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Introduction

- Code Review : A source code inspection performed by
developers other than the author

» Supported Tools: Gerrit, ReviewBoad, etc.

» A patch reviewed by developers with related knowledge will
have high quality and low defects

A new Patch

Author (Software contribution) Reviewer

Project’s
Code Repository
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Reviewer Assighment Problem

» It 1s difficult and time-consuming to find an appropriate

reviewers in large-scale projects

ho 1sappropriate to
review my code?

LN )

e.g. Globally distributed software development
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Previous Work

* Review Bot’s algorithm|]

* For industrial setting of VMware

» Selects reviewers who have reviewed in the same section of

code change.

* Required a long history of code changes in code review

#include #include

?mqn-a main() 1 ?n-m main()
write : Bello all;
i 7 T
write t p
=i !
Code change
5 R2 R3
Y

Past Reviews

#include
;m-up-d main()

write : Bello all;
write : I know !;

R4 (New Review)

Reviewer Candidates = Reviewers ( ([R3, R1J)
[1] V. Balachandran, “Reducing Human Effort and Improving Quality in Peer Code Reviews using Automatic Static An:

Proc. ICSE’13, 2013, pp. 931-940.
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Reviewer Recommendation Algorithm

* Propose File Path Similarity (FPS) algorithm

* Select reviewers by calculating similarity of file paths
comparing with file paths of previous reviews.

~

* Files with similar functions are
usually located under the same
or near directories. [2]

* Reviewers having similar
knowledge of system would
have reviewed similar file.

\_ /

[2] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case study: Its extracted software architecture. In Proceedings ICSE ’99, pp. 555-563, 1999.
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Example of FPS algorithm
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Past Reviews
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FPS score

» File Path Similarity score of new review R, and past review R,

S Similarity ( fn, fp)

fn€Files(Ry,),
fp€Files(Ryp)

|Files(Ry, )| x |Files(Ry)|

FPS(Rn, Ry, m) = X §™

* Similarity Function:

commonPath(fn, f»)
max(Length(f,), Length(f,))

Similarity ( fn, fp) =

- commonPath(f, f,) : Longest Common Prefix function returns number of directory/file
names that appear from the beginning of both file path

commonPath(“video/src/a.java”, “video/src/b.java”) = 2
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Evaluation

¢ ACCUI' acy (same as the review bot research)

Number of Correct Top-k recommendation

Top-k Accuracy =
b y Total number of reviews

nnnnnnn

open source project

- Study Projects

* Using Gerrit code review " openstack
Projects Study Period* # of Reviews  # of Files

AOSP Oct 2008 — Jan 2012 5126 26,840
(~2 years)

OpenStack Jul 2011 = May 2012 6,586 16,953
(~1 year)

Qt May 2011 — May 2012 23.810 78,401
(~1 year)

*Study period started from the 1% year of using peer code review. .
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Results
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(a) AOSP (b) OpenStack (c) Qt
W0 72 7797

» FPS algorithm significantly
outperformed Review Bot’s

algorithm
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m Top-5 Accuracy (%)

FPS algorithm ™ Review Bot's algorithm
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Reviewer Assighment Problem Reviewer Recommendation Algorithm

- It is difficult and time-consuming to find an appropriate * Propose File Path Similarity (FPS) algorithm
reviewers in large-scale projects

* Select reviewers by comparing file paths with previous
reviews

I

ho isappropriate to

review my code? * Files with similar functions are
usually located in the same or
near directories. [1]

* Reviewers having similar

knowledge of system would

\ have reviewed similar files. J

eg Globally distributed software development

Evaluation Results
° Accuracy (same as the review bot research)
R 8 . 8] 1, I 8
Number of Correct Top-k recommendation e [
Top-k Accuracy = - < L ol R
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. , . Jan 5,126 26,340
* Review Bot’s algorithmyi] cars) 100 (a) AOSP (b) OpenStack (c) Qt
- For industrial setting of VMware 1:';;' 2012 6,586 16,953 ;\? 77.12
« Selects reviewers who have reviewed in the same section of  May 2012 st St 8‘ . FPS algor 1 thm si ﬁcan tly
code change. year) , , g 50 86 gIn. ’
e oo code i 2 2718 outperformed Review Bot’s
Q .
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w0
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- R4 (New Review) = . ) )
Past Reviews B EPS algorithm B Review Bot's algorithm
Reviewer Candidates = Reviewers ([R3, R1])
[1]'V: Balachandran, “ Effort and
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