
Querying the History of Software Projects using
QWALKEKO

Reinout Stevens∗, Coen De Roover†∗
∗Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium
†Software Engineering Laboratory, Osaka University, Osaka, Japan

Email: resteven—cderoove@vub.ac.be

Abstract—We present the QWALKEKO meta-programming
library for Clojure that enables querying the history of versioned
software projects in a declarative manner. Unique to this library
is its support for regular path expressions within history queries.
Regular path expressions are akin to regular expressions, except
that they match a sequence of successive snapshots of a software
project along which user-specified logic conditions must hold.
Such logic conditions can concern the source code within a
snapshot, versioning information associated with the snapshot,
as well as patterns of source code changes with respect to other
snapshots. We have successfully used the resulting multi-faceted
queries to detect refactorings in project histories. In this paper,
we discuss how applicative logic meta-programming enabled
combining the heterogenous components of QWALKEKO into a
uniform whole. We focus on the applicative logic interface to a
new implementation of a well-known change distilling algorithm.
We use the problem of detecting and categorizing changes made
to SELENIUM-based test scripts for illustration purposes.

I. INTRODUCTION

Software repositories form a large source of information
regarding the development of software projects. Researchers
can use this information for the analysis of the maintainance
and on how software projects are being maintained and evolve.
So far, tool support to extract and query this information on a
fine-grained level is lacking.

In this paper we present and demonstrate the capabilities
of a history querying tool called QWALKEKO. QWALKEKO
is an Eclipse plugin to query the history and evolution of
software projects stored in git. A git repository can be viewed
as a graph, in which nodes correspond to commits, and
successive commits are connected. A branch results in multiple
successors, while a merge results in multiple predecessors of a
node. QWALKEKO combines the graph query language QWAL1

with the logic program querying language EKEKO [7] to reason
over such a graph. QWAL navigates through the graph, while
EKEKO is used to specify source code characteristics that have
to hold in a specific version. QWALKEKO has been applied
successfully to detect refactorings [1] and classify changes
made to SELENIUM scripts [2]. The source code, installation
instructions2, code3 and video used in this paper can be found
on Github.

1https://github.com/ReinoutStevens/damp.qwal
2http://github.com/ReinoutStevens/damp.qwalkeko
3http://github.com/ReinoutStevens/damp.qwalkeko/blob/master/src/

qwalkeko/demo/icsme selenium.clj

II. EKEKO

EKEKO [7] is a Clojure library for applicative logic meta-
programming against an Eclipse workspace. It provides a
library of predicates that can be used to query programs. These
predicates reify the basic structural, control flow and data flow
relations of the queried Eclipse projects, as well as higher-level
relations that are derived from the basic ones.

Throughout this paper we only use predicates that
reify structural relations computed from the Eclipse JDT.
Binary predicate (ast ?kind ?node), for instance, reifies
the relation of all AST nodes of a particular type.
Here, ?kind is a Clojure keyword denoting the capital-
ized, unqualified name of ?node’s class. Solutions to the
query (ekeko [?inv] (ast :MethodInvocation ?inv)) there-
fore comprise all method invocations in the source code.
Throughout this paper we prefix logic variables with a ?.

Ternary predicate (has ?propertyname ?node ?value)

reifies the relation between an AST node and the value of one
of its properties. Here, ?propertyname is a Clojure keyword
denoting the decapitalized name of the property’s
org.eclipse.jdt.core.dom.PropertyDescriptor (e.g.,
:modifiers). In general, ?value is either another ASTNode or
a wrapper for primitive values and collections. This wrapper
ensures the relationality of the predicate.

III. QWAL

QWAL allows querying graphs using regular path expres-
sions [8]. Regular path expressions are an intuitive formalism
for quantifying over the paths through a graph. They are
akin to regular expressions, except that they consist of logic
conditions to which regular expression operators have been
applied. Rather than matching a sequence of characters in a
string, they match paths through a graph along which their
conditions holds.

