1244

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.5 MAY 2014

[PAPER

An Investigation into the Characteristics of Merged
Code Clones during Software Evolution

Eunjong CHOI', Nonmember, Norihiro YOSHIDA ", and Katsuro INOUE', Members

SUMMARY Although code clones (i.e. code fragments that have simi-
lar or identical code fragments in the source code) are regarded as a factor
that increases the complexity of software maintenance, tools for supporting
clone refactoring (i.e. merging a set of code clones into a single method or
function) are not commonly used. To promote the development of refactor-
ing tools that can be more widely utilized, we present an investigation of
clone refactoring carried out in the development of open source software
systems. In the investigation, we identified the most frequently used refac-
toring patterns and discovered how merged code clone token sequences and
differences in token sequence lengths vary for each refactoring pattern.
key words: code clone, refactoring, open source software

1. Introduction

A code clone is a code fragment that has identical or similar
code fragment(s) to it in the source code [1]. It is regarded as
a factor that can increase the complexity of software mainte-
nance. For example, when a developer detects a code frag-
ment with a defect, the developer has to inspect all of the
fragment’s code clones for the same defect. However, de-
velopers tend to write code clones unintentionally, even in
situations where they can be easily avoided [2].

In recent decades, many tools have been developed to
detect code clones [3]-[5]. Lately, the clone research com-
munity has gradually shifted its focus from detection to
management [2], [6]. Clone refactoring is one of the most
vital features of code clones management. It merges a set of
code clones into a single function or method. Several tools
for clone refactoring have been developed. For example,
Eclipse plug-in that supports automatic clone refactoring
based on the modified Eclipse refactoring engine [7], and
a tool that provides metrics that indicate how code clones
can be merged [8]. However, such tools are not commonly
used compared to refactoring tools (e.g., Eclipse’s refactor-
ing features) not intended for supporting clone refactoring.

Murphy-Hill et al. investigated instances of refactor-
ing in the development of open source software systems [9].
Their study provided valuable insight that could be used to
develop more widely used refactoring tools. However, these
insights proved insufficient in developing tools for clone
refactoring specifically, because merging clones is consider-
ably more complicated than other types of refactoring (e.g.,

Manuscript received September 17, 2013.
Manuscript revised December 27, 2013.
"The authors are with Osaka University, Suita-shi, 565-0871
Japan.
""The author is with Nara Institute of Science and Technology,
Ikoma-shi, 630-0192 Japan.
DOI: 10.1587/transinf. E97.D.1244

simple code extraction and method renaming/moving) [10].

In this paper, we investigated instances of clone refac-
toring in open source software systems to uncover clues
that could contribute to the development of more widely
used tools for clone refactoring. We began by detecting in-
stances of refactoring from consecutive program versions of
open source software systems using a refactoring detection
tool named Ref-Finder[11]. From the detected instances of
refactoring, we further selected instances of the seven refac-
toring patterns (e.g., Extract Method and Replace Method
with Method Object) suggested by Fowler [10], which could
be used to merge sets of code clones into the same method.
Next, to mitigate the false positive problem, we manually
analyzed the outputs of the tool. Then, we measured the
similarity of token sequences in the identified instances of
refactoring in order to identify instances of clone refactor-
ing. Finally, we analyzed the statistics of the instances of
clone refactoring from 63 releases of three open source soft-
ware systems. The contributions of this paper are summa-
rized as follows:

e Presenting an approach to investigate how clones
were performed refactoring In order to investigate in-
stances of clone refactoring in three open source soft-
ware systems, this study presents an approach using
code clone identification technique named undirected
similarity (usim) and refactoring detection tool named
Ref-Finder.

e Discovering the most used refactoring patterns in
clone refactoring and the characteristics of merged
clones This study discovered that Extract Method (EM)
and Replace Method with Method Object (RMMO)
patterns were the most used when developers perform
clone refactoring. Moreover, it found out that large to-
ken differences between merged code clones in cases
where RMMO and EM patterns were used on pairs of
code clones.

e Suggestions for clone refactoring tools This paper
gives several suggestions for developing tools to sup-
port code refactoring based on the results of investiga-
tion.

The remainder of this article is organized into the fol-
lowing sections. Section 2 provides an overview of the
background for this study. Next, Sect.3 details our de-
sign for investigating the characteristics of merged code
clones. Section 4 analyzes the results of our investigation
into three open source software systems, discusses sugges-

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers

CHOI et al.: AN INVESTIGATION INTO THE CHARACTERISTICS OF MERGED CODE CLONES DURING SOFTWARE EVOLUTION

tions for tools to support clone refactoring based on the re-
sults, and then discuses threats to validity. Section 5 reviews
related work, and finally Sect. 7 concludes with possible fu-
ture work.

2. Background

To provide the necessary background for this study, this sec-
tion explains refactoring, code clone, and clone refactoring
in detail.

2.1 Refactoring

Refactoring is a disciplined technique for restructuring an
existing body of code, altering its internal structure with-
out changing its external behavior [10]. Detecting instances
of refactoring in software systems helps developers under-
stand the intentions of code changes made by other devel-
opers [12], and can aid researchers in their investigation on
how refactoring affects code quality [13].

Several tools for detecting instances of refactoring have
been suggested in [11],[14],[15]. For example, Prete et
al. proposed a template-based refactoring detection tech-
nique and developed a tool named Ref-Finder[11]. Ref-
Finder represents a revision pair as logic facts, and then in-
fers instances of refactoring by matching a logic rule for
each refactoring pattern with the logic facts. Weillgerber
et al. also proposed a technique for detecting instances of
refactoring [14]. This technique detects instances of refac-
toring by analyzing added, changed or removed entities
(classes, fields, methods) and then ranking refactoring can-
didates based on the token similarities between entities be-
fore and after refactoring. Hayashi et al. proposed a search-
based refactoring detection technique that detects instances
of refactoring by finding a sequence of refactoring opera-
tions from the initial state (old version) to the final state (new
version) using a graph search [15].

