Recommending Verbs for Rename Method
using Association Rule Mining

Yuki Kashiwabara, Yuya Onizuka, Takashi Ishié, Yasuhiro Hayase Tetsuo Yamamoto and Katsuro Inoue
*Graduate School of Information Science and Technology, Osaka University, Japan
E-Mail: {k-yuki, y-onizuk, ishio, inou¢@ist.osaka-u.ac.jp
fGraduate School of Systems and Information Engineering, University of Tsukuba, Japan
E-Mail: hayase@cs.tsukuba.ac.jp
iCollege of Engineering, Nihon University, Japan
E-Mail:tetsuo@cs.ce.nihon-u.ac.jp

Abstract—An identifier is one of the crucial elements for pro- previous work, Hgset al. investigated relationships between
gram readability. Method names in an object-oriented program the behavior of methods and the verbs used in the method
are important identifiers because method names are used for yameg [5]. They reported that there exist naming rules for 40
understanding the behavior of the methods without reading . .

a part of the program. It is well-known that each method verbs. For example' methods namm_ﬂ often Con_ta'n loops
name should consist of a verb and objects according to general @nd use local variables. On the basis of the naming rules, they
guidelines. However, it is not easy to name methods consistentlyimplemented a rule-based naming bug detection tool [6], [7].
since each of the developers may have a different understanding Their tool acccurately points out inappropriate verbs used in
of the verbs and objects used in the method names. As a flrsF steP method names. However, their tool is appropriate for naming
to enable developers to name methods consistently and easily, We0 detecti inst limited thods. Th . tool t
focus on the verbs used in the method names. ug detection agf’;uns imite me 0ds. ere IS no tool 1o

In this paper, we present a technique to recommend candidate fecommend candidates of consistent names to many methods.
verbs for a method name so that developers can use consistent In this paper, we propose a technique to recommend can-
verbs for method names. Given a method, we recommend a list of didates of verbs for a method name so that developers can
\l;er?féigsegsgocl?:t?gnorgli!rsm\?\}g oi?:vglng;:g;(t:(t)eghzgs“cl,i?atrigithrﬁ?ésCO”SiSten“y use various verbs. We assume that the behavior of
fr)ém 44% OSS projects and applied these rules to two projects. As a method 'TQ' often chare_lcterlzed by |dent|f|_ersf such as method
a result, the extracted rules could recommend the current verbs Calls and field access in the method definitions. We extract
in the top 10 candidates for 60.6% of the methods covered by the relationship between verbs used in method names and
our approach. Furthermore, we have identified four meaningful identifiers in method definitions from existing source files, by
groups of rules for verb recommendation. using association rule mining [8]. Using the extracted rules,
we recommend candidates of verbs likely to be used as a part
of a method nameg.g, if a method callsnext , hasNext ,

Identifier is one of the crucial elements for program readterator , and equals , thenfind is likely to be a verb
ability [1]. Developers take a considerably long time to underepresenting the behavior
stand a program, if the identifiers poorly represent their rolesWe have extracted association rules from 445 OSS projects
in the program [2]. Since developers spend a lot of time amitten in Java and applied the rules to two OSS projects
program reading [3], good identifiers are important to redute evaluate whether the current verbs used in method names
the cost of software maintenance. could be recommended or not. We regarded a verb already

Method names are important identifiers because methased in a target method name as the correct verb of the
names are used for understanding the behavior of the methtalget method. As a result, we found that 92.1% of the
without reading the program. According to the general guideensidered methods have at least one rule recommending the
lines for an object-oriented program [4], a method should hagerrect verb and 60.6% of the methods have been found in
a name representing its behavior. A method name generalg top 10 candidates for each method. In addition to the
consists of a verb and objects; this name is expected to repyaantitative analysis, we analyzed what kind of association
sent the behavior of the method consistently. However, it is nailes are used for recommending the verbs. We have identified
easy for developers to choose a verb and objects consistefdlyr meaningful groups of rules for verb recommendation as
since each developer may have a different understandingfaifows: The first group of rules recommends the same verb
the verbs and objects used for method names. Only a few methods called in the method,g, add for a method
verbs such aget , set , andtest are consistently used for using anotheradd method. The second group recommends
representing the behavior of a method among developers. verbs that are conceptually related to a certain word in the

