
Improving Code Review Effectiveness
through Reviewer Recommendations

Patanamon Thongtanunam* and

Raula Gaikovina Kula†, Ana Erika Camargo Cruz*,
Norihiro Yoshida*, Hajimu Iida*

*Nara Institute of Science and Technology (NAIST)

†Osaka University, Japan

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

1

Introduction

• Code Review : A source code inspection performed by
developers other than the author
•  Supported Tools: Gerrit, ReviewBoad, etc.

• A patch reviewed by developers with related knowledge will
have high quality and low defects

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

2

Project’s
Code Repository Reviewer Author

A new Patch
(Software contribution)

??

Introduction > Reviewer Recommendation > Evaluation > Summary

Reviewer Assignment Problem

• It is difficult and time-consuming to find an appropriate
reviewers in large-scale projects

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

3

Who isappropriate to
review my code?

e.g. Globally distributed software development

Introduction > Reviewer Recommendation > Evaluation > Summary

Previous Work

• Review Bot’s algorithm[1]

•  For industrial setting of VMware
•  Selects reviewers who have reviewed in the same section of

code change.
• Required a long history of code changes in code review

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

4

[1] V. Balachandran, “Reducing Human Effort and Improving Quality in Peer Code Reviews using Automatic Static Analysis and Reviewer Recommendation,” in
Proc. ICSE’13, 2013, pp. 931–940.

Past Reviews

R4 (New Review)

Reviewer Candidates = Reviewers ([R3, R1])

R1 R2 R3

Introduction > Reviewer Recommendation > Evaluation > Summary

Code change

Reviewer Recommendation Algorithm

• Propose File Path Similarity (FPS) algorithm
• Select reviewers by calculating similarity of file paths

comparing with file paths of previous reviews.

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

5 Introduction > Reviewer Recommendation > Evaluation > Summary

•  Files with similar functions are
usually located under the same
or near directories. [2]

•  Reviewers having similar
knowledge of system would
have reviewed similar file.

UI Core

Proj

… … … …

… …

[2] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case study: Its extracted software architecture. In Proceedings ICSE ’99, pp. 555–563, 1999.

Example of FPS algorithm

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

6

FPS	

Past Reviews

Review R3
Files
- video/src/a.java
- video/src/b.java
Reviewers

Review R2
Files
- video/src/x.java
- video/src/y.java
Reviewers

A

Review R1
Files
- video/resource/a.xml
Reviewers

A B

FPS	

? ? ?

1

2

Score of past reviewers propagate to reviewers
A

B

= FPS(R3,R1) + FPS(R3,R2) = 0.1 + 0.5 = 0.6

= FPS(R3,R1) = 0.1

Review History

Introduction > Reviewer Recommendation > Evaluation > Summary

FPS score
•  File Path Similarity score of new review Rn and past review Rp	

•  Similarity Function:

•  commonPath(fn,fp) : Longest Common Prefix function returns number of directory/file
names that appear from the beginning of both file path

7

commonPath(“video/src/a.java”, “video/src/b.java”) = 2

Author Modified
files

Review Request

List of Review Requests

Verifier
Code Reviewer

Approver

Review Request

Approver accepted

Verifier accepted

Code
Repository

Modified
filesModified

filesModified
files

Modified
filesModified

filesModified
files

Modified
files

Figure 1: Code Review Process of Gerrit (Simplified Version)

sights into reviewer recommendation systems for distributed
software projects.

2. MODERN PEER CODE REVIEW
A modern peer code review refers to a software inspection

method that is 1) informal (contrast to traditional method),
2) tool-based, and 3) currently used in both industrial and
OSS development [2]. Since practitioners of this method can
coordinate asynchronously through a review tool, the adop-
tion to distributed software development would be e↵ortless.
The tool that our case study projects use is Gerrit1 The

process of this tool is shown Fig. 1. It begins with an author
creating a patch and submitting a set of new or modified files
as a review request to the system. This request is then added
to a awaiting list to be reviewed. An author can manually
assign reviewers to reduce the waiting time. However, the
assigned reviewers also can ultimately decide whether to
review the request, based on their experience and interests [9].
In Gerrit, the reviewers (i.e. Code reviewers, Approvers
and Verifiers) can examine the patch of a review request
with di↵erent permissions. Code reviewers can give opinion
and comments. Approvers mainly determine the quality
and impact of the changes. Verifiers are responsible for
integration testing, which is normally automated by Gerrit.
Code reviewers can be anyone in the project while approvers
and verifiers are experienced reviewers designated by project
leads. In the final step of the review process, a patch can
be merged into the projects only when the review request is
accepted by at least one approver and one verifier.
A code review will be e↵ective if an author requests ap-

propriate reviewers. However, without information about
available reviewers in Gerrit, it is di�cult for the authors
to select those reviewers. Therefore, an automatic reviewer
recommendation system should allow code reviews to be
performed with less time and e↵ort.