2.2 Code Clone

Code clones are code fragments that have similar or identi-
cal code fragments in the source code. They are categorized
into the following four types based on the textual (Type-1,
Type-2, and Type-3) and semantic (Type-4) similarities be-
tween the pairs of code clones [1]:

Type-1: Identical code fragments except for variations in
whitespace, layout and comments.

Type-2: Syntactically identical fragments except for vari-
ations in identifiers, literals, types, whitespace, layout
and comments.

Type-3: Copied fragments with further modifications such
as changed, added or removed statements, in addition
to variations in identifiers, literals, types, whitespace,
layout and comments.

Type-4: Two or more code fragments that perform the
same computation but implemented through different

1245

syntactic variants.

Dissimilarity, and abstraction in the definition of code
clones increase from Type-1 to Type-4. There are numerous
tools that utilize various techniques designed to detect these
types of code clones [4], [16]. For example, DECKARD de-
tects Type-1, Type-2, and Type-3 code clones using char-
acteristic vectors [4], and MECC detects all code clones
types based on a path-sensitive semantic-based static ana-
lyzer [16]. However, many code clones, especially those be-
longing to Type-3, and Type-4, remain undetected by these
tools because they are too dissimilar.

2.3 Clone Refactoring

Clone refactoring can be defined as the merging of a set of
various code clone types into a single function or method
using refactoring patterns [10]. It represents a major aspect
of code clone management.

Figure 1 shows examples of clone refactoring based on
Fowler’s refactoring book [10]. Figure 1 (a) illustrates an ex-
ample of clone refactoring using the Extract Method (EM),
which can be used to merge code clones with similar expres-
sions in the same class. In this figure, version k includes two
duplicated statements (shown in bold) existing in two sepa-
rate methods (printOwing and printAssets). After perform-
ing clone refactoring based on EM pattern (version k + 1),
these code clones are extracted from the two methods to cre-
ate a new method (printDetails) and the old statements are
replaced by caller statements to the new method.

The Replace Method with Method Object (RMMO) can
also be used to merge code clones that use local variables by
extracting code clones into a new method that is its own ob-
ject, and all the local variables become fields on that object.
This pattern is originally used to a longer method that uses
local variables in such a way that developers cannot use EM
pattern. Figure 1 (b) illustrates an example of clone refac-
toring using RMMO pattern. Before clone refactoring (ver-
sion k), two cloned methods (normalPrice and salePrice),
shown in bold, use local variables. After clone refactoring
(version k + 1), these code clones are extracted to a new
method of a new class (PriceCalculator), and all the local
variables are moved into fields of the PriceCalculator class.

3. Investigation Design

This section details our research approach for investigating
the characteristics of merged code clones. Section 3.1 ex-
plains the motivations behind our Research Questions (RQs)
and Sect. 3.2 describes each step of the investigation.

3.1 Motivations of Research Questions

The RQs in this study were devised to identify important
clues regarding the development of more widely used tools
for clone refactoring. Our RQs were as follows:

Which refactoring patterns are the most frequently

1246

void printOwing (double amount) {
printBanner () ;
System.out.println(“name:”+ _name);
System.out.println(“amount”+ amount) ;

}

void printAssets (double amount) {
printResult () ;
System.out.println(“name:”+ _name);
System.out.println(“amount”+ amount) ;

}

version k

) |

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.5 MAY 2014

void printOwing (double amount) {
printBanner () ;
printDetails (amount) ;

}

void printAssets (double amount) {
printResult () ;
printDetails (amount) ;

void printDetails (double amount) {
System.out.println(“name:”+ _name);
System.out.println(“amount”+ amount) ;

}

k+1

(a) Example of clone refactoring using EM pattern

class Order...
double normalPrice() {
double primaryBasePrice;
double secondaryBasePrice;
double tertiaryBasePrice;
// long computation;

}

double salePrice() {
double primaryBasePrice;
double secondaryBasePrice;
double tertiaryBasePrice;
// long computation;

version k

—

Order PriceCalculator

primaryBasePrice
secondaryBasePrice
tertiaryBasePrice

normalPrice ()Q
salePrice ()() \

N

compute

[

return new PriceCalculator (this) .compute ()

k+1

(b) Example of clone refactoring using RMMO pattern

Fig. 1

used in clone refactoring? (RQ1) Among refactoring pat-
terns that can be used for clone refactoring, tools for clone
refactoring should preferentially support the most frequently
used refactoring patterns. Therefore, RQ1 aims to identify
which refactoring patterns are the most common. We be-
lieve that by answering this RQ, the information could help
develop clone refactoring tools that support frequently used
refactoring patterns.

How similar are the token sequences between pairs
of merged code clones? (RQ2) and How different are
the lengths of token sequences between pairs of merged
code clones? (RQ3) Whether code clones are merged into
the same method highly depends on their similarities. Code
clones that are very similar to each other are more eas-
ily merged into the same method. However, even if they
share few similarities, developers are often able to merge
them with some effort based on refactoring pattern. For in-
stance, after identical code fragments are merged into the
same method, different parts are extracted as an each method
using the Form Template Method pattern. These RQs aim
to uncover how merged code clones differ with respect to
the token content (RQ2), and token lengths (RQ3) based
on their refactoring pattern. We believe that the answers to
these RQs could help develop clone refactoring tools to bet-
ter detect candidates for pairs of code clones based on their
similarities and differences.

How far are pairs of code clones located before clone
refactoring? (RQ4) Tools for clone refactoring should

Examples of clone refactoring.

be capable of suggesting candidates for clone refactoring.
However, it is difficult to select the appropriate candidates
because code clones are spread out over various locations
(e.g., the same class, different packages). Therefore, RQ4
aims at to find out how far code clones were located before
they were refactored. It is our belief that this would further
improve a clone refactoring tool’s ability to locate pairs of
code clone candidates.