A tool recommending good verbs for a method name method, e.g, execute for a method using an argument
a first step to creating a tool recommending good methadmmand The third group recommends verbs related to a
names to developers for rename method refactoring. Asclass definition,e.g, compare for a method defined in a

I. INTRODUCTION

Comparable class. The fourth group recommends verbs ahe following expressionX — Y. X andY are called the

the basis of the Java programming idionesy, find for a antecedent and the consequent, respectively. Both are subsets

method usingterator . We expect these extracted rules tof a transaction.

provide understandable verbs to developers. There are two well-known definitions to measure the signif-
The main contributions of this paper are: icance and the interest of the extracted rules: confidence and

- We have defined an application of association rule minirfg/Pport. The confidence of — Y indicates the ratio of the
to extract relationships between verbs used in methf§mber of transactions involving UY" against the number of
names and identifiers in method definitions. transactions inVOlViHQ(. The Support ofX — Y indicates the

- We have shown that association rules extracted froftimber of transactions in which all items KUY appear at
OSS projects are applicable to the recommendation e same time. We consider that there is a correlation between
candidate verbs for methods in different applications. X andY’, if the confidence and the support are higher than

- We have shown that the technique can recommend corrtt& certain thresholds.

verbs for 60.6% of the methods coverd by our approach.Singeret al. applied association rule mining to the structural
The rest of this paper is organized as follows: Section zﬁnd behavioral attributes of methods called nano-patterns [10].

explains the background of our research. Section Ill describ-ggey reported several relationships among attributegs, most

our approach to recommending candidates verbs. Section WFrOdﬁ' readmg anh array c_;lontam a loop in t?]elr dif'n't'ons'

shows the result of our experiment. Section V discusses thre e t EIr approach Is similar to our approach, we tocus on

to the validity of the proposed approach and the experime e relationship between method names and the identifiers in
Section VI presents the conclusions and future work. the methods.

IIl. PROPOSEDAPPROACH

We recommend candidate verbs for a method name using
association rule mining. The proposed approach consists of
Hastet al. analyzed the relationship between the behavigfo steps: extracting rules between verbs used in method
of methods and the verbs used in the method names [5]. Fikgimes and the identifiers in method definitions, and applying
they split method names into verbs and objects. Secondlye rules to recommend verbs for a method name. We call the
for each verb, they analyzed the typical behavior of methodgtracted rule;iaming association rules
including the verb in their names. Finally, they identified the) i o
typical behavior for 40 concrete verbs. The following is & EXtraction of Naming Association Rule

Il. RELATED WORK
A. Studies on Support of Naming Method

guote from their rules: This step takes as input a set of Java source files as a
find: Methods namedind very often use local training dataset. We create an AST-tree for each source file
variables and contain loops. Furthermore, they often @nd extract a set of method¥’ from the source files. We
perform type-checking, and rarely return void. exclude the following methods from/, because their verbs

are well-known or determined by using the Java language.

technique and a tool that alerts the naming bugs of methdg&in methods and constructors: These names are defined

to developers and that provides how to fix the naming bugs [6], PY @ Java language specification.

[7]. They have defined negative rules between the behavior'8fthods defined in anonymous inner classMost of - the

methods and method names. A negative rule specifies that a Methods are inherited from parent classes.

target method has a naming bug, if the method follows the ruet and set methods: Both “get” and “set” are well-

Although the technique is highly accurate for the naming bug Known verbs for field access methods.

detection, developers can receive the tool support for a limithcht _methods: The verb “test” is also well-known for the

number of methods whose names are covered by 76 patterns JUNit testing framework.

