
Recommending Verbs for Rename Method
using Association Rule Mining

Yuki Kashiwabara∗, Yuya Onizuka∗, Takashi Ishio∗, Yasuhiro Hayase†, Tetsuo Yamamoto‡, and Katsuro Inoue∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

E-Mail: {k-yuki, y-onizuk, ishio, inoue}@ist.osaka-u.ac.jp
†Graduate School of Systems and Information Engineering, University of Tsukuba, Japan

E-Mail: hayase@cs.tsukuba.ac.jp
‡College of Engineering, Nihon University, Japan

E-Mail:tetsuo@cs.ce.nihon-u.ac.jp

Abstract—An identifier is one of the crucial elements for pro-
gram readability. Method names in an object-oriented program
are important identifiers because method names are used for
understanding the behavior of the methods without reading
a part of the program. It is well-known that each method
name should consist of a verb and objects according to general
guidelines. However, it is not easy to name methods consistently
since each of the developers may have a different understanding
of the verbs and objects used in the method names. As a first step
to enable developers to name methods consistently and easily, we
focus on the verbs used in the method names.

In this paper, we present a technique to recommend candidate
verbs for a method name so that developers can use consistent
verbs for method names. Given a method, we recommend a list of
verbs used in many other methods similar to the given method,
by using association rules. We have extracted association rules
from 445 OSS projects and applied these rules to two projects. As
a result, the extracted rules could recommend the current verbs
in the top 10 candidates for 60.6% of the methods covered by
our approach. Furthermore, we have identified four meaningful
groups of rules for verb recommendation.

I. I NTRODUCTION

Identifier is one of the crucial elements for program read-
ability [1]. Developers take a considerably long time to under-
stand a program, if the identifiers poorly represent their roles
in the program [2]. Since developers spend a lot of time on
program reading [3], good identifiers are important to reduce
the cost of software maintenance.

Method names are important identifiers because method
names are used for understanding the behavior of the methods
without reading the program. According to the general guide-
lines for an object-oriented program [4], a method should have
a name representing its behavior. A method name generally
consists of a verb and objects; this name is expected to repre-
sent the behavior of the method consistently. However, it is not
easy for developers to choose a verb and objects consistently
since each developer may have a different understanding of
the verbs and objects used for method names. Only a few
verbs such asget , set , and test are consistently used for
representing the behavior of a method among developers.

A tool recommending good verbs for a method name is
a first step to creating a tool recommending good method
names to developers for rename method refactoring. As a

previous work, Høstet al. investigated relationships between
the behavior of methods and the verbs used in the method
names [5]. They reported that there exist naming rules for 40
verbs. For example, methods namedfind often contain loops
and use local variables. On the basis of the naming rules, they
implemented a rule-based naming bug detection tool [6], [7].
Their tool acccurately points out inappropriate verbs used in
method names. However, their tool is appropriate for naming
bug detection against limited methods. There is no tool to
recommend candidates of consistent names to many methods.

In this paper, we propose a technique to recommend can-
didates of verbs for a method name so that developers can
consistently use various verbs. We assume that the behavior of
a method is often characterized by identifiers such as method
calls and field access in the method definitions. We extract
the relationship between verbs used in method names and
identifiers in method definitions from existing source files, by
using association rule mining [8]. Using the extracted rules,
we recommend candidates of verbs likely to be used as a part
of a method name,e.g., if a method callsnext , hasNext ,
iterator , and equals , then find is likely to be a verb
representing the behavior.

