
JAAT: Java Alias Analysis Tool
for Program Maintenance Activities

Fumiaki Ohata
Toshiba

Software Engineering Center
Kawasaki, Japan

fumiaki.oohata@toshiba.co.jp

Katsuro Inoue
Osaka University

Department of Computer Science
Osaka, Japan

inoue@ist.osaka-u.ac.jp

Abstract

Alias analysis is a method for extracting sets of ex-
pressions which may possibly refer to the same memory
locations during program execution. Although many re-
searchers have already proposed analysis methods for the
purpose of program optimization, difficulties still remain
in applying such methods to practical software engineering
tools in the sense of precision, extensibility and scalability.

Focusing mainly on a practical use for program main-
tenance activities such as program debugging and under-
standing, we propose an alias analysis method for object-
oriented programs and discuss our implementation. Using
this method, we have developed a tool named JAAT.

Our proposed method employs a two-phase, on-demand,
and instance-based algorithm, in which intra-class analy-
sis is done in Phase 1 for whole programs and libraries,
and inter-class analysis is done in Phase 2 only for a user-
demanded target. JAAT can analyze large programs or li-
braries such as JDK class library. Also, JAAT includes var-
ious features for program maintenance activities, such as
GUI for displaying aliases, and an XML database for stor-
ing analysis information.

1 Introduction

An alias relation between two expressions, e0 and e1,
in a source program is a relation such that e0 and e1 may
possibly refer to the same memory location during program
execution. Alias relations are generated by various situa-
tions such as parameter passing, reference variables, and
indirect reference with pointer variables. We say that e0 is
an alias of e1 (and vice versa) when there is an alias relation
between e0 and e1. Also, we call the set of expressions in
which each element pair satisfies an alias relation, an alias
set. Alias analysis is a method for extracting alias sets by
static analysis. Alias analysis can be used for various pur-
poses such as compiler optimization and program slicing.

Alias analysis was first proposed for traditional proce-

dural languages such as C as part of the static analysis of
pointer variables [7, 11, 19]. Concepts such as class, inher-
itance, dynamic binding, and polymorphism have been in-
troduced into object-oriented (OO) languages such as C++
and JAVA, and various alias analysis methods for OO pro-
grams have been devised [5, 22]. These researches focus
mainly on analysis algorithms as compiler optimization, but
practicability and scalability of those algorithms as software
engineering tools have not been explored.

We are interested in developing a practical software engi-
neering tool for the alias analysis targeting JAVA; however,
simply using already proposed approaches remains difficul-
ties in scalability and usage as addressed by Hind et. al.
[10]. To resolve these difficulties, we have newly devised
an on-demand, incremental analysis approach for JAVA pro-
grams, which can be used effectively in an interactive envi-
ronment.

In this paper, “alias analysis” means to extract a single
set of expressions which are in alias relation to the user-
specified expression, although a traditional meaning would
be to extract all alias sets in a source program.

The alias analysis method proposed here is characterized
by a two-phase and on-demand algorithm, flow-sensitive
instance-based algorithm, and extensible algorithm.

We have implemented the proposed algorithm in a tool
named JAAT. The analysis time of 58,300 lines of JAVA pro-
grams with 364,721 lines of the JDK library was 30 sec. in
Phase 1, and less than 1 milli-sec. in Phase 2. This re-
sult shows that the user can immediately get the resulting
aliases on-demand for the user-specified analysis target af-
ter the preparation of Phase 1. Also, the result was fairly
focused in the sense that for our sample programs, about 5 -
120 aliases were found due to the instance-based approach,
which are 30 – 97% smaller than the class-based approach.
JAAT does not provide whole alias relations as the compiler
optimization algorithm requires, but it produces the focused
or scoped results useful for the program maintainers.

An additional feature of JAAT is that it can save inter-
nal syntactic and semantic information as an external XML
database, and restore the information, in order to improve
reusability of analysis results. Also, JAAT provides a useful

1



GUI for the program maintainers.
In Section 2, we give a brief overview of alias analysis

for OO programs. In Section 3 and Section 4, we propose
an alias analysis method for OO programs. In Section 5, we
introduce an implementation of the proposed method and
evaluate its effectiveness using several sample programs. In
Section 6, we discuss the evaluation results with respect to
related works. In Section 7, we conclude our discussion.

2 Preliminary

2.1 Example of Aliases

Alias analysis is useful for program debugging and pro-
gram understanding. To show this, we present an example.

Fig.1(a) shows a sample JAVA program and Fig.1(b)
shows its execution outputs. This program computes the
salaries of employee Emp and manager Mng. The salary
of the manager should be higher than that of the employee.
However, the program execution output is incorrect since a
salary addition was made to Emp, not to Mng. When the
user recognizes such a fault, he/she computes the aliases
for reference variable Emp at line 32. In this paper, we call
such a target expression of the alias analysis the alias cri-
terion (or simply criterion), and it is specified by a tuple
<s, e>, where s is a statement in the source program and
e is an expression at s. In the figure, shadowed expressions
represent the resulting aliases for <s32, Emp>. Emp at line
32 is the alias criterion and is also an alias itself. There-
fore, it is boxed and shadowed. We can easily see around
those shadowed expressions, and can identify a fault at the
salary addition statement at line 24. By modifying the state-
ment e.add salary(200) to add salary(200) at
line 24, the program will compute an expected result as
shown in Fig.1(c).