3.2 Steps of Our Approach

To our knowledge, no techniques or tools for detecting
instances of clone refactoring have ever been proposed.
Therefore, we used a refactoring detection tool to first de-
tect instances of refactoring, and then identify instances of
clone refactoring from the results using a code clone iden-
tification technique. Figure 2 provides an overview of our
investigation into the characteristics of merged code clones.
It is comprised of the following three steps:

Step 1. Detect instances of refactoring between two con-
secutive program versions.

Step 2. Identify instances of code refactoring from the set
of instances of detected refactoring.

Step 3. Measure the characteristics of merged code frag-
ments in old version of software and categorize the data
based on the refactoring pattern.

The following sections explain the detailed of each step.

CHOI et al.: AN INVESTIGATION INTO THE CHARACTERISTICS OF MERGED CODE CLONES DURING SOFTWARE EVOLUTION

detected instances

source code of refactoring

1247

identified instances
of clone refactoring

identified instances
of clone refactoring

extract ||= Ref-Finder L D u—‘ljl
" - == = 1=
k k+1 k k+1 k k+1

k k+1

Step 1: Detecting Instances of Refactoring

Step 2: Identifying Instances | Step 3: Measuring the Characteristics
of Clone Refactoring

of Merged Code Clones

Fig.2 Overview of the investigation.

Table 1 Statistics of subject systems.
Software | Versions | #Versions ‘ Period
Apache Ant | 1.2-1.8.2 17 | Jan. 2000-Dec. 2010
ArgoUML 0.12-0.34 13 | Oct. 2002-Dec. 2011
Xerces-J 1.0.4-2.9.1 33 | Nov. 1999-Nov. 2010

3.2.1 Step 1 : Detecting Instances of Refactoring

In this step, we detected instances of refactoring in open
source software systems. To accomplish this, each sys-
tem’s source code was extracted from its respective soft-
ware repository. Next, Ref-Finder [11] was applied to two
consecutive program versions (e.g., version k, k + 1) to de-
tect instances of refactoring. Ref-Finder takes two consecu-
tive program versions as input data and reports instances of
refactoring. It can detect 65 of Fowler’s refactoring patterns.

Then, we selected seven refactoring patterns that could
be used for clone refactoring specifically. These patterns in-
cluded the Extract Class (EC), Parameterize Method (PM),
Pull Up Method (PUM), Extract Superclass (ES), and Form
Template Method (FTM). In addition to these patterns, EM
and RMMO patterns explained in Sect.2.3 were also in-
cluded. Finally, we manually validated the outputs of the
Ref-Finder since they contained many false positives [17].
To accurately validate the outputs, we referred to existing
validated output data of Ref-Finder that was used in a pre-
vious study by Bavota et al. [13]. In the study, two master
course students at the University of Salerno performed man-
ual validation.

For the purposes of our investigation, we selected the
same release versions as in the previously validated data.
This included 63 release versions of three Java open source
software systems: Apache Ant’, ArgoUML", and Xerces-
JTTT_Table 1 provides statistical data on each of the software
systems.

3.2.2 Step 2 : Identifying Instances of Clone Refactoring

In this step, undirected similarity (usim)[18] was used to
identify instances of clone refactoring from the instances of
refactoring detected in Step 1. To elaborate, each refactored
pair original was defined as an instance of clone refactoring,

Thttp://ant.apache.org/
TThttp://argouml.tigris.org/
T http://xerces.apache.org/xerces-j/

only if it satisfied the following three conditions:

Condition 1 : Each pair of code fragments was
refactored into the same new method in the new soft-
ware version. This means that each pair of code fragments
in the old version was merged into the same new method in
the new version.

Condition 2 : The computed usim value of each
pair of code fragments in the old version was more
than 65%. Many token-based clone detection tools have
been proposed [3], [5] because they detect code clones with
high accuracy [19]. However, existing tools fail to identify
many code clones when they contain large dissimilarities,
as are often found in Type-3, Type-4 code clones. For ex-
ample, CCFinder can only detect Type-1 and Type-2 code
clones [3]. Consequently, existing token-based clone detec-
tion tools are incapable of accurately detecting certain in-
stances of clone refactoring because developers sometimes
perform Type-3, Type-4 clone refactoring.

In order to identify all code clone types, this study used
usim to identify code clones. Originally used to identify
code clones in order to find candidates for clone refactoring
in the evolution of software, usim uses Levenshtein distance,
which measures the minimal amount of changes necessary
to transform one sequence of items into a second sequence
of items [20]. For instance, the Levenshtein distance be-
tween survey and surgery is 2, and the one between color
and colouris 1 [21].

The usim is defined in Eq. (1) [18]. Each instance of
refactoring in its original version is represented as a nor-
malized sequence sf, = norm(fx), where the normaliza-
tion function norm removes comments, line breaks, and in-
significant white spaces. The resulting distance Af,, =
LD(sfy, sf,) then describes the number of tokens that must
be changed to turn the code fragment f; into f,. The Leven-
shtein distance can be normalized to a relative value using
the length of the token sequence [, = len(sf,):

max (lx, ly) - Afy

Y % 100 (%) (1)
max (lx, l_,,)

usim (fx,fy) =

To confirm this condition, we first concatenated the old
version of each instance of refactoring into a single token
sequence. During this process, comments and white spaces
were removed from token sequences. Then, we normalized
the concatenated token sequences by replacing variables and
identifiers with a special token. Finally, we computed the
usim values of each pair of the token sequences that were

1248

merged into the same new method in a later version of the
software. We defined the pairs as code clones if the usim
values between their token sequences were more than 65%.
This threshold was used based on Mende’s study [18] be-
cause authors discovered that the best compromise of recall
and precision can be obtained at 65% usim value.

