
Repeatedly-Executed-Method Viewer for Efficient
Visualization of Execution Paths and States in Java

Toshinori Matsumura, Takashi Ishio, Yu Kashima, Katsuro Inoue
Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{m-tosinr, ishio, y-kasima, inoue}@ist.osaka-u.ac.jp

ABSTRACT
The state of a program at runtime is useful information for
developers to understand a program. Omniscient debugging
and logging-based tools enable developers to investigate the
state of a program at an arbitrary point of time in an execu-
tion. While these tools are effective to analyze the state at a
single point of time, they might be insufficient to understand
the generic behavior of a method which includes various
control-flow paths. In this paper, we propose REMViewer
(Repeatedly-Executed-Method Viewer), or a tool that visu-
alizes multiple execution paths of a Java method. The tool
shows each execution path in a separated view so that de-
velopers can firstly select actual execution paths of interest
and then compare the state of local variables in the paths.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Tracing

General Terms
Experimentation

Keywords
dynamic analysis, program understanding, record-and-replay,
Java

1. INTRODUCTION
To understand a program, developers often execute a pro-

gram and analyze the state of the program at runtime using
a debugger [10, 12]. While traditional interactive debuggers
including GDB and Eclipse JDT are widely used, such tools
require developers to explore source code in advance to set
breakpoints of potential interest [9].

Omniscient debugging and logging-based techniques [6, 7,
8] are promising approaches to understanding the dynamic
behavior of a program for software maintenance. Omni-
scient debugging [8] enables developers to inspect the state

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2-3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

of a program at an arbitrary point of time in an execution,
by recording all the runtime events during the execution
of the program. Although recording an execution makes a
program slower, it removes the burden of prior source code
exploration.

Since the existing techniques are proposed for debugging,
they focus on only a single point of time in an execution.
While investigating a particular point of time related to a
bug is sufficient for debugging [7], it may be insufficient to
understand the generic behavior of a method. If a method
includes various control-flow paths to implement a compli-
cated functionality, developers have to analyze individual
control-flow paths in the method [11].

In this paper, we propose REMViewer (Repeatedly-
Executed-Method Viewer), or a tool that visualizes mul-
tiple executions of a Java method. While a method may
contain branches to handle various special cases, most of
executions of the method may pass through a small num-
ber of control-flow paths representing normal cases. Hence,
REMViewer classifies executions of a method into groups
according to the executed instructions; it picks up an exe-
cution from each group as a representative for visualization.
By comparing visualized paths, developers can firstly select
actual execution paths of interest and then analyze the states
of local variables at each line in the paths.

The remaining of the paper is organized as follows. Sec-
tion 2 explains the features of our tool. Section 3 shows
the performance of the tool. Section 4 describes the related
work. In Section 5, we present the conclusion and future
work.

2. TOOL FEATURES
REMViewer is a logging-based visualization tool for Java.

The tool records an execution of a program and replays the
behavior of a method selected by a user. The tool comprises
two components: instrumentation and replay. The instru-
mentation component inserts logging instructions into class
files of a target program. An execution of the instrumented
program records an execution trace. The replay component
recovers the runtime states of execution paths of a method
selected by a user. A user can browse the recovered behavior
using a graphical user interface.

2.1 Execution Trace
An execution trace for REMViewer is a sequence of run-

time events representing control-flow and inter-procedural
data-flow. Control-flow events include method entry, method
exit, method call, and exception handling. Inter-procedural

Figure 1: A path view that shows an execution of a
target method

data-flow events include field access and array access.
Every event has two common attributes: thread ID and

bytecode instruction ID. They identify a thread and a byte-
code instruction where an event is observed. In addition,
each event has actual values used in the event. For exam-
ple, when a PUTFIELD instruction updated a field of an object
with a new value, the ID of the target object and the new
field value are recorded. Object ID is sequentially assigned
for each object during the execution.

Multi-threaded behavior of a program is recorded as a
single sequence of runtime events. If two or more events are
observed at the same time, these events are serialized by a
synchronized block in a logging process. Hence, the logging
process may affect thread scheduling in a target program.

An execution trace is stored in a sequence of files. Since
an execution of a program may result in a huge number of
events, a trace is split into files and compressed by the gzip
algorithm. To reduce the runtime overhead, a thread for
logging is created in addition to application threads. Af-
ter an execution is terminated, REMViewer makes an index
of method entry events so that the replay component can
replay a method from those events.

2.2 Replay
The replay component recovers the state of a selected

method by interpreting bytecode instructions using the ac-
tual values recorded in the trace. The replayed executions
of a method is represented by E = {e1, · · · , e|E|}. An execu-
tion of a method ei is represented by a sequence of program

x

1

2

3

4

5

6

line

Figure 2: A path represented by rectangles

states 〈bk, lk, vk〉, where bk is the k-th executed bytecode in-
struction, lk is a line number corresponding to bk, and vk is
the state of local variables before the execution of bk.