3. REVIEWER RECOMMENDATION
Based on the assumption, FPS algorithm selects candi-

dates from reviewers who had examined files with similar
directory paths. Furthermore, this algorithm also uses time
prioritization in the same way as the Review Bot’s algorithm.
A detail of FPS algorithm is described in Algorithm 1. This
algorithm takes two inputs: a new review request (Rn) and
the number of top candidates (k) to be recommended. The

1

AOSP: https://android-review.googlesource.com, and

OpenStack: https://review.openstack.org, and

Qt: https://codereview.qt-project.org/

algorithm returns a list of the top-k candidates ordered by
their file path similarity scores.

Algorithm 1 RecommendReviewers(Rn, k)

1: candidates list()
2: pastReviewList getPastReviews(Rn)
3: m 0
4: for Review Rp : pastReviewList do
5: score FPS(Rn, Rp,m)
6: for Reviewer r : getReviewers(Rp) do
7: candidates[r] candidates[r] + score

8: end for
9: m m+ 1
10: end for
11: candidates.sort()
12: return candidates[0 : k]

In line 2, a list of past reviews of Rn is retrieved. The
past reviews in this list are the reviews that closed by either
being accepted or rejected, before the creation date of Rn.
This list is sorted by the creation date of the past reviews
in reverse chronological order. In line 3, the value of m is
initialized to zero. This variable help us to score past reviews
when time prioritization is considered; so that as its value
increases, the past review being scored is older and a minor
score is given. In lines 4-10, the FPS function is iterated
for every past review. In lines 6-8, for each past review, its
reviewers are retrieved and assigned as candidates. Their
scores are increased by the FPS score of this past review. In
line 11, the list of candidates is sorted in descending order
based on their scores. Line 12 returns the top k candidates
with the highest score from the sorted list.

The calculation of FPS function is described in Equation
1. This calculates a score of a past review (Rp) from an
average of similarity of every file in Rp (fp) comparing with
every file in Rn (fn). The Files function returns a set of file
paths of the input review. The Similarity(fn, fp) function
measures the similarity between fp and fn, using Equation 2.
The averaged similarity score is prioritized by m and � value.
Same as time prioritization of the Review Bot’s algorithm,
the � parameter is a time prioritization factor ranging (0, 1].
When � = 1, the time prioritization is not considered.

FPS(Rn, Rp,m) =

P
fn2Files(Rn),
fp2Files(Rp)

Similarity(fn, fp)

|Files(Rn)|⇥ |Files(Rp)|
⇥ �

m (1)

Similarity(fn, fp) =
commonPath(fn, fp)

max(Length(fn),Length(fp))
(2)

In Equation 2, the commonPath(fn, fp) function counts
the number of common directory and/or file name that ap-
pear in both file path from the beginning. This count is
based on the assumption that files, which are under the
same directory, would have the similar function. Thus, the
first directory of file paths is compared firstly. Then, the
other components of file path are compared respectively. For
example, suppose fn is /src/camera/video/a.java and fp

is /src/camera/photo/a.java. The common path will be
/src/camera and the commonPath(fn, fp) returns 2. The
count of commonPath(fn, fp) can be formularized as Equa-

120

Author Modified
files

Review Request

List of Review Requests

Verifier
Code Reviewer

Approver

Review Request

Approver accepted

Verifier accepted

Code
Repository

Modified
filesModified

filesModified
files

Modified
filesModified

filesModified
files

Modified
files

Figure 1: Code Review Process of Gerrit (Simplified Version)

sights into reviewer recommendation systems for distributed
software projects.