A QWAL query is launched using the function
(qwal graph begin ?end [& vars] & goals). It takes
as arguments a graph object, a begin node, a logical variable
that is unified with the end node of the expression, a
vector of local variables available inside the query and an
arbitrary amount of goals. The goals in a query either specify
conditions that must hold in the current node of the query, or
they modify the node against which conditions are checked by
moving through the graph. For example, the goal q=> changes
the current node to one of its successors. Table I provides
an excerpt of the available goals. Users are not limited to

q=> Moves the current version to one of its successors.
q<= Moves the current version to one of its predecessors.
(qcurrent [curr] & conditions) Conditions need to hold in the current version, which is bound to curr. Conditions are regular core.logic predicates.
(q* & goals) Goals succeed an arbitrary, including zero, amount of times.
(q=>* & goals) Similar to q*, except an implicit q=> is added after goals. If goals is empty this skips an arbitrary number of nodes.
(q=>+ & goals) Similar to q=>*, except goals must succeed at least once. If goals is empty this skips an arbitrary, non-zero number of nodes.
(q? & goals) Goals can either succeed or fail.

TABLE I. EXCERPT OF THE AVAILABLE GOALS IN QWAL

QwalKeko

in-source-code
(ast ?type ?node)
(has ?prop ?node ?result)
(child ?prop ?node ?child)
…

in-git-info
(fileinfo ?file version)
(author version)
(revision-number
version)
(date version)
…

Converted Graph

Changes
(change ?change left right)
(change|affects-node c ?node)
…

Qwal
q=>
q=>*
q<=
…

consults

navigates
ChangeNodesuses

consults

Fig. 1. Overview of QWALKEKO’s architecture.

the goals provided by QWAL, but can easily define their own
goals.

IV. QWALKEKO

QWALKEKO combines QWAL and EKEKO to reason over
the history of a software project. Foremost, it converts a git
repository into a graph of commits. This graph also contains
information such as the author, timestamp, commitmessage
and modified files of each commit. This graph and data is
stored in a new Eclipse project, together with a copy of
the repository. QWAL is used to navigate through this graph
and specifies against which commit predicates are checked.
Predicates can either use the metadata stored in the graph, or
they can use source code information from a specific commit.
For the latter, a new Eclipse project containing that particular
revision is created, and predicates written in EKEKO will use
that project as their fact base. QWALKEKO also features its
own set of QWAL and EKEKO predicates that only make sense
in the context of history querying. For example, QWALKEKO
provides a set of predicates that reason over changes made to
the source code.

A. Overview of the Architecture

Figure 1 depicts how the different components of
QWALKEKO interact. QWALKEKO defines the following
two QWAL goals: (in-git-info [c] & conditions) and
(in-source-code [c] & conditions). Both evaluate condi-
tions in the current version c. Goal in-git-info only allows
predicates that reason over the metadata stored in the graph.
For example, the predicate (fileinfo|edit ?info version)

unifies its first argument with a representation of a file that was
modified. Goal in-source-code allows reasoning over source
code information. To this end, it performs a checkout of the
code to provide AST information.

The following query finds the compilation units (i.e., the
root node of an AST) of every modified file in all the versions
of the queried software project. We assume graph and root are
variables bound to respectively the graph and the root version
of the queried project.

1(qwalkeko* [?info ?cu ?end]
2 (qwal graph root ?end []
3 (q=>*)
4 (in-source-code [curr]
5 (fileinfo|edit ?info curr)
6 (fileinfo|compilationunit ?info ?cu curr))))

On the first line we call qwalkeko*, which configures the
logic engine and specifies which variables will be the result
of the query. The second line configures the QWAL engine.
Both graph and root are already bound, while ?end will be
bound to the end version. On the third line we skip an arbitrary
number of versions. This pattern is functionally equivalent to
mapping the rest of the query over all the versions in the
graph. In the last three lines we specify that we are interested
in a modified file, as denoted by fileinfo|edit, and its
corresponding compilation unit.