Condition 3 : The token length of each refactored
pair was greater than 10 in the old version. In Mende’s
study [18], the best compromise of recall and precision were
obtained at 65% usim values with a minimal token length
parameter of 10 tokens. Therefore, we also excluded in-
stances of refactoring where the code fragments in the old
version had a token length of fewer than 10 tokens.

3.2.3 Measuring the Characteristics of Merged Code
Clones

After identifying instances of clone refactoring, the next
step was to measure their characteristics in order to answer
the RQs raised in Sect. 3.1.

To answer RQ1, we analyzed the number of sets of
merged code clones between refactoring patterns. In the
analysis, we categorized pairs of code clones based on
whether they were merged into the same newly-created
method using the refactoring patterns.

To address RQ2, we measured the token similarities
between pairs of merged code clones using the usim, which
was also used to identify code clones in Sect. 3.2.2. Among
a set of merged code clones, the usim values can some-
times differ from each other, because pairs of code clones
were categorized into the same set based on the merged new
method in the new version. To analyze the distribution of
the usim values accurately, we measured U,,; (a set contain-
ing the minimum usim values of merged code clones), Uy,
(a set containing the average usim values of merged code
clones), and U,,, (a set containing the maximum usim val-
ues of merged code clones) between refactoring patterns.

Suppose that §1,52,--+,5, (where 1 < i < n) rep-
resents sets of merged code clones refactored by the same
refactoring pattern, u,,; represents the minimum usim value
of Si, um, represents the average usim value of S;, and
Uy, Tepresents the maximum usim value of S, then U,,; =
T umi,,}a Uw = {uaul s Uapys s uav,,}a and U,,, =
{umx] s Umxys 05 Uy, }

To answer RQ3, we investigated how the length of
token sequences differed between pairs of merged code
clones. First, we defined the length of token sequences dif-
ferences between a pair of merged code clones c; and c;
as LD = |it; — It,|, where [lt; represents the length of to-
ken sequences of c¢; and I/t represents the length of token
sequences of ¢;. Secondly, we measured L,; (a set con-
taining the minimum LD values of merged code clones),
L, (a set containing the average LD values of merged code
clones), and L, (a set containing the maximum LD val-
ues of merged code clones) between refactoring patterns be-
cause among a set of merged code clones, the LD values
sometimes vary.

{umil s Umiy s *

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.5 MAY 2014

Suppose that S,S,,---,5, (where 1 < i < n) rep-
resents sets of merged code clones refactored by the same
refactoring pattern, [,;, represents the minimum LD value
of S;, l., represents the average LD value of §;, and
my, Tepresents the maximum LD value of S;, then L, =
) lmi,, b Lay) luv,, }, and L,, =

lmxl 5 lm,\:p) lmx“ }

l
{lmil 5 lmiza : {lavl 5 lavza :
{

In response to RQ4, we defined the term class distance
as an indicator of the location between pairs of merged code
clones in the old version of the code. Locations can be cat-
egorized into one of the following categories: Same Class,
Same Package, and Difterent Packages.

We only investigated the class distances for code clone
refactored by RMMO pattern because the other six refac-
toring patterns already contained constraints regarding the
location of pairs of the code clones. For example, PUM pat-
tern can only be used to pairs of code clones in subclasses
that have a common superclass. In order to answer RQ4, we
analyzed the class distances between pairs of merged code
clones refactored by RMMO pattern.

4. Results and Suggestions

This section describes the results of our investigation and
discusses our suggestions for developing tools for clone
refactoring based on these results’. This section also identi-
fies threats to validity of our results.

4.1 Investigation Results

This section details the investigation results and provides an-
swers to the RQs based on these results.

Which refactoring patterns are the most frequently
used in clone refactoring? (RQ1)

To answer RQ1, Table 2 shows the number of sets of
merged code clones, and the numbers of pairs of merged
code clones (in parenthesis) organized by each refactoring
pattern.

The table reveals that a total of 35 sets of merged code
clones were identified from the three software systems under
investigation. Surprisingly, only four types of clone refac-
toring (EM, ES, FTM, and RMMO patterns) were found,
while there were no detected instances of EC, PM, and PUM
patterns.

Figure 3 depicts examples of found pairs of merged
code clones in the subject systems. Figure 3 (a) shows an
example of clone refactoring using EM pattern in Apache
Ant between release 1.6.2 and 1.6.3. In this figure, release

Table 2 The number of sets of merged code clones, and the number of
pairs of merged code clones in parentheses from overall subject systems.

Refactoring pattern | EM | ES | FTM | RMMO
[11(12) | 1(15) | 1(6) | 22(455)

Instances

TOur analyzed data is available at http://sel.ist.osaka-u.ac.jp/
“ejchoi/refactoredclones

CHOI et al.: AN INVESTIGATION INTO THE CHARACTERISTICS OF MERGED

CODE CLONES DURING SOFTWARE EVOLUTION
1249

public class DirectoryScanner

public void setIncludes (String[] includes)

{

'¥¥', File.separatorChar) ;
if (pattern.endsWith(File.separator)) {
pattern += "¥*n";

this.excludes[i]

pattern;

public synchronized void setIncludes(String[] includes) {
if (includes == null) if (includes == null) ({
this.includes = null; this.includes = null;
} else { } else {
this.includes = new String[includes.length]; this.includes = new Stringlincludes.length];
for (int i = 0; i < includes.length; i++) { for (int i = 0; i < includes.length; i++) {
String pattern; this.includes[i] = normalizePattern (includes[i]) ;
pattern = includes[i] .replace('/', File.separatorChar) .replace(}
'¥¥', File.separatorChar) ; }
if (pattern.endsWith(File.separator)) { }
pattern += "*x©;
} public synchronized void setExcludes (String[] excludes) {
this.includes[i] = pattern; if (excludes == null) {
} this.excludes = null;
} } else {
} this.excludes = new String[excludes.length];
..... for (int i = 0; i < excludes.length; i++) {
public void setExcludes (String[] excludes) { » this.excludes[i] = normalizePattern(excludes[il]);
if (excludes == null) ({ }
this.excludes = null; }
} else { }
this.excludes = new String[excludes.lengthl; | |
for (int i = 0; i < excludes.length; i++) { private static String normalizePattern(String p) {
String pattern; String pattern = p.replace('/', File.separatorChar)
pattern = excludes[i] .replace('/', File.separatorChar) .replace(.replace('¥¥', File.separatorChar);

public class DirectoryScanner

if (pattern.endsWith(File.separator)) {
pattern += "**";

return pattern;

release 1.6.2

release 1.6.3

(a) Example of clone refactoring using EM pattern in Apache Ant: Code clones (shown in bold) exist in two separate methods (setUncludes and setExclues)

in a class named org.apache.tools.ant.DirectoryScanner are extracted as a
release 1.6.2 and 1.6.3.