We have extracted association rules from 445 OSS projects
written in Java and applied the rules to two OSS projects
to evaluate whether the current verbs used in method names
could be recommended or not. We regarded a verb already
used in a target method name as the correct verb of the
target method. As a result, we found that 92.1% of the
considered methods have at least one rule recommending the
correct verb and 60.6% of the methods have been found in
the top 10 candidates for each method. In addition to the
quantitative analysis, we analyzed what kind of association
rules are used for recommending the verbs. We have identified
four meaningful groups of rules for verb recommendation as
follows: The first group of rules recommends the same verb
as methods called in the method,e.g., add for a method
using anotheradd method. The second group recommends
verbs that are conceptually related to a certain word in the
method, e.g., execute for a method using an argument
command. The third group recommends verbs related to a
class definition,e.g., compare for a method defined in a

Comparable class. The fourth group recommends verbs on
the basis of the Java programming idioms,e.g., find for a
method usingiterator . We expect these extracted rules to
provide understandable verbs to developers.

The main contributions of this paper are:

- We have defined an application of association rule mining
to extract relationships between verbs used in method
names and identifiers in method definitions.

- We have shown that association rules extracted from
OSS projects are applicable to the recommendation of
candidate verbs for methods in different applications.

- We have shown that the technique can recommend correct
verbs for 60.6% of the methods coverd by our approach.

The rest of this paper is organized as follows: Section II
explains the background of our research. Section III describes
our approach to recommending candidates verbs. Section IV
shows the result of our experiment. Section V discusses threats
to the validity of the proposed approach and the experiment.
Section VI presents the conclusions and future work.

II. RELATED WORK

A. Studies on Support of Naming Method

Høst et al. analyzed the relationship between the behavior
of methods and the verbs used in the method names [5]. First,
they split method names into verbs and objects. Secondly,
for each verb, they analyzed the typical behavior of methods
including the verb in their names. Finally, they identified the
typical behavior for 40 concrete verbs. The following is a
quote from their rules:

find: Methods namedfind very often use local
variables and contain loops. Furthermore, they often
perform type-checking, and rarely return void.

On the basis of the above study, Høstet al. proposed a
technique and a tool that alerts the naming bugs of methods
to developers and that provides how to fix the naming bugs [6],
[7]. They have defined negative rules between the behavior of
methods and method names. A negative rule specifies that a
target method has a naming bug, if the method follows the rule.
Although the technique is highly accurate for the naming bug
detection, developers can receive the tool support for a limited
number of methods whose names are covered by 76 patterns
using 64 verbs. In our work, we use association rule mining to
cover a large number of verbs in source files for the renaming
method, instead of the naming bug detection.

Hayaseet al. created domain-specific dictionaries by col-
lecting verb-oriented relations from identifiers appearing in
source files [9]. We get the idea that we use identifiers to
extract rules.

B. Association Rule Mining

Association rule mining [8] is a technique used for extract-
ing association rules from a large number oftransactions. Each
transaction is a set of items. One association rule represents
a fact that an item set frequently appears with another item
set at the same time. An association rule is described by

the following expression:X → Y . X and Y are called the
antecedent and the consequent, respectively. Both are subsets
of a transaction.

There are two well-known definitions to measure the signif-
icance and the interest of the extracted rules: confidence and
support. The confidence ofX → Y indicates the ratio of the
number of transactions involvingX∪Y against the number of
transactions involvingX. The support ofX → Y indicates the
number of transactions in which all items inX ∪ Y appear at
the same time. We consider that there is a correlation between
X and Y , if the confidence and the support are higher than
the certain thresholds.

Singeret al.applied association rule mining to the structural
and behavioral attributes of methods called nano-patterns [10].
They reported several relationships among attributes,e.g., most
methods reading an array contain a loop in their definitions.
While their approach is similar to our approach, we focus on
the relationship between method names and the identifiers in
the methods.

III. PROPOSEDAPPROACH

We recommend candidate verbs for a method name using
association rule mining. The proposed approach consists of
two steps: extracting rules between verbs used in method
names and the identifiers in method definitions, and applying
the rules to recommend verbs for a method name. We call the
extracted rulesnaming association rules.