REMViewer provides a path view for an execution path e
as shown in Figure 1. The view shows source code in the top.
Similarly to a debugger, the view has a cursor pointing to
an instruction in an execution. A user can move the cursor
forward and backward according to e. The state of variables
at the pointed instruction is shown as a table in the middle
of the view. In addition, a user can click on another line
in source code to inspect the runtime states at the line. A
table in the bottom of the view shows the states of variables
at the selected line. Since a line in a loop may be executed
multiple times, all the states are listed as columns. In the
case of Figure 1, two columns show the states of variables
at the first and the second execution of the predicate of the
selected while statement.

To visualize the execution path in a view, green rectangles
are drawn in the background of source code. As shown in
Figure 2, each instruction 〈bk, lk, vk〉 in an execution e is rep-
resented by a rectangle at a position (xk, lk). The horizontal
position is incremented when an execution moves upwards
in source code; i.e. xk = xk−1 + 1 if lk−1 > lk, otherwise
xk = xk−1.

REMViewer opens multiple path views so that develop-
ers can compare multiple executions of a method. Because
visualizing executions that passed through the same instruc-
tions is not so informative for developers, REMViewer auto-
matically classifies the executions E for a method into path
groups. We have employed two classification: path-based
and line-based. The path-based classification classifies a set
of executions E into P (E) = {P1, · · · , P|P (E)|} such that

∀e1 ∈ Pi, e2 ∈ Pj . i = j ⇔ Path(e1) = Path(e2)

where Path(e) is a sequence of bytecode instructions (b1,
b2, · · ·) executed in e. Similarly, the line-based classification
results in L(E) = {L1, · · · , L|L(E)|} such that

∀e1 ∈ Li, e2 ∈ Lj . i = j ⇔ Lines(e1) = Lines(e2)

where Lines(e) is a set of line numbers corresponding to
bytecode instructions executed in e. REMViewer picks up
an execution path from each path group as a representative
of the group.

Figure 3 shows a screenshot of REMViewer that involves
three path views for the method shown in Figure 1. The left
view shows an execution that passed through false branches
for both the if and while statements in the method. The
middle one returns from the method in the if statement.
The right one executed the body of the while statement
once. Although the body of the while statement could be
executed a number of times, these three views cover the basic

Figure 3: A screenshot of REMViewer that shows three execution paths

Table 1: Execution Trace
Benchmark batik fop

Time (Normal) 4.44 sec 2.80 sec
Time (Logging) 33.67 sec 36.91 sec
Trace Size 717MB 860MB
#Methods 3,131 3,611
#Method-Executions 17,319,017 26,527,278

batik fop

1
0

5
0

5
0
0

T
im

e
 (

s
e
c
)

Figure 4: Time for replaying a method

behavior of the method. A user can compare execution paths
and the states of variables in a single window.

3. PERFORMANCE EVALUATION
We have evaluated the tool with respect to two perspec-

tives: execution time and visualization applicability. We
have used two target applications batik and fop in the Da-
Capo benchmark suite 9.12-bach [3]. We have executed their
default scenarios and recorded the behavior of classes in-
cluded in the DaCapo binary files. The runtime environment
is a workstation equipped with Intel Xeon 2.90GHz.

3.1 Execution Time
Table 1 shows the trace information. The row Time (Nor-

mal) shows the time for a normal execution without logging.
Time (Logging) shows the time to execute a benchmark
with logging. Trace Size is the total size of trace files.
#Methods indicates the number of executed methods in a
program. #Method-Executions indicates the total number
of method executions.

Logging significantly makes the programs slower, because
we have recorded all the classes in the applications. If devel-
opers are interested in particular components in a program,
they can reduce the logging overhead by recording only the
behavior of the selected components.

Figure 4 shows the distribution of the time required for re-
playing and visualizing a method. Replaying and visualizing
a method took 37.5 seconds for batik and 36.1 seconds for
fop on average. Except for 7 methods in batik, replay for a
method took less than 180 seconds. Hence, our visualization
is applicable to most of the methods in the programs. One
of the most time-consuming methods is the runBenchmark

method in org.dacapo.harness.TestHarness class. It took
733 seconds, partly because of our naive data structure.
Most of the time are spent to process the events between
a method entry nearby the beginning of a trace and its cor-
responding method exit nearby the end of the trace.

3.2 Path Classification
We have applied both path-based and line-based classifi-

cation to every method in the programs. Because methods
without conditional branches are always classified into one
group, we have evaluated 1,055 methods in batik and 1,243
methods in fop that contain at least one branch. Each of
those methods contains 4.36 branches and has been executed
9,217 times on average.

