Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Improving Code Review Effectiveness
through Reviewer Recommendations

c . Patanamon Thongtanunam and
LA S WEN Raula Gaikovina Kula®, Ana Erika Camargo Cruz’,

Notihiro Yoshida®, Hajimu Iida"
"Nara Institute of Science and Technology (NAIST)

Laboratory for }
oftiwa 2
sign & Analysis

established in 2005

& Sciengg
<

2
(°g
A
®
2)
>

TOsaka University, Japan

S >
Y NAISTY & .

2/6/2014

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Introduction

- Code Review : A source code inspection performed by
developers other than the author

» Supported Tools: Gerrit, ReviewBoad, etc.

» A patch reviewed by developers with related knowledge will
have high quality and low defects

A new Patch

Author (Software contribution) Reviewer

Project’s
Code Repository
2/6/2014 Introduction 2

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Reviewer Assighment Problem

» It 1s difficult and time-consuming to find an appropriate

reviewers in large-scale projects

ho 1sappropriate to
review my code?

LN)

e.g. Globally distributed software development

2/6/2014 Introduction 3

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Previous Work

* Review Bot’s algorithm|]

* For industrial setting of VMware

» Selects reviewers who have reviewed in the same section of

code change.

* Required a long history of code changes in code review

#include #include

?mqn-a main() 1 ?n-m main()
write : Bello all;
i 7 T
write t p
=i !
Code change
5 R2 R3
Y

Past Reviews

#include
;m-up-d main()

write : Bello all;
write : I know !;

R4 (New Review)

Reviewer Candidates = Reviewers (([R3, R1J)
[1] V. Balachandran, “Reducing Human Effort and Improving Quality in Peer Code Reviews using Automatic Static An:

Proc. ICSE’13, 2013, pp. 931-940.
2/6/2014 Introduction

aly51s and Revlewer Recommendation,” in

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Reviewer Recommendation Algorithm

* Propose File Path Similarity (FPS) algorithm

* Select reviewers by calculating similarity of file paths
comparing with file paths of previous reviews.

~

* Files with similar functions are
usually located under the same
or near directories. [2]

* Reviewers having similar
knowledge of system would
have reviewed similar file.

_ /

[2] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case study: Its extracted software architecture. In Proceedings ICSE ’99, pp. 555-563, 1999.

2/6/2014 Reviewer Recommendation 5

Example of FPS algorithm

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Past Reviews

A

—

—@

/Review R1 /\

Files
- video/resource/a.xml
Reviewers

A

- e

(Score of past reviewers propagate to reviewers

|
! @8 = FPS(R3,R1) + FPS(R3,R2) = 0.1 + 0.5 = 0.6

J

/Review R2

Files

Reviewers

(e

- video/stc/x.java
- video/stc/y.java

N
I

|
\I\———' N -

Review History

-

/

'@‘ = FPS(R3,R1) = 0.1

2/6/2014

Reviewer Recommendation

>

{

%

TN

Files
- video/stc/a.java
- video/stc/b.java

Reviewers

{“-\r“-\r -\

I P ,: ? :. =
)

W)

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

FPS score

» File Path Similarity score of new review R, and past review R,

S Similarity (fn, fp)

fn€Files(Ry,),
fp€Files(Ryp)

|Files(Ry,)| x |Files(Ry)|

FPS(Rn, Ry, m) = X §™

* Similarity Function:

commonPath(fn, f»)
max(Length(f,), Length(f,))

Similarity (fn, fp) =

- commonPath(f, f,) : Longest Common Prefix function returns number of directory/file
names that appear from the beginning of both file path

commonPath(“video/src/a.java”, “video/src/b.java”) = 2

2/6/2014 Reviewer Recommendation v

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Evaluation

¢ ACCUI' acy (same as the review bot research)

Number of Correct Top-k recommendation

Top-k Accuracy =
b y Total number of reviews

nnnnnnn

open source project

- Study Projects

* Using Gerrit code review " openstack
Projects Study Period* # of Reviews # of Files

AOSP Oct 2008 — Jan 2012 5126 26,840
(~2 years)

OpenStack Jul 2011 = May 2012 6,586 16,953
(~1 year)

Qt May 2011 — May 2012 23.810 78,401
(~1 year)

*Study period started from the 1% year of using peer code review. .
2/6/2014 Evaluation 8

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Results

8 . 81 8
e I TS~ - =TT
-7 |
o o7 o | ,' (=
—~ © ' —~ © —~ ©
& r=7 & l' &
> ,/ > | >)
o o o "
© ~ © | g 1\
391 ! 391! 391 N
[s} ! o | 8 | v
< I < | << |
| | |
| | I
o | o | <
&1 | & N
| | |
| ——- FPS Algorithm | ——- FPS Algorithm ——- FPS Algorithm
o | —— Review Bot's Algorithm o J —— Review Bot's Algorithm o | —— Review Bot's Algorithm
T T T T T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 6000 0 5000 10000 15000 20000

Number of Reviews (N) Number of Reviews (N) Number of Reviews (N)

(a) AOSP (b) OpenStack (c) Qt
W0 72 7797

» FPS algorithm significantly
outperformed Review Bot’s

algorithm

U
(@)

27.18

S
|

AOSP OpenStack Qt

m Top-5 Accuracy (%)

FPS algorithm ™ Review Bot's algorithm

2/6/2014 Evaluation 9

Improving Code Review Effectiveness through Reviewer Recommendations (CHASE 2014)

Reviewer Assighment Problem Reviewer Recommendation Algorithm

- It is difficult and time-consuming to find an appropriate * Propose File Path Similarity (FPS) algorithm
reviewers in large-scale projects

* Select reviewers by comparing file paths with previous
reviews

I

ho isappropriate to

review my code? * Files with similar functions are
usually located in the same or
near directories. [1]

* Reviewers having similar

knowledge of system would

\ have reviewed similar files. J

eg Globally distributed software development

Evaluation Results
° Accuracy (same as the review bot research)
R 8 . 8] 1, I 8
Number of Correct Top-k recommendation e [
Top-k Accuracy = - < L ol R
Total number of reviews g ~ 270 g
il foll .
- Study Projects n m S £ 2
: — openstack g &1 &1l
clovs sorTwan ! ——- FPS Algorithm I ——- FPS Algorithm ——- FPS Algorithm
. . " " ° — Review Bot's Algorithm ° — Review Bot's Algorithm ° — Review Bot's Algorithm
PI'CVlOuS Work # of Reviews # of Files 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 6000 0 5000 10000 15000 20000
_ 2012 Number of Reviews (N) Number of Reviews (N) ‘Number of Reviews (N)
. , . Jan 5,126 26,340
* Review Bot’s algorithmyi] cars) 100 (a) AOSP (b) OpenStack (c) Qt
- For industrial setting of VMware 1:';;' 2012 6,586 16,953 ;\? 77.12
« Selects reviewers who have reviewed in the same section of May 2012 st St 8‘ . FPS algor 1 thm si ﬁcan tly
code change. year) , , g 50 86 gIn. ’
e oo code i 2 2718 outperformed Review Bot’s
Q .
< algorithm
w0
| & AOSP OpenStack Qt
- R4 (New Review) = .))
Past Reviews B EPS algorithm B Review Bot's algorithm
Reviewer Candidates = Reviewers ([R3, R1])
[1]'V: Balachandran, “ Effort and

2/6/2014 Introduction > Reviewer Recommendation > Evaluation > Summary 10