B. ChangeNodes

QWALKEKO provides an implementation of a tree distilling
algorithm based upon the work of Chawathe et. al [10] called
CHANGENODES4. It takes as input two AST nodes and outputs
a minimal edit script that, when applied, transforms the first
AST into the second one. The edit script will contain the
following operations:

Insert A node is inserted in the AST
Delete A node is removed from the AST
Move A node is moved to a different location in the

AST
Update A node is updated/replaced with a different node

Chawathe’s algorithm has also been used in CHANGEDIS-
TILLER [4]. The main difference between CHANGENODES and
CHANGEDISTILLER is that CHANGENODES works directly on
top of the JDT nodes. CHANGENODES uses a language-aware
representation, while CHANGEDISTILLER uses a language-
agnostic representation. The heuristics used in CHANGEDIS-
TILLER are also used in CHANGENODES.

QWALKEKO introduces a new predicate
(change ?change source target), which binds ?change to a
single change operation between the source AST and target
AST. The predicate (changes ?changes source target)

binds ?changes to a collection containing all the changes made
to both ASTs.

The following code demonstrates how one can use the
change predicate to retrieve changes made to two Java classes:

1(qwal graph root ?end [?left-cu ?right-cu ?change]
2 (in-source-code [curr]
3 (ast :CompilationUnit ?left-cu))
4 q=>
5 (in-source-code
6 (compilationunit|corresponding ?left-cu ?right-cu)
7 (change ?change ?left-cu ?right-cu)))

4https://github.com/ReinoutStevens/ChangeNodes

On line 3 it binds ?left-cu to a compilation unit in the root
version of the graph. It moves to one of the successors of that
version on line 4. On lines 5–6 we retrieve the correspond-
ing compilation unit using compilationunit|corresponding,
which looks for a compilation unit in the same package that
defines the same type. Finally we compute the changes be-
tween these two compilation units using the predicate change.

V. QWALKEKO EXPLAINED BY MEANS OF AN EXAMPLE

In the following section we will build the queries needed to
categorize changes made to SELENIUM scripts. These queries
have been used to perform an earlier study [2]. First, we need
to identify which files are SELENIUM scripts. Next, we need
to compute changes made to these files. Finally, we detect
whether these changes belong to a predetermined category.

A. Identifying Selenium Scripts

First of all we identify which files of our project are
SELENIUM scripts. To this end, we write a QWALKEKO
query that loops over all the revisions of the queried software
project. For each revision, it inspects the newly added files
and identifies whether it is a SELENIUM script. The latter is
done by looking whether the file imports a package which
name contains “selenium”. Albeit a simple heuristic we have
not found any incorrectly identified files.

The following query returns all the SELENIUM scripts, the
compilation unit and the revision of the script of the queried
software project. First, it skips an arbitrary (including zero)
amount of revisions by using the q=>* operator on line 3. Next,
we bind ?info to a newly added file. This predicate is evaluated
without checking out the code, and thus if no new files are
added no unnecessary operations are performed. Finally, in
the last three lines we retrieve the corresponding compilation
unit of the added file and verify whether it is a SELENIUM
script.

1(qwalkeko* [?info ?cu ?end]
2 (qwal graph root ?end []
3 (q=>*)
4 (in-git-info [curr]
5 (fileinfo|add ?info curr))
6 (in-source-code [curr]
7 (fileinfo|compilationunit ?info ?cu curr)
8 (compilationunit|selenium ?cu))))

Identifying whether a compilation unit is a SELENIUM
script is done purely using EKEKO. On line 2 we define three
new logic variables using fresh. Line 3 verifies whether ?cu

unifies with a compilation unit. Line 4 unifies ?imp with one
of the import statements on that compilation unit. Lines 5–
6 retrieve the name of the imported package. The last line
verifies whether the name contains the string “.selenium”.

1(defn compilationunit|selenium [?cu]
2 (fresh [?imp ?impname ?str]
3 (ast :CompilationUnit ?cu)
4 (child :imports ?cu ?imp)
5 (has :name ?imp ?impname)
6 (name|qualified-string ?impname ?str)
7 (string-contains ?str ".selenium")))

The results of this query are written to a database so that
they do not need to be recomputed by other predicates. We in-
troduce a new predicate (fileinfo|selenium file version)

which verifies whether a file corresponds to a SELENIUM

script. This predicate consults this database and will be used
in further examples.