2.2 Alias Analysis

Alias analysis methods are roughly divided into two cat-
egories: flow insensitive alias analysis (FI analysis) and
flow sensitive alias analysis (FS analysis).

In FI analysis, we do not take into account the ex-
ecution order of each statement in the source program
[14, 19, 21, 25]. To compute FI aliases, an alias graph,
as shown in Fig.2(b), is used. An alias graph is an undi-
rected graph, in which each node represents an expression
that refers to a particular memory location. Each edge rep-
resents a possible alias relation between two nodes, which
occurs on both sides of an assignment statement and on the
actual and formal parameters.

In Fig.2(a), when we specify <s7, c> as the alias cri-
terion, we get aliases {a, b, new Integer(1), new
Integer(2)}, which are all reachable nodes from the cri-
terion node in the alias graph.

In FS analysis, we consider the execution order of state-
ments [7, 12, 23]. To compute FS aliases, Landi et al. have
introduced a reaching alias set (RAset) [12]. A RAset for

statement s, denoted by RA(s), is a collection of alias sets,
which exists just before the execution of s. Each alias set
is composed of sets of tuples (t, f ) (t is a statement in
the source program and f is an expression at t), meaning
that each f at t in the set possibly refers to the same mem-
ory location. Fig.3(b) shows RAsets for each statement in
Fig.3(a). In order to compute the aliases for <s, e>, we
search RA(s) for an alias set that contains e. At RA(s7)
in Fig.3(b), since an alias set {(s6, c), (s2, a), (s6, a), (s2,
new Integer(1))} contains variable c, we get the re-
sult as shown in Fig.3(a).

Since FS analysis considers the execution order, it gen-
erally requires a larger amount of CPU time and memory
space than FI analysis; however, FS analysis can extract
more accurate alias relations than FI analysis. In Fig.2 and
Fig.3, we can see the difference in the accuracy between the
two methods. In this paper, we focus on FS analysis for
more accurate analysis results.

2.3 Alias Analysis for Object-Oriented
Programs

Alias analysis methods for OO programs have been pro-
posed as an extension of analysis methods for procedural
programs [5, 22]; however, we have to further consider the
nature of OO programs.

In OO programs such as JAVA, each object has its own
state and behavior even if they are instantiated from the
same class. In sample JAVA program shown at Fig.4, we
prefer to have three independent alias sets:

• {(s1, new Integer(1)), (s5, x.get()), (s9, id),
(s10, ref), (s11, ref), (s11, id), (s15, id)}

• {(s2, new Integer(2)), (s6, y.get()), (s9, id),
(s10, ref), (s11, ref), (s11, id), (s15, id)}

• {(s4, new Integer(3)), (s7, z.get()), (s9, id),
(s12, ref), (s13, ref), (s13, id), (s15, id)}

However, if we apply a simple analysis approach such
that all objects instantiated from the same class share
the alias information of their attributes and their calling-
contexts, we get only one alias set which is the union
of these 3 alias sets: {(s1, new Integer(1)), (s5,
x.get()), (s2, new Integer(2)), (s6, y.get()),
(s3, null), (s4, new Integer(3)), (s7, z.get()),
(s9, id), (s10, ref), (s11, ref), (s11, id), (s12, ref),
(s13, ref), (s13, id), (s15, id)}

In this case, many expressions are unwillingly in the
same alias set. In order to increase the analysis precision,
we will separately hold the alias information for each at-
tribute of each object instance, although this approach gen-
erally requires more analysis cost. However, we will devise
an efficient approach to resolve this.



1: class Employee {
2: String name; int salary; Employee supervisor;
3: Employee(String n, int s) {
4: name = n;
5: salary = s;
6: supervisor = null;
7: }
8: void add salary(int n) {
9: salary += n;
10: }
11: void set supervisor(Employee e) {
12: supervisor = e;
13: }
14: void print() {
15: System.out.println(name + ” Salary:” + salary);
16: }
17: }

18: class Manager extends Employee {
19: Manager(String n, int s) {
20: super(n, s);
21: }
22: void manage(Employee e) {
23: e.set supervisor(this);
24: e.add salary(200);
25: }
26: }
27: class Office {
28: public static void main(String args[]) {
29: Employee Emp = new Employee(”Emp”, 750);
30: Manager Mng = new Manager(”Mng”, 750);
31: Mng.manage(Emp);
32: Emp.print();
33: Mng.print();
34: }
35: }

(a) Java source program

% java Office
Emp Salary: 950
Mng Salary: 750

(b) Program execution re-
sult with error

% java Office
Emp Salary: 750
Mng Salary: 950

(c) Program execution re-
sult without error

Figure 1. Simple debugging process of Java program with aliases

1: Integer a, b, c;
2: a = new Integer(1);
3: b = new Integer(2);
4: c = b;
5: System.out.println(c);
6: c = a;
7: System.out.println(c);

(a) FI aliases

a c b new Integer(2)new Integer(1)