2. MODERN PEER CODE REVIEW
A modern peer code review refers to a software inspection

method that is 1) informal (contrast to traditional method),
2) tool-based, and 3) currently used in both industrial and
OSS development [2]. Since practitioners of this method can
coordinate asynchronously through a review tool, the adop-
tion to distributed software development would be e↵ortless.
The tool that our case study projects use is Gerrit1 The

process of this tool is shown Fig. 1. It begins with an author
creating a patch and submitting a set of new or modified files
as a review request to the system. This request is then added
to a awaiting list to be reviewed. An author can manually
assign reviewers to reduce the waiting time. However, the
assigned reviewers also can ultimately decide whether to
review the request, based on their experience and interests [9].
In Gerrit, the reviewers (i.e. Code reviewers, Approvers
and Verifiers) can examine the patch of a review request
with di↵erent permissions. Code reviewers can give opinion
and comments. Approvers mainly determine the quality
and impact of the changes. Verifiers are responsible for
integration testing, which is normally automated by Gerrit.
Code reviewers can be anyone in the project while approvers
and verifiers are experienced reviewers designated by project
leads. In the final step of the review process, a patch can
be merged into the projects only when the review request is
accepted by at least one approver and one verifier.
A code review will be e↵ective if an author requests ap-

propriate reviewers. However, without information about
available reviewers in Gerrit, it is di�cult for the authors
to select those reviewers. Therefore, an automatic reviewer
recommendation system should allow code reviews to be
performed with less time and e↵ort.

3. REVIEWER RECOMMENDATION
Based on the assumption, FPS algorithm selects candi-

dates from reviewers who had examined files with similar
directory paths. Furthermore, this algorithm also uses time
prioritization in the same way as the Review Bot’s algorithm.
A detail of FPS algorithm is described in Algorithm 1. This
algorithm takes two inputs: a new review request (Rn) and
the number of top candidates (k) to be recommended. The

1

AOSP: https://android-review.googlesource.com, and

OpenStack: https://review.openstack.org, and

Qt: https://codereview.qt-project.org/

algorithm returns a list of the top-k candidates ordered by
their file path similarity scores.

Algorithm 1 RecommendReviewers(Rn, k)

1: candidates list()
2: pastReviewList getPastReviews(Rn)
3: m 0
4: for Review Rp : pastReviewList do
5: score FPS(Rn, Rp,m)
6: for Reviewer r : getReviewers(Rp) do
7: candidates[r] candidates[r] + score

8: end for
9: m m+ 1
10: end for
11: candidates.sort()
12: return candidates[0 : k]

In line 2, a list of past reviews of Rn is retrieved. The
past reviews in this list are the reviews that closed by either
being accepted or rejected, before the creation date of Rn.
This list is sorted by the creation date of the past reviews
in reverse chronological order. In line 3, the value of m is
initialized to zero. This variable help us to score past reviews
when time prioritization is considered; so that as its value
increases, the past review being scored is older and a minor
score is given. In lines 4-10, the FPS function is iterated
for every past review. In lines 6-8, for each past review, its
reviewers are retrieved and assigned as candidates. Their
scores are increased by the FPS score of this past review. In
line 11, the list of candidates is sorted in descending order
based on their scores. Line 12 returns the top k candidates
with the highest score from the sorted list.

The calculation of FPS function is described in Equation
1. This calculates a score of a past review (Rp) from an
average of similarity of every file in Rp (fp) comparing with
every file in Rn (fn). The Files function returns a set of file
paths of the input review. The Similarity(fn, fp) function
measures the similarity between fp and fn, using Equation 2.
The averaged similarity score is prioritized by m and � value.
Same as time prioritization of the Review Bot’s algorithm,
the � parameter is a time prioritization factor ranging (0, 1].
When � = 1, the time prioritization is not considered.

FPS(Rn, Rp,m) =

P
fn2Files(Rn),
fp2Files(Rp)

Similarity(fn, fp)

|Files(Rn)|⇥ |Files(Rp)|
⇥ �

m (1)

Similarity(fn, fp) =
commonPath(fn, fp)

max(Length(fn),Length(fp))
(2)

In Equation 2, the commonPath(fn, fp) function counts
the number of common directory and/or file name that ap-
pear in both file path from the beginning. This count is
based on the assumption that files, which are under the
same directory, would have the similar function. Thus, the
first directory of file paths is compared firstly. Then, the
other components of file path are compared respectively. For
example, suppose fn is /src/camera/video/a.java and fp

is /src/camera/photo/a.java. The common path will be
/src/camera and the commonPath(fn, fp) returns 2. The
count of commonPath(fn, fp) can be formularized as Equa-