B. Classification of Changes

Having successfully identified the SELENIUM scripts in
the queried software project, we now need to compute and
categorize changes made to these files. To this end, when-
ever a change was made to a SELENIUM script we will
use CHANGENODES to compute the differences between that
revision of the file and its predecessor.

The following query computes and classifies changes made
to SELENIUM scripts. It skips a arbitrary, non-zero number of
versions using the q=>+ predicate on line 4. Next, it binds ?info

to a modified file in the current revision. It ensures this file is
a SELENIUM script. If no SELENIUM scripts are modified in
this revision no code is checked out. Next, it binds ?right-cu

to the compilation unit of that SELENIUM script. On line 10
of the query it moves to one of the predecessors of the current
revision using the q<= predicate. On line 12 it retrieves the
corresponding compilation unit of ?right-cu and binds it to
?left-cu. Note that the way the query is written, ?left-cu is
bound to the original script, while ?right-cu contains the more
recent revision of the script. On the last 2 lines it computes
the changes made these files. The predicate classify-change

is responsible for classifying a single change.

1(qwalkeko*
2 [?left-cu ?right-cu ?info ?end ?change ?category]
3 (qwal graph version ?end []
4 (q=>+)
5 (in-git-info [curr]
6 (fileinfo|edit ?info curr)
7 (fileinfo|selenium ?info curr))
8 (in-source-code [curr]
9 (fileinfo|compilationunit ?info ?right-cu curr))

10 q<=
11 (in-source-code [curr]
12 (compilationunit|corresponding ?right-cu ?left-cu)
13 (change ?change ?left-cu ?right-cu)
14 (classify-change ?change ?category))))

The following code verifies that a change can be clas-
sified as a modification to a locator. To this end it uses
(change|affects-node change ?node), which unifies ?node to
any parent node of both the original and the target AST
node of the change. This predicate works purely on an AST
level, and does not use other sources of information. It then
verifies whether one of the affected nodes resides inside either
a method invocation with the name “By” or an annotation
named “FindBy”. These predicates are once again written
using EKEKO.

1(defn change|affects-findBy [change ?find-by]
2 (all
3 (change|affects-node change ?find-by)
4 (conde
5 [(methodinvocation|by ?find-by)]
6 [(annotation|findBy ?find-by)])))

7(defn methodinvocation|by [?x]
8 (fresh [?name]
9 (ast :MethodInvocation ?x)

10 (child :expression ?x ?name)
11 (name|simple-string ?name "By")))

12(defn annotation|findBy [?x]
13 (fresh [?name]
14 (ast :NormalAnnotation ?x)
15 (has :typeName ?x ?name)
16 (name|simple-string ?name "FindBy")))

Predicates for the remaining categories are analogous.

VI. RELATED WORK

While most VCS provide limited version querying facil-
ities (e.g., to see who touched a file), they do not support
querying the code within a version – let alone across ver-
sions. The EVOLIZER platform supports history analyses of
versioned software through dedicated plugins. For instance,
CHANGEDISTILLER [4] extracts code changes between suc-
cessive versions through tree differencing. The general-purpose
history querying tools that exist, (i.e., SCQL [5] and V-
Praxis [6]) do not feature a language dedicated to specifying
the temporal characteristics of fine-grained code evolutions
across multiple versions.

Boa [3] is a query language for large-scale software reposi-
tories. It allows answering high-level questions over a plethora
of software repositories. Examples of questions are “What
are the five most used licenses?”, “How many Java projects
using SVN were active in 2011?” and “What are the projects
that support multiple operating systems?”. Queries for these
questions do not range over source code but rather high-level
information of the queried software projects. Boa also features
an AST visitor that can be used in queries. This has been used
to detect whether and how new language features are adopted
in programming projects. Boa users are limited to querying the
projects that are made available on their website, and thus no
arbitrary projects can be queried. QWALKEKO allows querying
any Java project stored in git. It also provides a richer query
language to retrieve information from the source code of the
queried projects.