using 64 verbs. In our work, we use association rule mining i85t1ing . hashCode , and equals methods: These

cover a large number of verbs in source files for the renaming "ames are inherited frogava.lang.Object

method, instead of the naming bug detection. We generate a set of transactidiigrom M, by translating
Hayaseet al. created domain-specific dictionaries by coleach methodn € M into a transactiort(m) that is a set of

lecting verb-oriented relations from identifiers appearing ilements, which are pairs of an identifier and its category. Each

source files [9]. We get the idea that we use identifiers glement is represented asategory:name,” where category

On the basis of the above study, Haxtal. proposed a

extract rules. denotes the category of the identifier andne represents the
o o text of the identifier. For example, i calls a methodadd
B. Association Rule Mining in the definition,t(m) contains “call:add” as an element. We

Association rule mining [8] is a technique used for extracgxtract the following nine types of elements in a methad
ing association rules from a large numbetrahsactionsEach defined in clas<” ast(m).
transaction is a set of items. One association rule represemeethod-verb: A verb used in the name ofn. To ex-
a fact that an item set frequently appears with another item tract a verb from the method name, we have used
set at the same time. An association rule is described by OpenNLP[11], which is a natural language processing

tool. We have considered six wortts, new, init, ™
calc, cleanup , andsetup as verbs, because thesg public class NameList implements Serializable{
- . List<String> namelList;
words are often used as words similar to verbs in Java
programs. We do not use stemming. We analyze similar pubflic StrinE' IindNtame(String name){
verbs including synonyms individually. el contamsiname) {
class-name: Name of clas<.

t I;
parent-class-name:Name of the parent class af. We y e
ignore java.lang.Object if it is not explicitly de- o ‘ o
| din th | public void addName(String name, int index){
i cared in mhe cass. . . if('lnameList.contains(name)){
interface-name: Name of an interface implemented k. nameList.add(index, name);

We extract names only if they are explicitly declared in !
the class. In other words, we ignore interfaces inherited!}

from the parent class af' but not declared irC. - /
return-type: Return type ofm. (a) source file
argument-type: Type of an argument ofn.
argument-name: Name of an argument of.. msg‘sos‘f';]‘;er;%_ all\?:meList
field-name: Name of a field that is defined in clags and method-verb: - find interface-name: Serializable
accessed in methoa. We ignore fields defined in other inteﬂ:ﬁg:ﬂgmgg gg%e”t':éle return-type: void
classes including the parent class. return-type: String a?é%mi?tnggee |irr1]tdex
call: Name of a method directly called by. a?é%mi?tnggi img argument-type: String
We ignore the names and the types of local variables be- field-name: nameList g name A
cause they tend to represent data manipulated in a method call: _contains calll contains
rather than actions in the method. Further, we ignore method (P) the transaction extracted call: add
. from findName method -
signatures for a method called by. For example, both (c) the transaction extracted
ArrayList.add and LinkedList.add are regarded as from addName method
the same element “call:add.” Fig. 1. An example of translation from Java source file

Fig. 1 shows how a source file is translated into transactions.
The source file in Fig. 1 (a) includes two methofilsdName
and addName. Figs. 1 (b) and (c) representfindName)
andt(addName), respectively.

We regard the consequent of a rule in Applicable(m)

as a recommendation from the rule. If more than one rule

=>h o) recommends the same verb, we use the rule with the highest
We apply association rule mining to the transaction’Bet ¢,nfidence:. We sort the recommended verbs in the descend-

with four conditions for filtering rules. The first and the seconﬁi19 order of their confidence values and provide the resultant
conditions ensure that a rule recommends a verb. list to developers.

1) The antecedent of a rule contains no method-verbs.
2) The consequent of a rule contains only one method-verb. IV. EVALUATION

Hence, a naming association rule can be denoted adVe have investigated the following two research questions

(X,v,c,s), whereX denotes the antecedent;the consequent to evaluate the proposed approach:

{method-verln}; ¢, the confidence; and, the support. For 1) How many verbs can be recommended correctly?

example, if 100 methods whose verbadd and 80 of them 2) Are naming association rules meaningful?

call anaddAll. method in their method definitions, a naming \we extracted naming association rules from 445 OSS

association rulg{call:addAll},add 0.8, 80) is extracted. projects obtained from sourceforge.net [12], apache.org [13],
We use the following conditions for further filtering. and eclipse.org [14]. We applied the extracted rules to two

3) Antecedent{X| < 4. OSS projects: ArgoUML and jEdit. Both are not included in

4) Supports > 20. the training dataset.