120

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Introduction > Reviewer Recommendation > Evaluation > Summary

Projects Study Period* # of Reviews # of Files

AOSP
Oct 2008 – Jan 2012

(~2 years) 5,126 26,840

OpenStack
Jul 2011 – May 2012

(~1 year) 6,586 16,953

Qt
May 2011 – May 2012

(~1 year) 23,810 78,401

Evaluation

• Accuracy (same as the review bot research)

• Study Projects
• Using Gerrit code review

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

8

Top-k Accuracy = 	

Number of Correct Top-k recommendation	

Total number of reviews	

Introduction > Reviewer Recommendation > Evaluation > Summary
*Study period started from the 1st year of using peer code review.

2/6/2014 9

77.12 77.97

36.86 29.3
38.78

27.18

0

50

100

AOSP OpenStack Qt

T
op

-5
 A

cc
ur

ac
y

(%
)

FPS algorithm Review Bot's algorithm

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Table 2: Top-k accuracy of FPS algorithm and Review Bot’s algorithm with di↵erent time prioritization factors (�)

Project Top-k
FPS Algorithm Review Bot’s Algorithm

� = 1 � = 0.8 � = 0.6 � = 0.4 � = 0.2 � = 1 � = 0.8 � = 0.6 � = 0.4 � = 0.2

AOSP
Top-1 41.81 % 40.50 % 39.21 % 38.29 % 21.30 % 21.38 % 21.63 % 21.71 % 21.77 % 44.50 %
Top-3 69.84 % 67.66 % 66.56 % 64.83 % 63.38 % 29.15 % 29.17 % 29.17 % 29.20 % 29.20 %
Top-5 77.12 % 75.30 % 74.17 % 72.36 % 70.80 % 29.30 % 29.30 % 29.30 % 29.30 % 29.30 %

OpenStack
Top-1 38.32 % 36.47 % 35.18 % 34.73 % 34.04 % 22.94 % 23.23 % 23.19 % 23.20 % 23.19 %
Top-3 67.57 % 63.09 % 62.45 % 62.10 % 61.66 % 35.76 % 35.76 % 35.68 % 35.55 % 35.53 %
Top-5 77.97 % 73.28 % 72.85 % 72.62 % 71.71 % 38.78 % 38.90 % 38.82 % 38.89 % 38.89 %

Qt
Top-1 13.02 % 11.64 % 10.21 % 9.45 % 8.88 % 18.64 % 18.70 % 18.72 % 18.71 % 18.75 %
Top-3 28.82 % 21.39 % 20.15 % 19.27 % 18.46 % 26.18 % 26.19 % 26.16 % 26.16 % 26.16 %
Top-5 36.86 % 27.25 % 26.07 % 25.34 % 24.36 % 27.18 % 27.18 % 27.17 % 27.19 % 27.19 %

0 1000 2000 3000 4000 5000

0
20

40
60

80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(a) AOSP

0 1000 2000 3000 4000 5000 6000
0

20
40

60
80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(b) OpenStack

0 5000 10000 15000 20000

0
20

40
60

80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(c) Qt

Figure 2: Top-5 accuracy of FPS algorithm and Review Bot’s algorithm with time prioritization factor (� = 1)

5. CONCLUSION & FUTURE WORKS
In this study, we have proposed a recommendation algo-

rithm using file path similarity for the modern peer code re-
view process. The results indicate that our proposed FPS al-
gorithm e↵ectively recommend reviewers in two of the three
OSS projects. This algorithm also significantly outperform
the existing algorithm (i.e. Review Bot’s algorithm) in these
projects. Additionally, we found that the used of time pri-
oritization was surprisingly not appropriate for the recom-
mendation algorithms in distributed projects environment.

Our future work will concentrate on explore more insight
into projects, especially large scale projects to improve the
algorithm. The other impact factors such as directory struc-
ture will also be investigated. At the same time, we will
consider ways to balance the workload of reviewers to help
reviewers and reduce the number of awaiting reviews.

ACKNOWLEDGMENTS
We are thankful to Dr. Mike Barker from NAIST for his
valuable suggestions and discussions.

6. REFERENCES
[1] A. Aurum, H. Petersson, and C. Wohlin.

State-of-the-art: software inspections after 25 years.
Software Testing, Verification and Reliability,
12(3):133–154, Sept. 2002.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. ICSE ’13,
pages 712–721, 2013.