(b) Alias graph

Figure 2. Example of FI alias analyses

1: Integer a, b, c;
2: a = new Integer(1);
3: b = new Integer(2);
4: c = b;
5: System.out.println(c);
6: c = a;
7: System.out.println(c);

(a) FS aliases

Statement(s) Reaching alias set(RA(s))
s1 φ

s2 φ

s3 {{(s2, a), (s2, new Integer(1))}}
s4 {{(s2, a), (s2, new Integer(1))}, {(s3, b), (s3, new Integer(2))}}
s5 {{(s2, a), (s2, new Integer(1))},

{(s4, c), (s3, b), (s4, b), (s3, new Integer(2))}}
s6 {{(s2, a), (s2, new Integer(1))},

{(s4, c), (s5, c), (s3, b), (s4, b), (s3, new Integer(2))}}
s7 {{(s6, c), (s2, a), (s6, a), (s2, new Integer(1))},

{(s3, b), (s4, b), (s3, new Integer(2))}}

(b) Reaching alias set (RAset)

Figure 3. Example of FS alias analyses



3 Analysis Overview

3.1 Approach

Here, we divide alias relations into two categories, intra-
class alias relations and inter-class alias relations. Intra-
class alias relations do not depend on their usage contexts.
Inter-class alias relations are obtained by analyzing expres-
sions with method invocations and reference variables over
classes. For example, in Fig.4, {(s9, id), (s10, ref), (s11,
ref), (s11, id)}, {(s9, id), (s12, ref), (s13, ref), (s13,
id)} and {(s9, id), (s15, id)} are intra-class alias rela-
tions, and {(s1, new Integer(1)), (s10, ref)}, {(s5,
x.get()), (s15, id)}, {(s2, new Integer(2)), (s10,
ref)}, {(s6, y.get()), (s15, id)}, {(s3, null), (s10,
ref)} and {(s4, new Integer(3)), (s12, ref)} are
inter-class alias relations.

1: Ident x = new Ident(new Integer(1));
2: Ident y = new Ident(new Integer(2));
3: Ident z = new Ident(null);
4: z.set(new Integer(3));
5: . . . = x.get();
6: . . . = y.get();
7: . . . = z.get();

8: class Ident {
9: private Integer id;
10: public Ident(Integer ref)
11: { id = ref; }
12: public void set(Integer ref)
13: { id = ref; }
14: public Integer get()
15: { return id; }
16: }

Figure 4. Example of aliases across in-
stances

Here, we will adopt the following analysis policies:

Policy 1: Compute intra-class alias relations in advance.

Policy 2: Compute inter-class alias relations on-demand.

Utilizing these two policies, the modularity and indepen-
dence of the analysis will be established. This is particu-
larly important in OO programming, since we usually use
large class libraries in addition to user-developed classes.
The analysis cost of these class libraries is generally high.
Thus, modularizing the analyses of class libraries and user-
developed classes is essential.

Note that mixing inter-class alias relations reduces pre-
cision. In the case of Fig.4, mixing all alias expressions will
unwillingly generate a large and useless alias set. In order
to resolve this problem, we use the following policy:

Policy 3: Compute inter-class alias relations based on
the individual invocations and references of instance

methods and attributes (we call this instance-based
analysis).

The instance-based analysis of OO programs can be con-
sidered to be an extension of the context-sensitive analysis
of procedural programs.

3.2 Object Context

To further improve the analysis precision of the instance-
based analysis, we introduce object context.

Consider an alias set A, which contains expressions re-
ferring to the object instances. Some instance methods of
these objects are invoked directly or indirectly from the ex-
pressions in A, and some are never invoked from the con-
text of A. We delete unnecessary alias expressions which
appear in the body of never-called instance methods.

The object context for alias set A, denoted by OC(A),
is a set of instance methods of instance objects pointed to
by expressions in A, and that may be invoked from some
expression associated with expressions in A. The object
context is formally obtained by the algorithm shown in [15].

Fig.5 shows an example of the object context. Assume
that A is the aliases for a at line 22 such that {(s20, a),
(s20, new Calc()), (s22, a)}. Now we know that A
is a Calc type, and possible instance method invocations
are new Calc() at line 20 and a.inc() at line 22.
Thus, Calc::Calc() and Calc::inc() are included
in OC(A). Since these two methods have no further invoca-
tions of other instance methods in a Calc class, we finally
know that OC(A) is {Calc::Calc(),Calc::inc()}.

Also, if we assume that A is an alias set for b at line
21, then OC(A) is {Calc::Calc(), Calc::add(),
Calc::result()}.

When we compute the aliases for e.i such that e is in A,
we can limit the candidate methods to be considered fur-
ther by using OC(A). In other words, we can exclude the
instance methods that can not be invoked in the objects re-
ferred to by expressions in A.

4 Analysis Process

Based on the above mentioned Policy 1 – 3 and the object
context, we propose the following two-phase approach.

Phase 1: Intra-class analysis for all source programs are
composed of the following two sub-phases:
(a) Construction of AFG (Alias Flow Graph) by ana-
lyzing inside each method.
(b) Construction of MFG (Method Flow Graph) by an-
alyzing methods in each class.