The third condition extracts simpler rules to reduce the effort Table | presents an overview of the dataset and the target

of the manual analysis of extracted rules. The fourth conditidojects. #LOC denotes the number of lines in the source files.

prevents naming association rules from Overﬁtting_ #Method indicates the number of methods in the source files,
and #Analyzed represents the number of analyzed methods
B. Applying Rules to Recommend Verbs as described in Section IlI-A. The number of the extracted

In this step, we use a set of naming association rutes naming association rules is 1,475,419. The rules are extracted
to recommend verbs for a given methad. We extract a 1M 594,439 (77.8%) methods.

transactiont(m) from the method and select the applicablg RQ1: How Many Verbs can Be Recommended Correctly?
rules Applicable(m) as follows.

To answer this research question, we have evaluated whether
Applicable(m) = {(X,v,¢,)| X Ct(m) A (X,v,¢,s) € R} verbs currently used in a program can be recommended by the

TABLE | analyzed analyzed

OVERVIEW OF DATASET AND TARGET PROJECTS Rank of correct verbs methods methods
1000 ———————— (jEdit) (ArgoUML)
Source Files #LOC #Method #Analyzed 100 jEdit / ArgoUML _/
Training dataset 34,326,308 1,399,744 764,303 / /
ArgoUML 0.28.1 367,052 15,008 6,651 10 » L
jEdit 4.3.1 176,556 6,299 2,676 = 1=
0 1000 2000 3000 4000 5000 6000 7000

The number of methods
rules extracted from the training dataset or not. While there
may be naming bugs in a program, we have regarded the VQEP. 2. Rank of correct verbs for methods in jEdit (left) and ArgoUML (right)
of a methodmn as the correct result for the methed because
a few naming bugs were detected by the existing tool [6], [7].
We have cemputed the rank of the correct verb in tecedent, the consequent method-verb, the confidence, and
recommendation list for each method. Fig. 2 plotted the resuj. t of a rule
The horizontal axis represents the number of methods. T g sup[?or '
vertical logarithmic axis represents the rank of the concreteThe first group of rules recommends the same verb as
verb for a method. Since we computed the rank for eagpletr_\ods called in the method. R1 and R2 are example rules
method, we sorted the methods in the ascending order of tl‘f?e‘?rpl'ed to methods in ArgoUML. R1 recommenqmelete
rank values. The two vertical solid lines indicate the numb&’ @ method that callgleleteinstance . Similarly, R2
of analyzed methods in the applications: 6651 in Argoum{ecommendeadd for a method that calladdAll . R8 is a
and 2676 in jEdit. rule applied to a method in jEdit. The rule alsq recommended
6,003 (91.6% of 6651) methods in ArgoUML and 2’500?1(_1Id for a method that cal_ladd. This group is consistent
(93.5% of 2676) methods in jEdit have at least one rufg'th a heuristic used by Sridhaet al[15].
recommending the correct verb. The proposed approach reclhe second group recommends verbs that are conceptually
ommended the correct verb in the top of a ranking for 1,84¢lated with a certain word in the method. R3 and R4 are
(30.2% of 6,093) methods in ArgoUML and for 738 (29.59%amples in this group applied to methods in ArgoUML.
of 2,500) methods in jEdit. If we recommend the top 1Both rules recommendedxecute for methods related to
candidates to developers, correct verbs are recommendedc@nmand R9 and R10 are rules applied in jEdit. The rules
3,781 (62.0% of 6,093) methods in ArgoUML and 1,434ecommendedbad for methods related tproperty . This
(57.3% of 2,500) methods in jEdit. In total, the correct verb@oup might represent relationships between the verb and the
are recommended in the top 10 for 60.6% of the methodyect object proposed by Shephertial. [16].
covered by the rules. These results show that the namingrhe third group recommends verbs related to a language
association rules extracted from a set of software are effectiygecification. In this group, R5 recommends tampare
in different projects. method for theComparable interface and R11 recommends
The extracted rules covered 209 (76.8% of 272) verbs fhe run method for theRunnable interface, respectively.
ArgoUML and 217 (74.8% of 290) verbs in jEdit. This number The fourth group recommends verbs based on Java program-
is considerably larger than the 64 verbs covered by [6], [#hing idioms. R6 is a rule recommendifigd ~ for methods
We manually identified two groups of methods that no naminging theequals method withiterator . This rule is
association rules could recommend the correct verbs for. Ofignilar to a typical behavior of théind methods identified