A. Extraction of Naming Association Rule

This step takes as input a set of Java source files as a
training dataset. We create an AST-tree for each source file
and extract a set of methodsM from the source files. We
exclude the following methods fromM , because their verbs
are well-known or determined by using the Java language.
main methods and constructors: These names are defined

by a Java language specification.
methods defined in anonymous inner class:Most of the

methods are inherited from parent classes.
get and set methods: Both “get” and “set” are well-

known verbs for field access methods.
test methods: The verb “test” is also well-known for the

JUnit testing framework.
toString , hashCode , and equals methods: These

names are inherited fromjava.lang.Object .
We generate a set of transactionsT from M , by translating

each methodm ∈ M into a transactiont(m) that is a set of
elements, which are pairs of an identifier and its category. Each
element is represented as “category:name,” where category
denotes the category of the identifier andname represents the
text of the identifier. For example, ifm calls a methodadd
in the definition,t(m) contains “call:add” as an element. We
extract the following nine types of elements in a methodm
defined in classC as t(m).
method-verb: A verb used in the name ofm. To ex-

tract a verb from the method name, we have used
OpenNLP[11], which is a natural language processing

tool. We have considered six wordsto, new, init,
calc, cleanup , andsetup as verbs, because these
words are often used as words similar to verbs in Java
programs. We do not use stemming. We analyze similar
verbs including synonyms individually.

class-name: Name of classC.
parent-class-name:Name of the parent class ofC. We

ignore java.lang.Object if it is not explicitly de-
clared in the class.

interface-name: Name of an interface implemented byC.
We extract names only if they are explicitly declared in
the class. In other words, we ignore interfaces inherited
from the parent class ofC but not declared inC.

return-type: Return type ofm.
argument-type: Type of an argument ofm.
argument-name: Name of an argument ofm.
field-name: Name of a field that is defined in classC and

accessed in methodm. We ignore fields defined in other
classes including the parent class.

call: Name of a method directly called bym.

We ignore the names and the types of local variables be-
cause they tend to represent data manipulated in a method
rather than actions in the method. Further, we ignore method
signatures for a method called bym. For example, both
ArrayList.add and LinkedList.add are regarded as
the same element “call:add.”

Fig. 1 shows how a source file is translated into transactions.
The source file in Fig. 1 (a) includes two methods:findName
and addName. Figs. 1 (b) and (c) representt(findName)
and t(addName), respectively.

We apply association rule mining to the transaction setT
with four conditions for filtering rules. The first and the second
conditions ensure that a rule recommends a verb.

1) The antecedent of a rule contains no method-verbs.
2) The consequent of a rule contains only one method-verb.

Hence, a naming association rule can be denoted as
(X, v, c, s), whereX denotes the antecedent;v, the consequent
{method-verb:v}; c, the confidence; ands, the support. For
example, if 100 methods whose verb isadd and 80 of them
call anaddAll method in their method definitions, a naming
association rule({call:addAll},add, 0.8, 80) is extracted.

We use the following conditions for further filtering.

3) Antecedent|X| ≤ 4.
4) Supports ≥ 20.

The third condition extracts simpler rules to reduce the effort
of the manual analysis of extracted rules. The fourth condition
prevents naming association rules from overfitting.

B. Applying Rules to Recommend Verbs

In this step, we use a set of naming association rulesR
to recommend verbs for a given methodm. We extract a
transactiont(m) from the method and select the applicable
rulesApplicable(m) as follows.

Applicable(m) = {(X, v, c, s)|X ⊆ t(m) ∧ (X, v, c, s) ∈ R}

� �
public class NameList implements Serializable{

List<String> nameList;

public String findName(String name){
if (nameList.contains(name)) {

return name;
}
return null;

}

public void addName(String name, int index){
if(!nameList.contains(name)){

nameList.add(index, name);
}

}
}� �

(a) source file

method-verb: find
class-name: NameList

interface-name: Serializable
return-type: String

argument-type: String
argument-name: name

field-name: nameList
call: contains

(b) the transaction extracted
from findName method

method-verb: add
class-name: NameList

interface-name: Serializable
return-type: void

argument-type: int
argument-name: index
argument-type: String

argument-name: name
field-name: nameList

call: contains
call: add

(c) the transaction extracted
from addName method

Fig. 1. An example of translation from Java source file

We regard the consequentv of a rule in Applicable(m)
as a recommendation from the rule. If more than one rule
recommends the same verb, we use the rule with the highest
confidencec. We sort the recommended verbs in the descend-
ing order of their confidence values and provide the resultant
list to developers.