[3] V. Balachandran. Reducing Human E↵ort and
Improving Quality in Peer Code Reviews using
Automatic Static Analysis and Reviewer
Recommendation. In Proc. ICSE ’13, pages 931–940,
2013.

[4] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M.
German, and P. Devanbu. Cohesive and Isolated
Development with Branches. In Proc. FASE ’12, pages
316–331, 2012.

[5] K. Hamasaki, R. G. Kula, N. Yoshida, C. C. A. Erika,
K. Fujiwara, and H. Iida. Who does what during a
Code Review ? An extraction of an OSS Peer Review
Repository. In Proc. MSR’ 13, pages 49–52, 2013.

[6] E. Kocaguneli, T. Zimmermann, C. Bird, N. Nagappan,
and T. Menzies. Distributed development considered
harmful? In Proc. ICSE ’13, pages 882–890, 2013.

[7] a. Mockus and J. Herbsleb. Expertise Browser: a
quantitative approach to identifying expertise. In Proc.

ICSE ’02, pages 503–512, 2002.
[8] N. Ramasubbu and R. K. Balan. Globally Distributed

Software Development Project Performance : An
Empirical Analysis. In Proc. ESEC/FSE ’07, pages
125–134, 2007.

[9] P. C. Rigby and M.-A. Storey. Understanding
broadcast based peer review on open source software
projects. In Proc. ICSE ’11, pages 541–550, 2011.

• FPS algorithm significantly
outperformed Review Bot’s
algorithm

Results

Introduction > Reviewer Recommendation > Evaluation > Summary

Summary

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

10

Reviewer Assignment Problem

• It is difficult and time-consuming to find an appropriate
reviewers in large-scale projects

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

3

Who isappropriate to
review my code?

e.g. Globally distributed software development

Introduction > Reviewer Recommendation > Evaluation > Summary

Reviewer Recommendation Algorithm

• Propose File Path Similarity (FPS) algorithm
• Select reviewers by comparing file paths with previous

reviews

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

6 Introduction > Reviewer Recommendation > Evaluation > Summary

•  Files with similar functions are
usually located in the same or
near directories. [1]

•  Reviewers having similar
knowledge of system would
have reviewed similar files.

UI Core

Proj

… … … …

… …

Projects Study Period* # of Reviews # of Files

AOSP
Oct 2008 – Jan 2012

(~2 years) 5,126 26,840

OpenStack
Jul 2011 – May 2012

(~1 year) 6,586 16,953

Qt
May 2011 – May 2012

(~1 year) 23,810 78,401

Evaluation

• Accuracy (same as the review bot research)

• Study Projects
• Using Gerrit code review

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

9

Top-k Accuracy = !
Number of Correct Top-k recommendation!

Total number of reviews!

Introduction > Reviewer Recommendation > Evaluation > Summary
*Study period started from the 1st year of using peer code review.

Previous Work

• Review Bot’s algorithm[1]

•  For industrial setting of VMware
•  Selects reviewers who have reviewed in the same section of

code change.

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

4

[1] V. Balachandran, “Reducing Human Effort and Improving Quality in Peer Code Reviews using Automatic Static Analysis and Reviewer Recommendation,” in
Proc. ICSE’13, 2013, pp. 931–940.

Past Reviews

R4 (New Review)

Reviewer Candidates = Reviewers ([R3, R1])

R1 R2 R3

Introduction > Reviewer Recommendation > Evaluation > Summary

2/6/2014 10

77.12 77.97

36.86 29.3
38.78

27.18

0

50

100

AOSP OpenStack Qt

T
op

-5
 A

cc
ur

ac
y

(%
)

FPS algorithm Review Bot's algorithm

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Table 2: Top-k accuracy of FPS algorithm and Review Bot’s algorithm with di↵erent time prioritization factors (�)

Project Top-k
FPS Algorithm Review Bot’s Algorithm

� = 1 � = 0.8 � = 0.6 � = 0.4 � = 0.2 � = 1 � = 0.8 � = 0.6 � = 0.4 � = 0.2

AOSP
Top-1 41.81 % 40.50 % 39.21 % 38.29 % 21.30 % 21.38 % 21.63 % 21.71 % 21.77 % 44.50 %
Top-3 69.84 % 67.66 % 66.56 % 64.83 % 63.38 % 29.15 % 29.17 % 29.17 % 29.20 % 29.20 %
Top-5 77.12 % 75.30 % 74.17 % 72.36 % 70.80 % 29.30 % 29.30 % 29.30 % 29.30 % 29.30 %