Phase 2: Inter-class analysis for a specified alias criterion,
i.e., computation of the aliases by traversing AFG and
MFG along with the object context.



1: public class Calc {
2: Integer i;
3: public Calc() {
4: i = new Integer(0);
5: }
6: public void inc() {
7: i = new Integer(i.intValue() + 1);
8: }
9: public void add(int c) {
10: i = new Integer(i.intValue() + c);
11: }
12: public Integer result() {
13: return(i);
14: }
15: }

16: class Test {
17: Calc a, b;
18: Integer c;
19: Test() {
20: a = new Calc();
21: b = new Calc();
22: a.inc();
23: b.add(1);
24: c = b.result();
25: }
26: }

Figure 5. Example program for object context
analysis

4.1 Phase 1: Construction of AFG and
MFG

4.1.1 Phase 1(a): Construction of AFG

An AFG (Alias Flow Graph) is an undirected graph which
shows FS alias relations inside a single method. A node
represents either
- an expression that refers to an object (e.g., a reference vari-
able, an instance creation expression, or a method invoca-
tion) or
- a parameter to/from a method or an instance.

An edge in AFG denotes an alias relation immediately
determined inside each method. Alias relations created by
assignment statements, variable definitions and their uses
(def-use relations), and assignments of parameters to/from
special nodes are called direct alias relations. Direct alias
relations are easily obtained by RAset-based FS may-alias
analysis inside methods [12]. Also, a path formed with
more than one edge is called an indirect alias relation.

Fig.6 shows a small JAVA program and its AFG. Nodes
in AFG are shown as circles with expressions inside, and
the edges are denoted with solid lines. Other strings out
of those nodes (e.g., Integer, =, Integer b, c;) are
comments used to identify the occurrences of expressions
and to help the reader imagine the original source text. In

1: Integer a = new Integer(0);
2: Integer b, c;
3: b = a;
4: c = b;

(a) Source program

c  =  b  ;

b  =  a  ;

Integer a = new Integer (0);

Integer b, c;

(b) AFG

Figure 6. Example of AFG
Fig.6(b), since (s1, new Integer(0)) is assigned to (s1,
a) in the source program, we can see that the node for (s1,
new Integer(0)) is connected to the node for (s1, a)
with an edge. This edge represents a direct alias relation.

Fig.7 is an AFG for the program shown in Fig.5. Vari-
able i appearing at each right-hand side expression (line
7 and 10) is a reference-type instance variable. IA-in, IA-
out, MA-in, and MA-out are the special nodes for parame-
ter passing. b.result() at line 24 is represented in AFG
with an associated node b and node result().

4.1.2 Phase 1(b): Construction of MFG

An MFG (Method Flow Graph) is a directed graph, which
represents the caller-callee relations of methods in a sin-
gle class1. An MFG node denotes the definition of each
method, and when method A possibly calls method B, an
MFG edge is drawn from the node for A to the node for B.

Fig.8 shows a sample program and its MFG. Method
p() is not defined in class B, and method A::p() is ex-
ecuted when p() is activated on B’s object. In this case,
method call to q() appearing in A::p() causes activation
public class Calc

Integer i;
public void inc()

i = new Integer(i.intValue() + 1);

IA-in[i]

IA-out[i]

i = new Integer(0);

public Calc() IA-in[i]

IA-out[i]

public void add(int c)

i = new Integer (i.intValue() + c);

IA-in[i]

IA-out[i]

public Integer result() IA-in[i]

return  (i);

MA-out

Calc b  ;
class Test

Test()

Calc a  ; Integer  c  ;

IA-out[c]IA-out[b]IA-out[a]

a = new Calc(); b = new Calc();

a.inc(); b.add(1);

c = b.result ();

IA-in[a] IA-in[c]IA-in[b]

IA-out[i]

Figure 7. AFG for Fig.5

1MFG corresponds to a caller-callee graph (call graph) in procedural
languages.



1: class A {
2: void p() { q(); }
3: void q() { r(); }
4: void r() { }
5: }

A::r()A::p() A::q()

(a) class A

6: class B extends A {
7: void q() { s(); }
8: void s() { }
9: }

B::q() B::s()A::p() A::r()

(b) Class B

Figure 8. Example of MFG
of B::q(), not A::q(). Thus, the resulting MFG for
class B is as shown in Fig.8(b).

4.2 Phase 2: Alias Computation Using
AFG and MFG

Using AFG and MFG, we compute aliases A(e) for an
alias criterion e, which is a reference-type expression. e
itself is also an element of A(e). The nodes in AFG are
visited beyond the class boundary using MFG information.

We will show an intuitive description of the traversal as
follows. The formal definition, termination, and complex-
ity of the traversal algorithm are presented in our technical
report [15].

1. When we compute the aliases for e with a parent p
(i.e., the expression is p.e), first we compute p’s aliases
A(p), and then we collect information about A(p),
such as types for A(p) and OC(A(p)).

After computing these, we compute e’s aliases.

2. When we reach an terminal node in AFG during
the AFG traversal, we determine the callee or caller
method using MFG and the object context, and resume
the traversal from the corresponding terminal nodes.