IV. EVALUATION

We have investigated the following two research questions
to evaluate the proposed approach:

1) How many verbs can be recommended correctly?
2) Are naming association rules meaningful?

We extracted naming association rules from 445 OSS
projects obtained from sourceforge.net [12], apache.org [13],
and eclipse.org [14]. We applied the extracted rules to two
OSS projects: ArgoUML and jEdit. Both are not included in
the training dataset.

Table I presents an overview of the dataset and the target
projects. #LOC denotes the number of lines in the source files.
#Method indicates the number of methods in the source files,
and #Analyzed represents the number of analyzed methods
as described in Section III-A. The number of the extracted
naming association rules is 1,475,419. The rules are extracted
from 594,439 (77.8%) methods.

A. RQ1: How Many Verbs can Be Recommended Correctly?

To answer this research question, we have evaluated whether
verbs currently used in a program can be recommended by the

TABLE I
OVERVIEW OF DATASET AND TARGET PROJECTS

Source Files #LOC #Method #Analyzed

Training dataset 34,326,308 1,399,744 764,303
ArgoUML 0.28.1 367,052 15,008 6,651
jEdit 4.3.1 176,556 6,299 2,676

rules extracted from the training dataset or not. While there
may be naming bugs in a program, we have regarded the verb
of a methodm as the correct result for the methodm, because
a few naming bugs were detected by the existing tool [6], [7].

We have computed the rank of the correct verb in the
recommendation list for each method. Fig. 2 plotted the result.
The horizontal axis represents the number of methods. The
vertical logarithmic axis represents the rank of the concrete
verb for a method. Since we computed the rank for each
method, we sorted the methods in the ascending order of their
rank values. The two vertical solid lines indicate the number
of analyzed methods in the applications: 6651 in ArgoUML
and 2676 in jEdit.

6,093 (91.6% of 6651) methods in ArgoUML and 2,500
(93.5% of 2676) methods in jEdit have at least one rule
recommending the correct verb. The proposed approach rec-
ommended the correct verb in the top of a ranking for 1,841
(30.2% of 6,093) methods in ArgoUML and for 738 (29.5%
of 2,500) methods in jEdit. If we recommend the top 10
candidates to developers, correct verbs are recommended for
3,781 (62.0% of 6,093) methods in ArgoUML and 1,434
(57.3% of 2,500) methods in jEdit. In total, the correct verbs
are recommended in the top 10 for 60.6% of the methods
covered by the rules. These results show that the naming
association rules extracted from a set of software are effective
in different projects.

The extracted rules covered 209 (76.8% of 272) verbs in
ArgoUML and 217 (74.8% of 290) verbs in jEdit. This number
is considerably larger than the 64 verbs covered by [6], [7].
We manually identified two groups of methods that no naming
association rules could recommend the correct verbs for. One
group of methods uses rare verbs used by a smaller number
of methods than a threshold to extract rules. An example is
redo that is likely a feature implemented by a few GUI
applications. Some method names in the group could not
be handled by OpenNLP, such asput1 . The other group
of methods is abstract methods. They do not have sufficient
number of elements in their transactions.

B. RQ2: Are Naming Association Rules Meaningful?

We have manually analyzed what type of naming asso-
ciation rules recommended the correct verbs of methods in
ArgoUML and jEdit. As a result, we have identified four
groups of rules. Table II shows examples of the classified
rules. The columnsRule and Group indicate identifiers
for rules and identified groups. The columnsAntecedent ,
Consequent , Conf , and Sup, respectively, indicate the

1

10

100

1000

0 1000 2000 3000 4000 5000 6000 7000

Rank of correct verbs

The number of methods

jEdit

analyzed

methods

(jEdit)

analyzed

methods

(ArgoUML)

ArgoUML

Fig. 2. Rank of correct verbs for methods in jEdit (left) and ArgoUML (right)

antecedent, the consequent method-verb, the confidence, and
the support of a rule.