new method named normalizePattern (shown in red) in the same class between

public £

public
int

if

}

retu:

public final class XMLValidator
private static final int CHUNK_SHIFT
private static final int CHUNK_SIZE

8; // 2”8 = 256
(1 << CHUNK_SHIFT) ;

private static final int CHUNK_MASK = CHUNK SIZE - 1; public
AAAAA int
if
public int getContentSpecHandle (int elementIndex) {
if (elementIndex < 0 || elementIndex >= fElementCount)
return -1;
int chunk = elementIndex >> CHUNK SHIFT; }
int index = elementIndex & CHUNK_MASK; » retu

return fContentSpec [chunk] [index] ;

inal class XMLValidator
int getContentSpecType (int elementIndex)
contentSpecType -1;
(elementIndex > -1)
if (fGrammar.getElementDecl (elementIndex, fTempElementDecl)
contentSpecType fTempElementDecl.type;

}

{

rn contentSpecType;

int getContentSpecHandle (int elementIndex) {
contentSpecHandle = -1;
(elementIndex > -1) {
if (fGrammar.getElementDecl (elementIndex, fTempElementDecl)) {
contentSpecHandle = fTempElementDecl.contentSpecIndex;
}
rn contentSpecHandle;

public int getContentSpecType (int elementIndex) {
if (elementIndex < 0 || elementIndex >= fElementCount)
return -1;
int chunk elementIndex >> CHUNK_SHIFT;
int index elementIndex & CHUNK MASK;
return fContentSpecType [chunk] [index] ;

public

public class Grammar
private static final int CHUNK_SHIFT
private static final int CHUNK_SIZE
private static final int CHUNK MASK

if (elementDeclIndex < 0 || elementDeclIndex >= fElementDeclCount) {
return false;

int chunk
int index

=8; // 2"8 = 256
(1 << CHUNK_SHIFT) ;
CHUNK_SIZE - 1;

boolean getElementDecl (int elementDeclIndex, XMLElementDecl elementDecl)

{

elementDeclIndex >> CHUNK_SHIFT;
elementDeclIndex & CHUNK_MASK;

release 1.0.4

release 1.2.0

(b) Example of clone refactoring using RMMO pattern in Xerces-j: Code clones (shown in bold) exist in two separate methods (getContentSpecType and
getContentSpecHandle) in a org.apache.xerces.validators.common.XMLValidator class. They are extracted as a new method named getElementDecl

(shown in red) in a new class named org.apache.xerces.validators.common
bold) in the code clones were also moved into the Grammar class.

Fig.3 Example of clone refactoring in open so
examples to save space.

1.6.2 includes pairs of code clones (shown in bold) exist-
ing in two separate methods (setIncludes and setExcludes)
in a class named org.apache.tools.ant.DirectoryScanner.
In release 1.6.3, these code clones are extracted from the
two methods to create a new method named normalizePat-

.Grammar between release 1.0.4 and 1.2.0. Moreover, used variables (shown in

urce software systems: We changed layouts of these

tern, which shown in red, and the old statements are re-
placed by caller statements to the new method. Figure 3 (b)
shows an example of clone refactoring using RMMO pat-
tern in Xerces-j between release 1.0.4 and 1.2.0. In re-
lease 1.0.4, two cloned methods (getContentSpecHandle

1250

and getContentSpecType), shown in bold, use local vari-
ables. In release 1.0.6, these code clones are extracted to a
new method named getElementDecl, shown in red, of a new
class (org.apache.xerces.validators.common.Grammar),
and all the local variables are also moved into fields of the
Grammar class.

Taking a closer look at the table, 11 sets, and 12 pairs
of merged code clones across eight releases from three soft-
ware systems were identified as having been refactored by
EM pattern. In most cases, we found that EM pattern was
only used to merge one pair of code clones, meaning that it
was frequently used to merge small sets of code clones.

In examining instances of ES and FTM patterns, we
uncovered that they were only found in one release of Ar-
goUML for each pattern. ES and FTM pattern was used
to merge 15 and 6 pairs of code clones, respectively. To
summarize, ES and FTM patterns were rarely used for clone
refactoring, but were used to merge a large number of code
clones.

In contrast, 22 sets, and 455 pairs of merged code
clones were refactored using RMMO pattern across 10 re-
leases in two software systems, ArgoUML, and Xerces-J.
In particular, RMMO pattern was most commonly used in
release 0.26 of ArgoUML. In it, 34 pairs of coded meth-
ods named initWizard, which were distributed across 11
classes, were merged into a single getToDoltem method
in the org.argouml.cognitive.critics.Wizard class. Further-
more, 142 pairs of coded methods named dolt, getChoices,
and getSelected located in 17 classes were also merged into
a single getTarget method in a class named org.argouml.
uml.ui.AbstractActionAddModelElement2. An additional
245 pairs of coded methods in 23 classes named still-
Valid were merged into a method named isActive in
the org.argouml.cognitive.Critic class. We observed that
RMMO pattern was used to merge sets of code clones of
various sizes.