group of methods uses rare verbs used by a smaller numipef6]. R12 recommendedopy for methods usingead and
of methods than a threshold to extract rules. An exampleigite for a stream.

redo that is likely a feature implemented by a few GUI \yhie the four groups of rules captured meaningful rules,

applications. Some method names in the group could nQE yerbs of several methods are recommended by less mean-
be handled by OpenNLP, such @stl . The other group jnge| rules. For example, R7 recommendegbpen for

of methods is abstra_ct me.thods. They do not have sufficigfbthods whose return type W@id . This rule is applied to
number of elements in their transactions. a method because it is a rule to recommend the correct verb
for methods whose verb iseopen . Although at least 37
reopen methods are involved in the training dataset, there
We have manually analyzed what type of naming assare no common identifiers among them except void .
ciation rules recommended the correct verbs of methods Similarly, R13 represents thatse methods are used for
ArgoUML and jEdit. As a result, we have identified fouraccessing théoolean flags in a program. As these rules
groups of rules. Table Il shows examples of the classifigdive very low confidence values, a threshold for confidence
rules. The columnsRule and Group indicate identifiers could remove them from the result. However, determining an
for rules and identified groups. The columAatecedent , appropriate threshold is future work, because some meaningful
Consequent , Conf, and Sup, respectively, indicate the rules (R6, R10 and R12) also have low confidence.

B. RQ2: Are Naming Association Rules Meaningful?

TABLE Il
EXAMPLES OF RULES USED FOR METHODS IMRGOUML AND JEDIT

Rule Group Software ~ Antecedent Consequent Conf Sup
R1 1 ArgoUML call:deletelnstance, return-type:void delete 0.969305 600
R2 1 ArgoUML call:addAll, return-type:boolean, call:size, argument-name:c add 1.000000 22
R3 2 ArgoUML argument-name:command, call:execute execute 0.653061 32
R4 2 ArgoUML parent-class-name:AbstractCommand execute 0.765766 255
R5 3 ArgoUML interface-name:Comparable, argument-type:Object, call:compareTo, return-type:int compare 1.000000 281
R6 4 ArgoUML call:next, call:hasNext, call:iterator, call:equals find 0.065000 169
R7 - ArgoUML return-type:void reopen 0.000111 37
R8 1 JEdit argument-name:label, call:setConstraints, return-type:void, call:add add 1.000000 27
R9 2 JEdit return-type:Properties, call:load, call:getResourceAsStream load 0.958333 23
R10 2 JEdit call:getProperty, call:add load 0.053571 27
R11 3 JEdit call:error, return-type:void, interface-name:Runnable run 0.626068 293
R12 4 JEdit call:write, call:read, argument-type:InputStream, return-type:void copy 0.216080 43
R13 - JEdit return-type:boolean use 0.003684 411
V. THREATS TOVALIDITY behavioral attributes such as nano-patterns [10] as additional

. L . %Iues to characterize the usage of verbs.
We extracted naming association rules from OSS projects ; .
To achieve the full support for rename method refactoring,

