665 0.706 1.000
FreeBSD 3.0 0.315 0.392 0.421 0.603 1.000
FreeBSD 4.0 0.212 0.264 0.286 0.405 0.639 1.000
4.4BSD-Lite 0.419 0.377 0.362 0.226 0.138 0.101 1.000
4.4BSD-Lite2 0.290 0.266 0.258 0.179 0.133 0.100 0.651 1.000
NetBSD 1.0 0.440 0.429 0.411 0.291 0.220 0.140 0.540 0.450 1.000
NetBSD 1.1 0.334 0.348 0.336 0.254 0.193 0.152 0.421 0.431 0.691 1.000
NetBSD 1.2 0.255 0.269 0.265 0.225 0.190 0.158 0.331 0.436 0.553 0.783 1.000
NetBSD 1.3 0.205 0.227 0.225 0.201 0.208 0.179 0.259 0.366 0.445 0.622 0.769 1.000

F 2.0 means FreeBSD 2.0, Lite means 4.4BSD-Lite, N 1.0 means NetBSD 1.0.

As a general tendency, Sline values between a version and its immediate ances-
tor/descendant version are higher than the values for non-immediate ancestor/descendant
versions. Figure 5 shows Sline evolution between FreeBSD 2.2 and other FreeBSD ver-
sions. The values monotonically decline with increasing version distance. This indicates
that the similarity metric Sline properly captures ordinary characteristics of software
systems evolution.

Figure 6 shows Sline between each version of FreeBSD and some of NetBSD. These
two version streams have the same origin, 4.4-BSD Lite, and it is naturally assumed
that older versions between the two streams have higher Sline values, since younger
versions have a lot of independently added codes. This assumption is true for FreeBSD
2.0 through 2.2. However, for FreeBSD 3.0 and 4.0, the youngest version NetBSD 1.3
has higher values than other NetBSD versions (Figure 6 A and B). This is because both
FreeBSD 3.0 and NetBSD 1.3 imported a lot of code base from 4.4-BSD Lite2 as shown
Figure 4. SMAT clearly spotted such an irregular nature of the evolution.

Cluster Analysis Classifications were made of OS versions using a cluster analysis
technique[20] with respect to Sline values shown above. For the cluster analysis, we
need to define the distance of two OS versions. We defined it by 1− Sline. A cluster is
a non-empty collection of OS versions, and the distance of two clusters are the average
of the pairwise distances of the numbers of each cluster. To construct a dendrogram, we
start with clusters having exactly one version, and merge the nearest two clusters into
one cluster. The merging process is repeated until we get only one cluster. The den-
drogram from this cluster analysis is shown in Figure 7. The horizontal axis represents
the distance. OS versions categorized on the left-hand side are closer ones with high
similarity values to each other.

This dendrogram reflects very well the evolution history of BSD UNIX versions
depicted previously by Figure 4. Further, as shown in Figure 7, all FreeBSD versions
are contained in Cluster I and all OpenBSD are in Cluster II. FreeBSD and OpenBSD



��� �����

�

��� �	�

��� 
	���

��� �����

��� �����

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

���������������� � ������������
��� ��� �

������������ ��� !"��#������������� �$������������ %�� �$��#��������� &�� �

Fig. 5. Sline of FreeBSD 2.2 and other versions

�

�������

�����

���	�
�

�����

������

�����

�������

��� �

��� ���

�����

������������
�����

������������
���������

�������������
���	�

������������
�����

������������
�����

������������
�����

����� ����� �����
����� ����� �����
����� ����� �����
����� ����� �����

����
����

Fig. 6. Sline between FreeBSD and NetBSD



  FreeBSD 2.0
FreeBSD 2.0.5
  FreeBSD 2.1
  FreeBSD 2.2
  FreeBSD 3.0
  FreeBSD 4.0
  4.4BSD Lite
 4.4BSD Lite2
   NetBSD 1.0
   NetBSD 1.1
   NetBSD 1.2
  OpenBSD 2.0
  OpenBSD 2.1
  OpenBSD 2.2
  OpenBSD 2.3
  OpenBSD 2.4
  OpenBSD 2.5
  OpenBSD 2.6
  OpenBSD 2.7
  OpenBSD 2.8
   NetBSD 1.3
   NetBSD 1.4
   NetBSD 1.5

0.5 01

I

II

III

IV

Fig. 7. Dendrogram of BSD UNIX

are distinct genealogical systems that diverged at a very early stage of their evolution,
as shown in Figure 4. The dendrogram using Sline objectively discloses it.