Figure 5 shows a cumulative relative frequency graph of
the number of classified path groups for each classification.
The graph shows 60% of methods are classified into one
group by the path-based classification; in other words, only

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

1.0

The Number of Path Groups

M
e

th
o

d
s
 w

it
h

 B
ra

n
c
h

e
s

Path (batik)

Line (batik)

Path (fop)

Line (fop)

Figure 5: A cumulative relative frequency graph of
the number of path groups

one path is executed for those methods. 90% of methods are
visualized by at most three views by the line-based classifi-
cation and five views by the path-based classification. This
result shows REMViewer enables developers to investigate a
few actual paths out of possible control-flow paths in source
code.

On the other hand, the largest number of line-based groups
for a method is 30. The method considerLegalBreak in
org.apache.fop.layoutmgr.BreakingAlgorithm class con-
tains 28 branches. To analyze such a complicated method,
we would like to improve our path classification technique.
For example, automatically classifying execution paths of a
method into normal (frequent) cases and special (less fre-
quent) cases might enable developers to start their investi-
gation from the normal behavior of the method.

4. RELATED WORK
Replaying a single method is a selective capture and replay

technique proposed by Joshi and Orso [6]. Our tool offers a
new user interface for analyzing the behavior of a method.

Jones et al. [5] proposed a tool named Tarantula to com-
pare the instructions executed by a number of test cases.
Our tool provides classified paths and actual data used in
executions for understanding, instead of faulty statements
for debugging. Abramson et al. [1] proposed Relative De-
bugging. While it compares an execution of a program with
an execution of a different version of the program, our tool
compares multiple executions of a single method.

Bell et al. [2] proposed Chronicler to record execution
traces with low overhead. The performance of our tool might
be improved by adopting the approach.

Dynamic invariant detection [4] extracts invariants from
actual values of variables in an execution trace. Sagdeo et al.
[11] proposed a predicate clustering for extracting invariants
for a particular set of paths in a method. While our tool
simply makes a list of actual values of local variables, the
technique is expected to summarize the states of variables
in thousands of executions.

5. CONCLUSION
We have presented REMViewer that shows execution paths

and the states of local variables in all the executions of a
method. Using the tool, developers can investigate the be-
havior of a method by comparing execution paths. We ex-
pect that such a comparison is effective to understand test

cases for a method. We would like to evaluate how the tool
is used in software maintenance tasks in the future work.

Recovering the state of objects used in a method is also our
future work. Although REMViewer uses actual field values
accessed in a method, such a partial state of an object may
be insufficient to understand what the accessed object is.

Finally, we would like to improve automatic classification
of execution paths so that developers can easily identify nor-
mal cases and special cases of the behavior of a method in
visualized paths.

6. ACKNOWLEDGMENTS
This work was supported by KAKENHI Nos.23680001

and 25220003.

7. REFERENCES
[1] D. Abramson, C. Chu, D. Kurniawan, and A. Searle.

Relative debugging in an integrated development
environment. Software Practice and Experience,
39(14):1157–1183, 2009.

[2] J. Bell, N. Sarda, and G. Kaiser. Chronicler:
Lightweight recording to reproduce field failures. In
Proc. of ICSE, pages 362–371, 2013.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In Proc. of
OOPSLA, pages 169–190, 2006.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):99–123,
2001.

[5] J. A. Jones, M. J. Harrold, and J. Stasko.
Visualization of test information to assist fault
localization. In Proc. of ICSE, pages 467–477, 2002.

[6] S. Joshi and A. Orso. SCARPE: A technique and tool
for selective capture and replay of program executions.
In Proc. of ICSM, pages 234–243, 2007.

[7] A. Ko and B. Myers. Debugging reinvented: Asking
and answering why and why not questions about
program behavior. In Proc. of ICSE, pages 301–310,
2008.

[8] B. Lewis. Debugging backwards in time. In Proc. of
AADEBUG, 2003.

[9] J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric
debugging. In Proc. of ICSE, pages 485–495, 2012.

[10] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej.
How do professional developers comprehend software?
In Proc. of ICSE, pages 255–265, 2012.

[11] P. Sagdeo, V. Athavale, S. Kowshik, and S. Vasudevan.
Precis: Inferring invariants using program path guided
clustering. In Proc. of ASE, pages 532–535, 2011.

[12] J. Sillito, G. C. Murphy, and K. D. Volder. Asking
and answering questions during a programming
change task. IEEE Transactions on Software
Engineering, 34(4):434–451, 2008.

Figure 6: Five path views point to the first instruction.

Figure 7: Each path view points to the second instruction in its execution path.

APPENDIX
A. SYNCHRONOUS SINGLE STEP EXECU-

TION
Synchronous single step execution is a basic feature of the

tool. Figure 6 is a screenshot that shows five views that
point to the first if instruction of the visualized method.
Figure 7 is a screenshot after the synchronous single step
execution. All the views point to the second instructions

of the executions. A user can see that only one out of five
paths entered into an if statement. A walk through of a
method using the feature enables a user to easily compare
when and how different paths are taken in each of executions.

A user can move the cursor in a path view to an arbitrary
line by clicking on the line. Even if a method is too large for
a walk through, a user may compare forward and backward
execution paths from a line of interest in the method.