Although we collected them almost systematically, the result

X o we need to recommend not only verbs but also objects in a

depended on the projects selected for the training dataset. . . .
X : : . method name. We are planning to take the domains of projects
Some of the projects may include naming bugs. Since Hgs . . L
. . intfo account for recommendation, because different entities are
et al.reported that naming bugs are found in at most 5% of tl?re

.frequently used in each domain.
methods in a program, we believe that association rule miNing .\ o owledments: This work was supborted by KAKENHI
does not extract such naming bugs as a rule recommending(ﬂgS 23680001 25'220003 and 25728036) y
inappropriate verb. ’ ’ ' '

We have limited the number of elements in an antecedent REFERENCES
in order to reduce the effort for a m"_mual ana_\lys_ls (_)f thefl] A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella,
rules. More complex but useful rules might be missing in our “Using IR methods for labeling source code artifacts: Is it worthwhile?”

analysis because of the filtering conditions. in Proc. ICPG 2012, pp. 193-202. , .
. J%] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What's in a name? a
We used OpenNLP to split method names between a verd gyqgy of identifiers;” inProc. ICPC, 2006, pp. 3—12.

and objects. Since a programming language is not a naturi@l G. C. Murphy, M. Kersten, M. P. Robillard, and [ubran, “The
language, transactions and rules may use incorrectly split emergent structure of development tasks,Pioc. ECOOR 2005, pp.

ident.ifiers. According to the manual analysis described ir[l4] S. Mcéonnenpode Complete, Second EditiorRedmond, WA, USA:
Section IV-B, we believe there are few such errors. Microsoft Press, 2004.

We applied the naming association rules to ArgoUML and®! Ehg"-\,e'*rgfﬁg‘,igéMs-gjﬁﬂgg,;”;i P{S%S”&g‘ er's Lexicon, Volume |
jEdit. We selected them because both are famous OSS proje@ . “Debugging Method Names.” ifProc. ECOOP 2009, pp. 294—

and often used for evaluation in other research studies. As a 317.

O T P ; 7] E. K. Karlsen, E. W. Hgst, and B. M. @stvold, “Finding and fixing Java
result, the target domain is limited to GUI applications. Thd naming bugs with the Lancelot Eclipse plugin.” Rroc. Workshop on

application of the extracted rules to different domains may partial Evaluation and Program Manipulatior2012, pp. 35-38.
result in a different observation. [8] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules be-
; e tween sets of items in large databasesPiac. International Conference
Wg .ha\{e manually identified .four grouPs of ru_Ies. The on Management of Dafal993, pp. 207—216.
classification depends on the first author's experience. AR v. Hayase, Y. Kashima, Y. Manabe, and K. Inoue, “Building Domain
expert of Java programming or OSS projects may identify Specific Dictionaries of Verb-Object Relation from Source Code,” in

; Proc. CSMR 2011, pp. 93-100.
different groups of rules. [10] J. Singer, G. Brown, M. Ligin, A. Pocock, and P. Yiapanis, “Fundamen-

tal Nano-Patterns to Characterize and Classify Java MethB;tronic
VI. CONCLUSION Notes in Theoretical Computer Sciens®l. 253, no. 7, pp. 191-204,
2010.
In this paper, we proposed a technique to recommend] “OpenNLP," http://opennlp.sourceforge.net/.

candidates of good method verbs to developers, using nami :iourchngrgf?,” htteiagofll;cefmge-”ert]/- '

association rules. Our approach recommended correct Ve «coiser nitp iwwwedipse.orgl.

in the top 10 for 60.6% of the methods. Furthermore, thes] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,

extracted rules covered 284 verbs and we could identify four “TOV\’/’a_rds automatically generating summary comments for java meth-

ingful groups of rules used for recommendation ods,” in proc. ASE: 2010, pp. 43-52.

meaningtul group ’) : [16] D. Shepherd, L. Pollock, and K. Vijay-Shanker, “Towards supporting on-
In the future work, we want to improve a ranking strategy to demand virtual remodularization using program graphsPrioc. AOSD

provide a better list of candidates to developers. An appropri- 2006, pp. 3-14.

ate filter for rule mining is also important. We are interested in