The first group of rules recommends the same verb as
methods called in the method. R1 and R2 are example rules
applied to methods in ArgoUML. R1 recommendeddelete
for a method that callsdeleteInstance . Similarly, R2
recommendedadd for a method that callsaddAll . R8 is a
rule applied to a method in jEdit. The rule also recommended
add for a method that callsadd . This group is consistent
with a heuristic used by Sridharaet al.[15].

The second group recommends verbs that are conceptually
related with a certain word in the method. R3 and R4 are
examples in this group applied to methods in ArgoUML.
Both rules recommendedexecute for methods related to
command. R9 and R10 are rules applied in jEdit. The rules
recommendedload for methods related toproperty . This
group might represent relationships between the verb and the
direct object proposed by Shepherdet al. [16].

The third group recommends verbs related to a language
specification. In this group, R5 recommends thecompare
method for theComparable interface and R11 recommends
the run method for theRunnable interface, respectively.

The fourth group recommends verbs based on Java program-
ming idioms. R6 is a rule recommendingfind for methods
using the equals method with iterator . This rule is
similar to a typical behavior of thefind methods identified
in [6]. R12 recommendedcopy for methods usingread and
write for a stream.

While the four groups of rules captured meaningful rules,
the verbs of several methods are recommended by less mean-
ingful rules. For example, R7 recommendedreopen for
methods whose return type isvoid . This rule is applied to
a method because it is a rule to recommend the correct verb
for methods whose verb isreopen . Although at least 37
reopen methods are involved in the training dataset, there
are no common identifiers among them except forvoid .
Similarly, R13 represents thatuse methods are used for
accessing theboolean flags in a program. As these rules
have very low confidence values, a threshold for confidence
could remove them from the result. However, determining an
appropriate threshold is future work, because some meaningful
rules (R6, R10 and R12) also have low confidence.

TABLE II
EXAMPLES OF RULES USED FOR METHODS INARGOUML AND JEDIT

Rule Group Software Antecedent Consequent Conf Sup

R1 1 ArgoUML call:deleteInstance, return-type:void delete 0.969305 600
R2 1 ArgoUML call:addAll, return-type:boolean, call:size, argument-name:c add 1.000000 22
R3 2 ArgoUML argument-name:command, call:execute execute 0.653061 32
R4 2 ArgoUML parent-class-name:AbstractCommand execute 0.765766 255
R5 3 ArgoUML interface-name:Comparable, argument-type:Object, call:compareTo, return-type:int compare 1.000000 281
R6 4 ArgoUML call:next, call:hasNext, call:iterator, call:equals find 0.065000 169
R7 - ArgoUML return-type:void reopen 0.000111 37
R8 1 jEdit argument-name:label, call:setConstraints, return-type:void, call:add add 1.000000 27
R9 2 jEdit return-type:Properties, call:load, call:getResourceAsStream load 0.958333 23
R10 2 jEdit call:getProperty, call:add load 0.053571 27
R11 3 jEdit call:error, return-type:void, interface-name:Runnable run 0.626068 293
R12 4 jEdit call:write, call:read, argument-type:InputStream, return-type:void copy 0.216080 43
R13 - jEdit return-type:boolean use 0.003684 411

V. THREATS TOVALIDITY

We extracted naming association rules from OSS projects.
Although we collected them almost systematically, the result
depended on the projects selected for the training dataset.

Some of the projects may include naming bugs. Since Høst
et al. reported that naming bugs are found in at most 5% of the
methods in a program, we believe that association rule mining
does not extract such naming bugs as a rule recommending an
inappropriate verb.