The result of the traversal is a set of reachable nodes from
the alias criterion. The masked expressions in Fig.9 are the
resulting aliases for (s24,c). Since OC(A(b)) does not con-
tain Calc::inc(), expressions in Calc::inc() are
excluded from the candidates for (s24, c)’s aliases.

Together with Phase 1, the overall analysis algorithm es-
tablishes a FS(Flow Sensitive), may-alias, instance-based,
and FIOC(Flow Insensitive Object Context) approach.

1: public class Calc {
2: Integer i;
3: public Calc() {
4: i = new Integer(0);
5: }
6: public void inc() {
7: i = new Integer(i.intValue() + 1);
8: }
9: public void add(int c) {
10: i = new Integer(i.intValue() + c);
11: }
12: public Integer result() {
13: return(i);
14: }
15: }

16: class Test {
17: Calc a, b;
18: Integer c;
19: Test() {
20: a = new Calc();
21: b = new Calc();
22: a.inc();
23: b.add(1);
24: c = b.result();
25: }
26: }

Figure 9. Resulting Aliases
5 A JAVA Alias Analysis Tool (JAAT)

We have implemented the proposed method in the tool
Java Alias Analysis Tool (JAAT). Using JAAT, we have an-
alyzed several programs and obtained various data.

5.1 Overview of JAAT

JAAT consists of three subsystems, the analysis subsys-
tem, the XML database subsystem, and the user interface
(UI) subsystem. Fig.10 shows the structure of JAAT.

Analysis subsystem: The analysis subsystem consists of
three components, the syntax analyzer, the seman-
tic analyzer, and the alias analyzer. The syntax ana-
lyzer analyzes JAVA source files and generates syntac-
tic trees. The semantic analyzer proceeds with a se-
mantic analysis that creates symbol tables and extracts
declare-refer relations among identifiers and generates
semantic trees. The alias analyzer generates MFGs
and AFGs at Phase 1, and computes the aliases for the
alias criterion specified by the user’s request at Phase
2. The alias analyzer returns the resulting aliases.

XML database subsystem: Since the translation from a
source program to the corresponding semantic tree is a
fairly time-consuming process, we do not want to dis-
card analysis results from the analysis sessions. Thus,
we build a database for semantic trees. This feature



Parse tree AFGSource file Semantic tree

User

MFG

XML database

Syntax
analyzer

Semantic
analyzer

Alias
analyzer

Semantic tree-XML
converter

XML-XML
converter

Source text with HTML tags

Source file

GUI

User

[XML database subsystem]

[Analysis subsystem]

[UI subsystem]

XML-HTML
converter

XML-Java
converter

Figure 10. Architecture of JAAT
improves the reusability of the analysis results along
with the AFG and MFG approaches. We use an XML
database that holds semantic tree information. The
XML converters converts semantic trees to XML doc-
uments and vice versa.

UI subsystem: The UI subsystem has two main functions,
editing programs and visualizing the resulting aliases.
Examples will be shown in Section 5.2.5.

5.2 Evaluation

In order to explore the applicability of JAAT, we have ap-
plied it to various sample programs. Table 1 shows features
of the sample programs. Note that we must analyze not only
these sample programs but also all related classes in JDK
for inter-class alias analysis. For example, TextEditor
is composed of one file with 1,125 lines. TextEditor di-
rectly and indirectly uses the classes in JDK, which are in
878 files with a total of 351,890 lines (99.7% of the overall
total lines). We have used a Pentium IV machine (2GHz)
with 2GB memory running FreeBSD 4.6.

5.2.1 Computation Time of Phase 1(a)

Our modularized analysis is effective in that we only have to
re-analyze modified parts of the programs when small parts
of the program are modified. On the other hand, there are
several FS analysis algorithms already proposed[7, 12, 23].
Those algorithms mainly focus on language-specific prob-
lems such as pointers to the stack, and they do not concern
the separation of analysis results for each module. There-
fore, if we would employ those algorithms, the overall pro-
gram have to be re-analyzed. It should be noted that user-
written programs are often modified but their related classes
in JDK are seldom modified.

Table 2(a) shows AFG construction time for sample pro-
grams and their related classes in JDK. The sum of these
two is the total time for Phase 1(a). The analysis time for
the related classes in JDK is much longer than for those

of the sample programs. For example, TextEditor it-
self requires only 10 milli-sec., and its related classes re-
quire 14,224 milli-sec. When we modify TextEditor,
we do not need to re-analyze its related classes, but only the
TextEditor.

5.2.2 Computation Time of Phase 1(b)

Table 2(b) shows MFG construction time for sample pro-
grams and their related classes. Since MFG construction
time does not depend on the program’s size but on the num-
ber of intra-class method calls, the MFG construction time
of the sample program is not always longer than that of re-
lated classes in JDK. For example, DynamicJava itself
requires 1,892 milli-sec., but its related classes require only
843 milli-sec. However, the overall MFG construction time
is much smaller than the AFG construction time.

5.2.3 Computation Time of Phase 2

Table 2(c) shows the average AFG traversal time for vari-
ous alias criteria. According to Table 2(c), it is clear that
Phase 2 takes much less computation time than Phase 1.
For TextEditor, only 0.01 milli-sec. is required, which
is much smaller than the overall Phase 1 of 14,915 milli-sec.