RMMO was the most frequently used refactoring
pattern observed, followed by EM pattern. Conversely,
ES and FTM patterns were used the least.

How similar are the token sequences between pairs
of merged code clones? (RQ2)

The results of RQ2 can be seen in the box-plots of
Fig.4. We observed that U,, had the same distribution as
Ui, and U, for EM, ES, and FTM patterns. This was
caused by the fact that sets of merged code clones were
mainly comprised of a pair of code clones (Especially with
EM pattern), or only one set of merged code clones was
identified (Seen with ES and FTM patterns). Figure 4 (a)
shows the distribution of U, for EM, ES, FTM, and RMMO
patterns. The distributions of U,,;, U,,, and U,,, are different
for RMMO pattern, as shown in Fig. 4 (b). In these figures,
the vertical axis represents the usim value, which start from
65%, because this is the minimum value we used to define a
pair of merged code clones (See Sect. 3.2.2).

Figure 4 (a) shows that the token similarities of pairs
of merged code clones refactored by EM and RMMO pat-

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.5 MAY 2014

|
|
|
|
|
|

90
90

80
80

usim(%)
usim(%)

70
70

6
60

EM ES FTM RMMO Uni Un Unx
(@) (b)
Fig.4 Box plots of U,, for EM, ES, FTM, and RMMO patterns (a), and
of Ui, Ugy, and Uy, for RMMO pattern (b).

terns were relatively low compared to that of ES and FTM
patterns. We believe that this was caused by the fact that
ES and FTM patterns merge pairs of code clones from sub-
classes into the same superclass. On the other hand, EM and
RMMO patterns merge pairs of code clones into the same
new method within the same class or another class.

We discovered that EM and RMMO patterns were used
to merge pairs of code clones of various token similarities.
However, these two patterns were mainly used to merge
pairs of relatively dissimilar code clones. EM pattern (me-
dian 73%) was used to merge pairs of code clones that were
less similar than the pairs refactored by RMMO pattern (me-
dian 88%). This implies that EM pattern was used to merge
pairs of code clones with fewer similarities. Largely dissim-
ilar pairs of code clones refactored by EM pattern were con-
sistently observed across all three software systems. Com-
pared to EM pattern, pairs of code clones merged using
RMMO pattern shared more similarities with one another.
(Median of the U,,;, Uy, and U,,, was approximately 88%).
Similar results were also obtained in ArgoUML and Xerces-
J.

EM and RMMO patterns were mainly used to
merge pairs of code clones of various token similarities.
Conversely, ES and FTM patterns were used mainly to
merge highly similar pairs of code clones.

How different are the lengths of token sequences be-
tween pairs of merged code clones? (RQ3)

The results of RQ3 were also analyzed via box-plots.
We observed that the distribution of L,, was the same as
those of L,,;, and L, for EM, ES, and FTM patterns. As
mentioned above, this was largely due to the fact that sets
of merged code clones primarily comprised a pair of code
clones (EM pattern), or only one set of merged code clones
was identified (ES and FTM patterns). Figure 5 (a) shows
the distribution of L,, for EM, ES, FTM, and RMMO pat-
terns. Further, the distribution of L,;, L,, and L,, for
RMMO pattern, which can be seen in Fig.5 (b), also dif-
fered. In the figures, the vertical axis represents differences
in token lengths between pairs of merged code clones.

We discovered that differences in token lengths be-
tween pairs of merged code clones varied more for EM and
RMMO patterns than for ES and FTM patterns. Even though
the differences in token lengths between merged code clones

CHOI et al.: AN INVESTIGATION INTO THE CHARACTERISTICS OF MERGED CODE CLONES DURING SOFTWARE EVOLUTION

200
200

150

Differences in Token Lengths
100

Differences in Token lengths
100 150

50
50

EM ES FIM RMMO L Lov [
(a) (b)
Fig.5 Bot plots of L,, for EM, ES, FTM, and RMMO patterns (a), and
Lyi, Lay, and L, for RMMO pattern (b).

0

0

o
T

e

Table 3 The number of pairs of code clones and percentage share
categorized by class distance.

Class distance | # of pairs of code clones | Percentage (%)

Same Class 13 3
Same Package 324 71
Different Packages 118 28

refactored by EM pattern varied, this pattern was mainly
used to merge pairs with relatively small differences in to-
ken lengths (median 15). Only small differences in token
lengths between pairs of merged code clones were found in
Apache Ant and ArgoUML. Conversely, the differences in
token lengths varied relatively widely in Xerces-J. RMMO
pattern was also mainly used to merge pairs of code clones
with similar differences in token lengths (median = 16).
Similar results were obtained from ArgoUML and Xerces-J.

RMMO and EM patterns were used to merge pairs
of code clones with tokens of varying lengths. In con-
trast, there was no difference in length in the token se-
quences of pairs of code clones performed refactoring
by ES and FTM patterns.

How far are pairs of code clones located before clone
refactoring? (RQ4)

In response to RQ4, Table 3 shows the three different
class distance categories identified in instances of RMMO
pattern, along with the number of pairs of code clones (in the
of pairs of code clones Column) and the percentage value
(in the Percentage Column) of that category. Table 3 shows
that pairs of code clones within the same Java package were
the most prevalent, followed by pairs of code clones in dif-
ferent packages and in the same class

Pairs of code clones in the same Java package were
the most prevalent, followed by pairs in different pack-
ages and in the same class.

4.2 Suggestions for Clone Refactoring Tools

This section details our suggestions for developing clone
refactoring tools based on the answers to our RQs. The sug-
gestions are as follows:

o It is vital for tools to support RMMO and EM patterns,

1251

as evidenced in the answer to RQ1.
e To support RMMO pattern, tools should suggest the fol-
lowing code clones as candidates for clone refactoring.