Also, we can see the classification of NetBSD and OpenBSD. All versions of OpenBSD
except for 2.0 are in the same cluster III, and this cluster is combined with NetBSD 1.1
in cluster IV together with OpenBSD 2.0. This suggests that all OpenBSD versions
were derived from NetBSD 1.1. This is confirmed by their evolution history.

5 Discussion and Related Work

As presented in previous sections, our similarity definition, similarity metric Sline, and
the similarity measurement tool SMAT worked fine to various software systems.

5.1 Metric Sline

The correspondence which determines Sline is a many-to-many matching between
source lines located within files and directories. The reasons of the many-to-many
matching is that we would like to trace the movement of any source code block within
files and directories as much as possible, and obtain the ratio of succeeded and revised
codes to overall codes.

It is possible to use one-to-one matching in the correspondence, but it characterizes
the similarity metric too naively to duplicated source code. Assume that a system X is
composed of a file x1, and a new system X ′ is composed of two files x′1 and x′2 where
both x′1 and x′2 are the same copies of x1. In our definition using the many-to-many
matching, the similarity is 1.0, but using the one-to-one matching gives 0.67, since
x1 matches x′1 (or x′2) by the one-to-one matching so that the similarity is (|{x1}| +
|{x′1}|)/(|{x1}| + |{x′1, x′2}|) = 2/3 ∼= 0.67. Therefore, we think that the one-to-one
matching does not reflect development efforts properly.



Another reason for using many-to-many matching is performance. The one-to-one
approach needs some mechanism to choose the best matching pair from many possibil-
ities, which generally is not a simple, straightforward process.

Actually, metric Sline showed very high correlation with release durations of FreeBSD.
The release durations are calculated from the difference of OS release dates presented
in Figure 4. The Pearson’s correlation coefficient between Sline values and release du-
rations of FreeBSD versions is -0.973. On the other hand, the increases of the size or
the release durations are not highly correlated. The Pearson’s correlation coefficient be-
tween the size increases(Table 1) and the release durations is 0.528. Therefore, we think
that Sline is a reasonable measures of release durations in this case.

5.2 SMAT

SMAT worked very efficiently for large software systems. To compute Sline, execu-
tion of diff for all possible file pairs would have been a simple approach. However,
the execution speed would have become unacceptably slow as mentioned in 3.3. Com-
bining CCFinder and diff boosted the performance of SMAT. Also, as mentioned be-
fore, the movement and modification of source code lines can be traced better by
CCFinder, which effectively detects clones with different white spaces, comments,
identifier names, and so on. The matching computation using only diff cannot chase
those changes.

There are a lot of researches on clone detection and many tools have been developed[21–
27].We could have used those tools instead of CCFinder.

5.3 Related Work

There has been a lot of work on finding plagiarism in programs. Ottenstein used Hal-
stead metric valuations[28] of target program files for comparison[29]. There are other
approaches which use a set of metric values to characterize source programs[30–32].
Also, structural information has been employed to increase precision of comparison[33,
34]. In order to improve both precision and efficiency, abstracted text sequences (token
sequences) can be employed for comparison[8–10, 35]. Source code texts are translated
into token sequences representing programs structures, and the longest common subse-
quence algorithm is applied to obtain matching.

These systems are aimed mainly at finding similar software code in the education
environment. The similarity metric values computed by comparison of metrics values
do not show the ratio of similar codes to non-similar codes. Also, scalability of those
evaluation methods to large software system such as BSD UNIX is not known.

In reverse engineering field, there has been research on measuring similarity of com-
ponents and restructuring modules in a software system, to improve its maintainability
and understandability[36–38]. Such similarity measures are based on several metric val-
ues such as shared identifier names and function invocation relations. Although these
approaches involve important views of similarity, their objectives are to identify compo-
nents and modules inside a single system, and cannot be applied directly to inter-system
similarity measurement.