Our on-demand approach might be unsuitable as a back-
end for data-flow analysis and compiler optimization, which
needs whole alias analysis results. However, when we do
not need to compute the aliases for all expressions, or when
we implement an interactive programming support tool with
alias analysis features, our method is a practical choice.

5.2.4 Average Number of Detected Aliases

The proposed method uses the instance-based approach that
can distinguish inter-class alias relations on objects instan-
tiated from the same class. On the other hand, if we use the
class-based approach that shares inter-class alias relations
with other objects instantiated from the same class, analy-
sis precision will decrease. On each test suite, we select a



Table 1. Characteristics of analyzed sample programs
Programs Sample Program Related Classes in JDK

Number of Files Number of Lines Number of Files Number of Lines
TextEditor 1(0.1%) 1125(0.3%) 878(99.9%) 351,890(99.7%)
JLex (Parser Generator) 1(0.4%) 7,835(6.9%) 275(99.6%) 105,234(93.1%)
java cup (Parser Generator) 35(11.3%) 10,610(9.1%) 274(88.7%) 105,598(90.9%)
JFlex (Parser Generator) 40(4.3%) 13,029(3.6%) 882(95.7%) 353,067(96.4%)
WeirdX (X server) 47(5.0%) 19,701(5.2%) 892(95.0%) 356,217(94.8%)
ANTLR (Parser Generator) 129(31.6%) 25,283(19.3%) 279(68.4%) 105,483(80.7%)
Ant (Build Tool) 98(24.0%) 26,428(18.8%) 310(76.0%) 114,262(81.2%)
DynamicJava (JAVA Interpreter) 242(21.1%) 58,300(13.8%) 903(78.9%) 364,721(86.2%)

Table 2. Computation time [ms]
(a) Phase 1(a)

Programs Sample Program Related Classes in JDK
TextEditor 10 14,224
JLex 892 3,863
java cup 844 3,813
JFlex 16,140 14,339
WeirdX 2,835 14,666
ANTLR 6,154 7,856
Ant 1,845 4,005
DynamicJava 12,255 15,646

(b) Phase 1(b)

Programs Sample Program Related Classes in JDK
TextEditor 13 768
JLex 10 100
java cup 10 99
JFlex 10 759
WeirdX 10 823
ANTLR 304 99
Ant 22 104
DynamicJava 1,892 843

(c) Phase 2

Programs Average
TextEditor 0.01
JLex 0.76
java cup 0.37
JFlex 0.41
WeirdX 0.62
ANTLR 0.69
Ant 0.78
DynamicJava 0.07

class which plays an dominant role in the test suite, and we
compute the aliases for each AFG normal node in that class.

Table 3 shows the comparison results between those two
approaches with regard to the average number of detected
aliases for various alias criteria in the main classes. For
example, the instance-based approach generates more ac-
curate results than the class-based approach (9.16 nodes
v.s. 17.19 nodes) in DynamicJava. The average size
of aliases is about 30 – 97% of the class-based approach;

therefore, we think that our approach is of practical value.
In some cases, the average number of detected aliases is

not small. This is because we repeatedly count each expres-
sion, even if they have the same signature. If a specific vari-
able is repeatedly used in a class, the number of the aliases
becomes large. For example, in the case of JLex, the av-
erage number of the aliases is 69.17, for instance variable
JLex.CLexGen.m outstream, where m outstream
is referred to more than 400 times in the JLex.CLexGen
class. However, the average number of unique variables in
those aliases in JLex.CLexGen is only 1.50. This sug-
gests that the users can easily focus their attention on only
those few variables.

5.2.5 Case study

We focus on program maintenance activities as an applica-
tion of JAAT. To examine JAAT’s effectiveness, we have
applied JAAT to the following program debugging case.

SpreadSheet.java (1000 lines) is a small
spreadsheet JAVA applet contained in JDK. We as-
sume that an error occurred on the execution of
SpreadSheet.java as shown in Fig.11(a).
Since cell C1 was defined A1*B1, C1 should be
5000; however, C1’s value was incorrectly 10.

First we computed aliases for a String-type actual
parameter formula in a method parseFormula(),
which is a parser for the input expressions.

Using alias tree window2, we knew the resulting aliases
are in parseFormula() and parseValue() only as
shown in Fig.12(a). We examined each expression on the
alias tree using the alias tree window and the text win-
dow 3 as shown in Fig.12(b). After checking all aliases in
parseFormula(), we recognized that the return expres-
sion in parseValue() is variable formula.

By examining several statements near the last return ex-
pression, we noticed that the return variable should be the
variable restFormula, instead of formula. After fix-
ing it, a new SpreadSheet.java was executed cor-
rectly (Fig.11(b)).

2The alias tree window shows an aliases tree, in which each node de-
notes class, method, or an expression which contains aliases.

3The text window shows the resulting aliases with colored back-
grounds. Statements without any aliases can be compressed on the screen
with smaller fonts according to the user’s request.