— Pairs of code clones of various token similarities,
as shown in the response to RQ2

— Pairs of code clones with various differences in
token size, as shown in the response to RQ3

— Pairs of code clones that are distributed in the
same Java package, as shown in the response to

RQ4

e To support EM pattern, tools should suggest pairs of
code clones with various token similarities as candi-
dates for clone refactoring, as shown in the result of
RQ2. Moreover, code clone candidates with different
token lengths should also be suggested on the basis of
the results of RQ3.

Our findings provide evidence that how (RQI1) and
which code clones (RQ2, RQ3, and RQ4) were refactored
by RMMO and EM patterns. These findings can be uti-
lized when tools suggest candidates for RMMO or EM pat-
tern. Figure 6 shows an overview of a tool that we suggest
for supporting EM pattern based the findings. As shown
in this figure, when a developer extracts a code clone as a
new method, the tool detects developer’s behavior to per-
form clone refactoring in the background and then suggests
candidates for clone refactoring to a developer. In the sug-
gestion, the tool suggests candidates according to the results
of RQ2 and RQ3, code clones with various token and/or
different token lengths. On the other hand, for supporting
RMMO pattern, when a developer extracts a code clone as a
new method in the newly created class, the tool detects de-
veloper’s behavior to perform clone refactoring in the back-
ground and then suggests candidates for clone refactoring.
In the suggestion, the tool suggests code clones with vari-
ous token similarities and/or different token lengths in the
same Java package according to the results of RQ2, RQ3,
and RQ4.

As future challenge, a system for ranking code clones
is needed for the efficient suggestion of them. The further
investigation of OSS version archives should be conducted
to discover the characteristic of code clones should be highly
prioritized. Also, a study should be done on how does the
suggested tool actively detect a developer’s behavior to per-
form clone refactoring. This study is necessary because the
suggested tool in the previous paragraph needs to detect de-
veloper’s behavior to perform clone refactoring. In the case
of non-clone refactoring, active detection of refactoring has
been already realized by Foster et al. [22]. Their tool named
WitchDoctor observes developer’s programming activities
in a background process in order to detect the beginning of
refactoring on the fly. Once the beginning of refactoring is
detected, it suggests code transformations to complete it. By
extending WitchDoctor, we plan to realize active detection
of clone refactoring in order to develop the tool suggested
in the previous paragraph. Moreover, after developing the

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.5 MAY 2014

1252
Step 1. A developer extracts 2 Step2. Tool detects that he is
code clones as a new method Q == M performing clone refactoring - Step 3. Tool finds candidates for ht:%\
\ \\c‘ / = clone refactoring according to
. Step 4. Tool suggests found the results of our investigation C, 4
Step 5. A developer performs — A g e e - \O/\%r
. o [N S
clone refactoring with Developer refactoring o

suggested clones

Tool to support
clone refactoring

Fig.6 Overview of a tool that we suggest for supporting EM pattern based the findings.

suggested tool, validation should be done on whether the
suggested tool accurately detects clone refactoring.

4.3 Threats to Validity

This investigation had three limitations.

The first limitation was that the investigation results
might have been too dependent on the output of the Ref-
Finder and the usim since our investigation was based on
the data from these two process. However, the output of
both was validated in [11], [18] respectively. Moreover, we
manually validated the results of the Ref-Finder based on
Bavota’s study [13] to improve the accuracy of our investi-
gation on clone refactoring. Therefore, we believe that the
results of investigation in this study are reliable.

The second limitation was that because we used 10 to-
kens as minimal token length parameter and 65% usim value
to identify instances of clone refactoring, we might miss real
instances of clone refactoring. However, we believe that re-
sults of investigation are reliable because these parameters
were validated in Mende’s study with best compromise of
recall and precision [18]. We also believe that missed small-
scale instances are trivial to software maintenances.

The final limitation was that because our case study
was conducted on three open source software systems. In-
vestigating different systems could have led to different re-
sults. However, we believe that our investigation results can
be generalized an applied to other open source software sys-
tems because they spanned 63 release versions from three
separate systems.

5. Related Work

As we mentioned in Sect. 1, Murphy-Hill et al. also investi-
gated instances of refactoring in open source software sys-
tems [9]. However, they focused on more typical refactoring
patterns (e.g., Extract method and Rename method) as op-
posed to clone refactoring. Furthermore, their investigation
was based on manual, and automatic observations of devel-
oper behavior using Eclipse Usage Collector, Mylyn, and
commit logs in version control systems. On the other hand,
our investigation was based on semi-automatic observations
of code evolution.

Numerous techniques have been developed to detect in-
stances of refactoring in version archives [11], [23]. In this
study, we used Ref-Finder to detect instances of non-clone
refactoring (e.g., rename method, extract method) before

manually filtering for instances of clone refactoring. Previ-
ous studies on refactoring detection have mainly focused on
the prevalence of different types of refactoring, and the pre-
cision/recall of detection. We instead focused our investiga-
tion on how developers performed clone refactoring using
one of the state-of-the-art refactoring detection tool named
Ref-Finder.

Our earlier workshop paper [24] presented a prelimi-
nary investigation into instances of clone refactoring in the
version archives of open source software systems. For this
journal paper, we manually verified the output of Ref-Finder
to improve the accuracy of our investigation. We accom-
plished this by using the datasets produced by Ref-Finder
that were validated by two master course students at the
University of Salerno, in Bavota’s study [13]". We also
extended the descriptions of our introduction and related
works sections.

6. Conclusion and Future Work

In this paper, we presented an investigation into instances
of clone refactoring identified in three open source software
systems to provide insights into the development of clone
refactoring tools that could be more widely used in indus-
try. In the investigation, we detected instances of refactor-
ing from consecutive program versions of software systems
using Ref-finder. Next, we identified instance of clone refac-
toring using undirected similarity. To improve the accuracy
of our investigation, we manually validated the instances of
clone refactoring and the statistics of pairs of merged code
clones to answer our RQs.