VII. DISCUSSION

QWALKEKO provides an easy way to query large-scale
software projects in an acceptable time. The REPL provides a
nice way to gradually build queries until the expected results
are returned. Applying these queries to different data sets
requires no modification.

QWALKEKO only provides AST nodes as its source of
information. EKEKO provides other predicates that reason over
bindings (i.e.,, type and scoping information) provided by
Eclipse. In order to generate these bindings a project must
compile successfully in Eclipse. This is not always feasible,
as libraries may be missing, or some revisions only work with
a specific version of a library. We have incorporated the Partial
Program Analysis [9] tool in QWALKEKO, but the performance
is too slow for large-scale code querying. Thus, queries are
either limited to AST information, or the user needs to ensure
the project compiles properly.

Some recurring patterns have an unexpected poor perfor-
mance, mainly due to the logic reasoning engine provided by
Clojure. A concrete example is the use of the q=>* predicate at
the beginning of a query. For large projects this pattern must
be rewritten so that it uses Clojure’s map over all the versions
in the graph. An automated rewrite of these patterns would

increase the performance, while keeping the readability of the
query language.

VIII. SUMMARY

We have presented QWALKEKO as a tool to query
over the history of software projects stored in Git. To this
end, it combines the programming query language EKEKO
with the regular path expressions language QWAL. It pro-
vides its own set of predicates that only make sense in
the context of history querying. The most important one
is (change ?change left-cu right-cu), which reifies change
operations made to ASTs. It uses CHANGENODES, which
implements a tree differencing algorithmn on top of the JDT
AST nodes. We have demonstrated the use of QWALKEKO by
writing queries that identify SELENIUM scripts at categorize
changes made to these scripts.

ACKNOWLEDGMENTS

This work has been supported, in part, by the Cha-Q SBO project of
the Flemish agency for Innovation by Science and Technology (IWT), by a
PhD scholarship of the same agency, by the Japan Society for the Promotion
of Science, Kakenhi Kiban (S), No.25220003, and by the Osaka University
Program for Promoting International Joint Research.

REFERENCES

[1] R. Stevens, C. De Roover, C. Noguera, and V. Jonckers, “A history
querying tool and its application to detect multi-version refactorings,” in
Proceedings of the 17th European Conference on Software Maintenance
and Reengineering (CSMR13), 2013.

[2] L. Christophe, R. Stevens, and C. De Roover, “Prevalence and mainte-
nance of automated functional tests for web applications,” in Proceed-
ings of the 30th Internation Conference on Software Maintenance and
Evolution, 2014, to be published.

[3] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the 2013 International Conference on Software
Engineering (ICSE), 2013.

[4] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,”
Transactions on Software Engineering, vol. 33, no. 11, 2007.

[5] A. Hindle and D. M. German, “SCQL: A formal model and a query
language for source control repositories,” in Proceedings of the 2005
Working Conference on Mining Software Repositories (MSR05), 2005,
pp. 100–105.

[6] A. Mougenot, X. Blanc, and M.-P. Gervais, “D-Praxis: A peer-to-
peer collaborative model editing framework,” in Proceedings of the 9th
International Conference on Distributed Applications and Interoperable
Systems (DAIS09), 2009, pp. 16–29.

[7] C. De Roover and R. Stevens, “Building development tools interactively
using the ekeko meta-programming library,” in Proceedings of the
CSMR-WCRE Software Evolution Week (CSMR-WCRE14), 2014.

[8] O. de Moor, D. Lacey, and E. V. Wyk, “Universal regular path queries,”
Higher-Order and Symbolic Computation, pp. 15–35, 2002.

[9] B. Dagenais and L. Hendren, “Enabling static analysis for partial java
programs,” in In Proceedings of the 23rd ACM SIGPLAN conference
on Object oriented programming systems languages and applications
(OOPSLA08), 2008.

[10] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” in Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD96), 1996, pp. 493–504.