Table 3. Average number of detected alias expressions (UNIQUE VARIABLES)
Programs (target class) Instance-based Class-based

TextEditor (TextEditor) 5.09(1) 5.09(1)
JLex (JLex.CLexGen) 69.17(2.02) 231.5(5.43)
java cup (java cup.parser) 101.6(1.48) 104.6(2.17)
JFlex (JFlex.LexParse) 124.2(1.50) 127.5(2.36)
WeirdX (com.jcraft.weirdx.Client) 68.33(2.97) 84.35(3.41)
ANTLR (antlr.Tool) 6.62(1.49) 11.37(2.30)
Ant (org.apache.tools.ant.Main) 20.94(3.25) 36.62(6.26)
DynamicJava (koala.dynamicjava.interpreter.TypeChecker) 9.16(1.89) 17.19(2.40)

In this example, there are only 20 aliases, so that the
user’s attention can be focused on only 20 lines out of the
original source program of about 1000 lines. The alias tree
windows can help the user to grasp the overall resulting
aliases, and the text windows can help the user to get de-
tailed information about each alias.

6 Discussion

Our proposed method for alias computation, which con-
sists of two analysis phases, has produced effective results.
In this section, we compare our method and related works,
and also show an extension of our method to programs with
pointer variables in ordinary languages.

6.1 Alias Analysis for JAVA

Most prior studies on alias analysis for JAVA programs
are for compiler optimization, such as synchronization re-
moval and escape analysis [2, 6, 16]. For such purposes,
all alias relations in the program need to be extracted by
the analysis. Since the optimized program should compute
the same execution results as the original program, analy-
sis results must satisfy conservative approximation. We be-
lieve that alias analysis is useful for program maintenance
activities as a software engineering tool. For such activities,
not all the alias relations are needed at one time; only user-
requested relations on the specific scope or object are to be
extracted quickly. Also, good GUI that intuitively presents
the analysis results to the user is very important.

Currently, since JAAT’s control-flow representation does
not consider possible control-flows caused by exceptions or
threads, the resulting aliases contain surplus alias relations
for exceptions and they lack the aliases caused by shared
variables in threads. For exceptions, we applied a conser-
vative approach that assumes all possible exceptions that
might occur. However, since many researchers have al-
ready proposed control-flow analysis methods for threads
and exceptions, we will adopt them to construct the im-
proved control-flow representation [17, 20].

6.2 Two-phase Approach

Several prior studies also propose two-phase approaches
such as intra-procedural analysis in advance using FS ap-
proaches [5, 8] or a FI approach [14].

In those FS approaches, each element R (alias relation)
in an RAset holds conditions if a specific alias relation R0

really exists (if true, R exists). These conditions are used
for indirect alias relations; however, all combinations of ac-
cessible variables should be taken into account as candi-
dates for R0. In our method, since each AFG edge repre-
sents a direct alias relation, we can easily extract each indi-
rect alias relation as an AFG path. These conditional-based
algorithms are suitable as back-end for data-flow analysis
(e.g., program slicing), which requires whole alias relations
in the target programs.

Since we focus mainly on program maintenance activi-
ties using the alias information itself, a simpler representa-
tion is useful. In such cases, the maintainers prefer the local
alias information on which they focus. Also, we believe
that they would request quick and simple answers even if
the resulting aliases might be insufficient.

6.3 Instance-based Analysis

The instance-based approach was proposed in object
slicing, which is a method for slicing OO programs pro-
posed by Liang et al. [13]. They extend the system de-
pendence graph (SDG) and define the traversal algorithm
to compute slices with regard to a specific object; however,
they assume that the alias analysis have been already per-
formed by another method. To get a practical alias analysis
tool, combining an alias analysis method and the instance
separation method into a single method is very important,
as we have proposed here.

6.4 On-demand Alias Extraction

We have applied an on-demand approach to alias anal-
ysis. Although alias information has been used for com-
piler optimization, data-flow analysis and so on, alias infor-
mation is itself useful for program maintenance activities
such as program debugging and understanding of JAVA pro-
grams. JAVA programs generally have many aliases caused
by reference-type expressions, and some are not easily iden-
tified by the developer. Since all alias information in the
target program is not necessary on program maintenance
activities, we believe on-demand (or query-based) analysis
will be a cost-effective approach. Although Heintze et al.
have proposed a demand-driven pointer analysis, their ap-
proach is FI for procedural language C, and their goal is to
compute the full point-to graph [9].



(a) Incorrect output (b) Correct output

Figure 11. Output of case study
7 Conclusions

We have proposed an alias analysis algorithm for JAVA
programs, which is a scalable and on-demand algorithm
with high precision and extensibility. Also, we have im-
plemented this algorithm in the tool JAAT, and evaluated its
effectiveness.

It has been presented that the analysis cost is reduced
by our modularized approach which requires to re-analyze
only modified modules, without re-analysis of other stable
modules including libraries. In the future, we will include
a feature to automatically identify modified modules and
stable modules.

Acknowledgments
Authors are grateful to Yusuke Yamanaka, Kazuhiro Kondo,
and Kazuhiro Kondo for the development of JAAT GUI.