There are many literatures for detection of code clones and patterns[17, 21–27].
Some of those proposed metrics for the clones; however they have not been extended to
the similarity of two large software systems.

A study on the similarity between documents is presented by Broder[11]. In this
approach, a set of fixed-length token sequences are extracted from documents. Then
two sets X and Y are obtained for each document to compute their intersection. The
similarity is defined as (|X| ∩ |Y |)/(|X| ∪ |Y |).

This approach is very suitable for efficiently computing the resemblance of a large
collection of documents such as world-wide web documents. However, choosing token
sequences greatly affects the resulting values. Tokens with minor modification would
not be detected. Therefore, this is probably an inappropriate approach for computing
subjective similarity metric for source code files.

Manber[12] developed a tool to identify similar files in large systems. This tool
uses a set of keywords and extracts subsequences starting with those keywords as fin-
gerprints. A fingerprint set X of a target file is encoded and compared to a fingerprint
set Y of a query file. The similarity is defined as |X ∩ Y |/|X|.

This approach works very efficiently for both source program files and document
files and would fit exploration of similar files in a large system. However, it is fragile
to the selection of keywords. Also, it would be too sensitive to minor modifications of
source program files such as identifier changes and comment insertions.

Broder and Manber methods are all quite different from those developed and pre-
sented herein, since they do not perform comparison on raw and overall text sequences,
but rather on sampled text sequences. Sampling approaches would get high perfor-
mance, but the resulting similarity values would be less significant than our whole text
comparison approach.

6 Conclusion

A proposed definition of similarity between two software systems with respect to cor-
respondence of source code lines was formulated as a similarity metric called Sline.
An Sline-based evaluation tool SMAT was developed and applied to various software
systems. The results showed that Sline and SMAT are very useful for identifying the
origin of the systems and to characterize their evolution.

Further applications of SMAT to various software systems and product lines will be
made to investigate their evolution. From a macro level analysis viewpoint, categoriza-
tion and taxonomy of software systems analogous to molecular phylogeny should be
an intriguing issue to pursue. From a micro level analysis view point, chasing specific
code blocks through system evolution will be interesting to perform.

References

1. Antoniol, G., Villano, U., Merlo, E., Penta, M.D.: Analyzing cloning evolution in the linux
kernel. Information and Software Technology 44 (2002) 755–765

2. Basili, V.R., Briand, L.C., Condon, S.E., Kim, Y.M., Melo, W.L., Valett, J.D.: Understanding
and predicting the process of software maintenance release. In: 18th International Confer-
ence on Software Engineering, Berlin (1996) 464–474



3. Cook, S., Ji, H., Harrison, R.: Dynamic and static views of software evolution. In: the IEEE
International Conference On Software Maintenance (ICSM 2001), Florence, Italy (2001)
592–601

4. Kemerer, C.F., Slaughter, S.: An empirical approach to studying software evolution. IEEE
Transactions on Software Engineering 25 (1999) 493–509

5. The First Software Product Line Conference (SPLC1): The First Software Product Line Con-
ference (SPLC1), http://www.sei.cmu.edu/plp/conf/SPLC.html (2000) Denver, Colorado
(2000)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison Wesley
(2001)

7. Baxevanis, A., Ouellette, F., eds. In: Bioinformatics 2nd edition. John Wiley and Sons, Ltd.,
England (2001) 323–358

8. Schleimer, S., Wilkerson, D., Aiken, A.: Winnowing: Local algorithms for document finger-
printing. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data. (2003) 76–85

9. Prechelt, L., Malpohl, G., Philippsen, M.: Jplag: Finding plagiarisms among a set of pro-
grams. Technical Report 2000-1, Fakultat fur Informatik, Universitat Karlsruhe, Germany
(2000)

10. Wise, M.J.: YAP3: Improved detection of similarities in computer program and other texts.
SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education)
28 (1996)

11. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings of Com-
pression and Complexity of Sequences. (1998) 21–29

12. Manber, U.: Finding similar files in a large file system. In: Proceedings of the USENIX
Winter 1994 Technical Conference, San Fransisco, CA, USA (1994) 1–10