OpenStack
Top-1 38.32 % 36.47 % 35.18 % 34.73 % 34.04 % 22.94 % 23.23 % 23.19 % 23.20 % 23.19 %
Top-3 67.57 % 63.09 % 62.45 % 62.10 % 61.66 % 35.76 % 35.76 % 35.68 % 35.55 % 35.53 %
Top-5 77.97 % 73.28 % 72.85 % 72.62 % 71.71 % 38.78 % 38.90 % 38.82 % 38.89 % 38.89 %

Qt
Top-1 13.02 % 11.64 % 10.21 % 9.45 % 8.88 % 18.64 % 18.70 % 18.72 % 18.71 % 18.75 %
Top-3 28.82 % 21.39 % 20.15 % 19.27 % 18.46 % 26.18 % 26.19 % 26.16 % 26.16 % 26.16 %
Top-5 36.86 % 27.25 % 26.07 % 25.34 % 24.36 % 27.18 % 27.18 % 27.17 % 27.19 % 27.19 %

0 1000 2000 3000 4000 5000

0
20

40
60

80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(a) AOSP

0 1000 2000 3000 4000 5000 6000

0
20

40
60

80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(b) OpenStack

0 5000 10000 15000 20000

0
20

40
60

80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(c) Qt

Figure 2: Top-5 accuracy of FPS algorithm and Review Bot’s algorithm with time prioritization factor (� = 1)

5. CONCLUSION & FUTURE WORKS
In this study, we have proposed a recommendation algo-

rithm using file path similarity for the modern peer code re-
view process. The results indicate that our proposed FPS al-
gorithm e↵ectively recommend reviewers in two of the three
OSS projects. This algorithm also significantly outperform
the existing algorithm (i.e. Review Bot’s algorithm) in these
projects. Additionally, we found that the used of time pri-
oritization was surprisingly not appropriate for the recom-
mendation algorithms in distributed projects environment.

Our future work will concentrate on explore more insight
into projects, especially large scale projects to improve the
algorithm. The other impact factors such as directory struc-
ture will also be investigated. At the same time, we will
consider ways to balance the workload of reviewers to help
reviewers and reduce the number of awaiting reviews.

ACKNOWLEDGMENTS
We are thankful to Dr. Mike Barker from NAIST for his
valuable suggestions and discussions.

6. REFERENCES
[1] A. Aurum, H. Petersson, and C. Wohlin.

State-of-the-art: software inspections after 25 years.
Software Testing, Verification and Reliability,
12(3):133–154, Sept. 2002.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. ICSE ’13,
pages 712–721, 2013.

[3] V. Balachandran. Reducing Human E↵ort and
Improving Quality in Peer Code Reviews using
Automatic Static Analysis and Reviewer
Recommendation. In Proc. ICSE ’13, pages 931–940,
2013.

[4] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M.
German, and P. Devanbu. Cohesive and Isolated
Development with Branches. In Proc. FASE ’12, pages
316–331, 2012.

[5] K. Hamasaki, R. G. Kula, N. Yoshida, C. C. A. Erika,
K. Fujiwara, and H. Iida. Who does what during a
Code Review ? An extraction of an OSS Peer Review
Repository. In Proc. MSR’ 13, pages 49–52, 2013.

[6] E. Kocaguneli, T. Zimmermann, C. Bird, N. Nagappan,
and T. Menzies. Distributed development considered
harmful? In Proc. ICSE ’13, pages 882–890, 2013.

[7] a. Mockus and J. Herbsleb. Expertise Browser: a
quantitative approach to identifying expertise. In Proc.

ICSE ’02, pages 503–512, 2002.
[8] N. Ramasubbu and R. K. Balan. Globally Distributed

Software Development Project Performance : An
Empirical Analysis. In Proc. ESEC/FSE ’07, pages
125–134, 2007.

[9] P. C. Rigby and M.-A. Storey. Understanding
broadcast based peer review on open source software
projects. In Proc. ICSE ’11, pages 541–550, 2011.

• FPS algorithm significantly
outperformed Review Bot’s
algorithm

Results

Introduction > Reviewer Recommendation > Evaluation > Summary

Introduction > Reviewer Recommendation > Evaluation > Summary