References
[1] G. Agrawal and L. Guo, Evaluating explicitly context-

sensitive program slicing, Program Analysis For Software
Tools and Engineering, pp.6–12, Snowbird, UT, 2001.

[2] B. Blanchet, Escape Analysis for Object-Oriented Lan-
guages: Application to Java, Object-Oriented Program-
ming Systems, Languages & Applications, pp.20–34, Den-
ver, CO, 1999.

[3] M. Burke, P. Carini, J. D. Choi and M. Hind, Flow-
Insensitive Interprocedural Alias Analysis in the Presence
of Pointers, 7th Languages and Compilers for Parallel Com-
puting, 1994, Ithaca, NY.

[4] D. R. Chase, M. N. Wegman and F. K. Zadeck, Analysis of
Pointers and Structures, PLDI, pp.296–310, White Plains,
NY, 1990.

[5] R. K. Chatterjee, B. G. Ryder and W. Landi, Relevant Con-
text Inference, POPL, pp.133–146, San Antonio, TX, 1999.

[6] J. D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar and S.
P. Midkiff, Escape Analysis for Java, OOPSLA, pp.1-19,
Denver, CO, 1999.

[7] M. Enami, R. Ghiya and L. J. Hendren, Context-sensitive in-
terprocedural points-to analysis in the presence of function
pointers, PLDI, pp.242–256, Orlando, FL, 1994.

[8] M. J. Harrold and G. Rothermel, Separate Computation of
Alias Information for Reuse, IEEE TSE,22-7, pp.442–460,
1996.

[9] N. Heintze and O. Tardieu, Demand-Driven Pointer Analy-
sis, PLDI, pp.24–34, Snowbird, UT, 2001.

[10] M. Hind, Pointer Analysis: Haven’t We Solved This Problem
Yet?, Program Analysis for Software Tools and Engineering,
pp.54–61, Snowbird, UT, 2001.

[11] W. Landi and B. G. Ryder, A Safe Approximate Algorithm
for Interprocedural Pointer Aliasing, PLDI, pp.235–248,
San Francisco, CA, 1992.

[12] W. Landi, B. G. Ryder and S. Zhang, Interprocedural Mod-
ification Side Effect Analysis With Pointer Aliasing, PLDI,
pp.56–67, Albuquerque, NM, 1993.

[13] D. Liang and M. J. Harrold, Slicing Objects Using System
Dependence Graphs, Proceedings of the International Con-
ference on Software Maintenance, pp.358–367, Washington,
D.C., USA, 1998.

[14] D. Liang and M. J. Harrold, Efficient Points-to Analysis
for Whole-Program Analysis, 7th ESEC/FSE, pp.199–215,
Toulouse, France, 1999.

[15] F. Ohata and K. Inoue, JAAT: A Practical Alias Analysis Tool
for Java Programs, Technical Report of Osaka University,
Department of Information and Computer Sciences, SE-lab-
362, Dec, 2001.

[16] A. Rountev, A. Milanova and B. G. Ryder, Points-To Analy-
sis for Java using Annotated Constraints, OOPSLA, pp.43–
55,Tampa, FL, 2001.

[17] R. Rugina and M. C. Rinard, Pointer Analysis for Multi-
threaded Programs, PLDI, pp.77–90, 1999, Atlanta, GA.

[18] B. G. Ryder, W. Landi, P. Stocks, S. Zhang and R. Altucher,
A schema for interprocedural modification side-effect analy-
sis with pointer aliasing, ACM TOPLAS, 23-2, pp.105–186,
2001.

[19] M. Shapiro and S. Horwitz, Fast and accurate flow-
insensitive point-to analysis, POPL, pp.1–14, Paris, France,
1997.

[20] S. Sinha and M. J. Harrold, Analysis of Programs With
Exception-Handling Constructs, ICSM, pp.358–367, Wash-
ington, D.C., 1998.

[21] B. Steensgaard, Points-to analysis in almost linear time,
POPL, pp.32–41, St. Petersburg Beach, FL, 1996.

[22] P. Tonella, G. Antoniol, R. Fiutem and E. Merlo, Flow in-
sensitive C++ pointers and polymorphism analysis and its
application to slicing, 19th ICSE, pp.433–443, Boston, MA,
1997.

[23] R. P. Wilson and M. S. Lam, Efficient context-sensitive
pointer analysis for C programs, PLDI, pp.1–12, 1995, La
Jolla, CA.

[24] S. H. Yong, S. Horwitz and T. W. Reps, Pointer Analysis for
Programs with Structures and Casting, PLDI, pp.91–103,
Atlanta, GA, 1999.

[25] S. Zhang, B. G. Ryder and W. A. Landi, Experiments with
Combined Analysis for Pointer Aliasing, Program Analy-
sis for Software Tools and Engineering, pp.11–18, Montreal,
Canada, 1998.

[26] S. Zhang, B. G. Ryder and W. A. Landi, Program Decompo-
sition for Pointer Aliasing: A Step Toward Practical Analy-
ses, 4th FSE, pp.81–92, San Francisco, CA, 1996.



(a) Alias tree window

(b) Text window

Note: only the lines with alias expressions are displayed normally, and other lines are compressed as dotted lines.

Figure 12. JAAT windows showing the result of case study