13. Hunt, J.W., McIlroy, M.D.: An algorithm for differential file comparison. Technical Re-
port 41, Computing Science, Bell Laboratories, Murray Hill, New Jersey (1976)

14. Miller, W., Myers, E.W.: A file comparison program. Software- Practice and Experience 15
(1985) 1025–1040

15. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1 (1986)
251–256

16. Ukkonen, E.: Algorithms for approximate string matching. INFCTRL: Information and
Computation (formerly Information and Control) 64 (1985) 100–118

17. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A multilinguistic token-based code clone
detection system for large scale source code. IEEE Transactions on Software Engineering
28 (2002) 654–670

18. Gusfield, D.: Algorithms on strings, trees, and sequences. Computer Science and Computa-
tional Biology. Cambridge University Press (1997)

19. McKusick, M., Bostic, K., karels, M., Quarterman, J.: The Design and Implementation of
the 4.4BSD UNIX Operating System. Addison-Wesley (1996)

20. Everitt, B.S.: Cluster Analysis. Edward Arnold, 3rd edition, London (1993)
21. Baker, B.S.: On finding duplication and near-duplication in large software systems. In:

Second Working Conference on Reverse Engineering, Toronto, Canada (1995) 86–95
22. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using abstract

syntax trees. In: Proceedings of the International Conference on Software Maintenance,
Bethesda, Maryland (1998) 368–378

23. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detecting du-
plicated code. In: Proceedings of the International Conference on Software Maintenance,
Oxford, England, UK (1999) 109–119

24. Johnson, J.H.: Identifying redundancy in source code using fingerprints. In: Proceedings of
CASCON ’93, Toronto, Ontario (1993) 171–183



25. Johnson, J.H.: Substring matching for clone detection and change tracking. In: Proceedings
of the International Conference on Software Maintenance, Victoria, British Columbia (1994)
120–126

26. Kontogiannis, K.: Evaluation experiments on the detection of programming patterns using
software metrics. In: Proceedings of Fourth Working Conference on Reverse Engineering,
Amsterdam, Netherlands (1997) 44–54

27. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of function
clones in a software system using metrics. In: Proceedings of the International Conference
on Software Maintenance, Monterey, California (1996) 244–253

28. Halstead, M.H.: Elements of Software Science. Elsevier, New York (1977)
29. Ottenstein, K.J.: An algorithmic approach to the detection and prevention of plagiarism.

ACM SIGCSE Bulletin 8 (1976) 30–41
30. Berghel, H.L., Sallach, D.L.: Measurements of program similarity in identical task environ-

ments. ACM SIGPLAN Notices 19 (1984) 65–76
31. Donaldson, J.L., Lancaster, A.M., Sposato, P.H.: A plagiarism detection system. ACM

SIGCSE Bulletin(Proc. of 12th SIGSCE Technical Symp.) 13 (1981) 21–25
32. Grier, S.: A tool that detects plagiarism in pascal programs. ACM SIGCSE Bulletin(Proc.

of 12th SIGSCE Technical Symp.) 13 (1981) 15–20
33. Jankowitz, H.T.: Detecting plagiarism in student Pascal programs. The Computer Journal

31 (1988) 1–8
34. Verco, K.L., Wise, M.J.: Software for detecting suspected plagiarism: Comparing structure

and attribute-counting systems. In Rosenberg, J., ed.: Proc. of 1st Ausutralian Conference
on Computer Science Education, Sydney, Australia (1996) 86–95

35. Whale, G.: Identification of program similarity in large populations. The Computer Journal
33 (1990) 140–146

36. Choi, S.C., Scacchi, W.: Extracting and restructuring the design of large systems. IEEE
Software 7 (1990) 66–71

37. Schwanke, R.W.: An intelligent for re-engineering software modularity. In: Proceedings of
theThirteenthInternational Conference on Software Engineering, Austin, Texas, USA (1991)
83–92

38. Schwanke, R.W., Platoff, M.A.: Cross references are features. In: Proceedings of the 2nd
International Workshop on Software Configuration Management. (1989) 86–95