We have limited the number of elements in an antecedent
in order to reduce the effort for a manual analysis of the
rules. More complex but useful rules might be missing in our
analysis because of the filtering conditions.

We used OpenNLP to split method names between a verb
and objects. Since a programming language is not a natural
language, transactions and rules may use incorrectly split
identifiers. According to the manual analysis described in
Section IV-B, we believe there are few such errors.

We applied the naming association rules to ArgoUML and
jEdit. We selected them because both are famous OSS projects
and often used for evaluation in other research studies. As a
result, the target domain is limited to GUI applications. The
application of the extracted rules to different domains may
result in a different observation.

We have manually identified four groups of rules. The
classification depends on the first author’s experience. An
expert of Java programming or OSS projects may identify
different groups of rules.

VI. CONCLUSION

In this paper, we proposed a technique to recommend
candidates of good method verbs to developers, using naming
association rules. Our approach recommended correct verbs
in the top 10 for 60.6% of the methods. Furthermore, the
extracted rules covered 284 verbs and we could identify four
meaningful groups of rules used for recommendation.

In the future work, we want to improve a ranking strategy to
provide a better list of candidates to developers. An appropri-
ate filter for rule mining is also important. We are interested in

behavioral attributes such as nano-patterns [10] as additional
clues to characterize the usage of verbs.

To achieve the full support for rename method refactoring,
we need to recommend not only verbs but also objects in a
method name. We are planning to take the domains of projects
into account for recommendation, because different entities are
frequently used in each domain.

Acknowledments: This work was supported by KAKENHI
(Nos. 23680001, 25220003, and 25730036).

REFERENCES

[1] A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Using IR methods for labeling source code artifacts: Is it worthwhile?”
in Proc. ICPC, 2012, pp. 193–202.

[2] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” inProc. ICPC, 2006, pp. 3–12.

[3] G. C. Murphy, M. Kersten, M. P. Robillard, and D.̌Cubranìc, “The
emergent structure of development tasks,” inProc. ECOOP, 2005, pp.
33–48.

[4] S. McConnell,Code Complete, Second Edition. Redmond, WA, USA:
Microsoft Press, 2004.

[5] E. W. Høst and B. M. Østvold, “The Programmer’s Lexicon, Volume I:
The Verbs,” inProc. SCAM, 2007, pp. 193–202.

[6] ——, “Debugging Method Names,” inProc. ECOOP, 2009, pp. 294–
317.

[7] E. K. Karlsen, E. W. Høst, and B. M. Østvold, “Finding and fixing Java
naming bugs with the Lancelot Eclipse plugin,” inProc. Workshop on
Partial Evaluation and Program Manipulation, 2012, pp. 35–38.

[8] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules be-
tween sets of items in large databases,” inProc. International Conference
on Management of Data, 1993, pp. 207–216.

[9] Y. Hayase, Y. Kashima, Y. Manabe, and K. Inoue, “Building Domain
Specific Dictionaries of Verb-Object Relation from Source Code,” in
Proc. CSMR, 2011, pp. 93–100.

[10] J. Singer, G. Brown, M. Luján, A. Pocock, and P. Yiapanis, “Fundamen-
tal Nano-Patterns to Characterize and Classify Java Methods,”Electronic
Notes in Theoretical Computer Science, vol. 253, no. 7, pp. 191–204,
2010.

[11] “OpenNLP,” http://opennlp.sourceforge.net/.
[12] “SourceForge,” http://sourceforge.net/.
[13] “Apache Software,” http://www.apache.org/.
[14] “Eclipse,” http://www.eclipse.org/.
[15] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,

“Towards automatically generating summary comments for java meth-
ods,” in Proc. ASE, 2010, pp. 43–52.

[16] D. Shepherd, L. Pollock, and K. Vijay-Shanker, “Towards supporting on-
demand virtual remodularization using program graphs,” inProc. AOSD,
2006, pp. 3–14.