From the investigation results, we found that it would
be vital for clone refactoring tools to support RMMO and
EM patterns. Such tools should also suggest pairs of code
clones with varying tokens in the same Java package as can-
didates for RMMO pattern. In addition, suggested pairs
of code clones candidates should be differences in token
lengths. To support EM pattern, pairs of code clones with
varying levels of similarities should be suggested as candi-
dates for clone refactoring.

For future work, we plan on investigating additional
open source software systems and industrial software sys-
tems. We also plan to carry out the further studies on how
does the suggested tool actively detect a developer’s behav-
ior to perform clone refactoring and on the development of

"The validated datasets are available at http://www.distat.
unimol.it/reports/refactoring-defect/.

CHOI et al.: AN INVESTIGATION INTO THE CHARACTERISTICS OF MERGED

a system for ranking code clones as discussed in Sect. 4.2,
in order to realize efficient support of clone refactoring. We
would also like to develop tools for clone refactoring in ac-
cordance with these results.

Acknowledgments

This work was supported by JSPS KAKENHI 25220003.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

[8]

[91

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C.K. Roy, J.R. Cordy, and R. Koschke, “Comparison and evalua-
tion of code clone detection techniques and tools: A qualitative ap-
proach,” Sci. Comput. Program., vol.74, no.7, pp.470-495, 2009.

Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Apply-
ing clone change notification system into an industrial development
process,” Proc. ICPC, pp.199-206, 2013.

T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguis-
tic token-based code clone detection system for large scale source
code,” IEEE Trans. Softw. Eng., vol.28, no.7, pp.654—-670, 2002.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scal-
able and accurate tree-based detection of code clones,” Proc. ICSE,
pp-96-105, 2007.

Z.Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-
paste and related bugs in large-scale software code,” IEEE Trans.
Softw. Eng., vol.32, no.3, pp.176-192, 2006.

N. Gode and J. Harder, “Oops! ... I changed it again,” Proc. IWSC,
pp-14-20, 2011.

R. Tairas and J. Gray, “Increasing clone maintenance support by uni-
fying clone detection and refactoring activities,” Inf. Softw. Tech-
nol., vol.54, no.12, pp.1297-1307, 2012.

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Aries: Refactoring
support environment based on code clone analysis,” Proc. IASTED
SEA, pp.222-229, 2004.

E. Murphy-Hill, C. Parnin, and A.P. Black, “How we refactor and
how we know it,” IEEE Trans. Softw. Eng., vol.38, no.1, pp.5-18,
2012.

M. Fowler, Refactoring: Improving the design of existing code, Ad-
dison Wesley, 1999.

K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-
based reconstruction of complex refactorings,” Proc. ICSM, 2010.
J. Henkel, “CatchUp!: Capturing and replaying refactorings to sup-
port API evolution,” Proc. ICSE, pp.274-283, 2005.

G. Bavota, B.D. Carluccio, A.D. Lucia, M.D. Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? An empirical
study,” Proc. SCAM, pp.104-113, 2012.

P. WeiBlgerber and S. Diehl, “Identifying refactorings from source-
code changes,” Proc. ASE, pp.231-240, 2006.

S. Hayashi, Y. Tsuda, and M. Saeki, “Search-based refactoring de-
tection from source code revisions,” IEICE Trans. Inf. & Syst.,
vol.E93-D, no.4, pp.754-762, April 2010.

H. Kim, Y. Jung, S. Kim, and K. Yi, “MeCC: Memory comparison-
based clone detector,” Proc. ICSE, pp.301-310, 2011.

G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson, “Comparing
approaches to analyze refactoring activity on software repositories,”
J. Syst. Softw., vol.86, no.4, pp.1006-1022, 2013.

T. Mende, R. Koschke, and F. Beckwermert, “An evaluation of code
similarity identification for the grow-and-prune model,” J. Softw.
Maint. Evol., vol.21, no.2, pp.143-169, 2009.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Trans. Softw.
Eng., vol.33, no.9, pp.577-591, 2007.

V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol.10, no.8, pp.707—
710, 1966.

CODE CLONES DURING SOFTWARE EVOLUTION

[21]

[22]

[23]

[24]

1253

R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval:
The Concepts and Technology behind Search, 2nd ed., Addison
Wesley, 2011.

S.R. Foster, W.G. Griswold, and S. Lerner, “WitchDoctor: IDE
support for real-time auto-completion of refactorings,” Proc. ICSE,
pp.222-232,2012.

Z. Xing and E. Stroulia, “Refactoring detection based on umldiff
change-facts queries,” Proc. WCRE, pp.263-274, 2006.

E. Choi, N. Yoshida, and K. Inoue, “What kind of and how clones
are refactored?: A case study of three OSS projects,” Proc. WRT,
pp-1-7,2012.

Eunjong Choi received her Master from
Osaka University in 2011. She is a Ph.D. can-
didate at Osaka University since 2012. Her re-
search interests include software maintenance,
code clone analysis, refactoring, and defect de-
tection. She is a member of the ACM.

Norihiro Yoshida received his B.E. from
the Kyushu Institute of Technology in 2004 and
his Master and Ph.D. from Osaka University in
2006 and 2009, respectively. He is an assistant
professor at the Nara Institute of Science and
Technology since 2010. His research interests
include program analysis and software develop-
ment environment. He is a member of the IEEE,
the IEEE Computer Society, and the ACM.

Katsuro Inoue received the B.E., M.E., and
D.E. degrees in information and computer sci-
ences from Osaka University, Japan, in 1979,
1981, and 1984, respectively. He was an as-
sistant professor at the University of Hawaii at
Manoa from 1984-1986. He was a research as-
sociate at Osaka University from 1984-1989, an
assistant professor from 1989-1995, and a pro-
fessor beginning in 1995. His interests are in
various topics of software engineering such as
software process modeling, program analysis,

and software development environment. He is a member of the IEEE, the
IEEE Computer Society, and the ACM.

