
Evolution Analysis for
Accessibility Excessiveness in Java

Kazuo Kobori
NTT DATA Corporation

3-3-3, Toyosu, Koto

Tokyo 135-6033, Japan

Makoto Matsushita
Osaka University

1-5 Yamadaoka, Suita

Osaka 565-0871, Japan

Katsuro Inoue
Osaka University

1-5 Yamadaoka, Suita

Osaka 565-0871, Japan

Abstract—In Java programs, access modifiers are used to
control the accessibility of fields and methods from other objects.
Choosing appropriate access modifiers is one of the key factors to
improve program quality and to reduce potential vulnerability. In
our previous work, we presented a static analysis method named
Accessibility Excessiveness (AE) detection for each field and
method in Java program. We have also developed an AE analysis
tool named ModiChecker that analyzes each field and method of
the input Java programs, and reports their excessiveness. In this
paper, we have applied ModiChecker to several OSS repositories
to investigate the evolution of AE over versions, and identified
transition of AE status and the difference in the amount of AE
change between major version releases and minor ones. Also we
propose when to evaluate source code with AE analysis.

I. INTRODUCTION

Access modifiers in Java [27] are access level directions

for classes, constructors, methods, and fields. There are four

access levels in Java:

• public is visible to all classes everywhere.

• default is visible only within its own package.

• private can only be accessed in its own class.

• protected can only be accessed within its own pack-

age and, in addition, by a subclass of its class in another

package.

Proper use of access modifiers and controlling visibility are

essential to well-encapsulated Java programming [2], [3].
To realize good encapsulation in Java programming, we

have to carefully choose appropriate access modifiers for fields

and methods in a class, which are accessed by many other

objects. However, inexperienced developers might simply set

all of the access modifiers public indiscriminately.
For example, Fig. 1 is a case of bad access modifier setting.

Suppose that we have 2 methods: Method A and Method
B in class X . Method A has an initialization process for

Method B. It means that Method A must be called before

Method B is called. Otherwise, Method B can not work

properly. In this case, Method B should be always called

via Method A, and then the access modifier of Method B
should be private. However, a novice developer might set

such access modifier public without thinking seriously. In

a meanwhile, other developer would want to use Method B
and he/she would directly call it since the access modifier of

Method B allows direct access to it. This may cause a fault

due to lack of the initialization process performed by Method
A.

Class X

public method A

public method B

Initialization process

Main process

Call from A
Bad call
from outside X

...

...

Fig. 1. Inappropriate Access Modifier Declaration

In this example, the access modifier of Method B is de-

clared as public, but the current program calls Method B
only from a private method (Method A in this case), and

then the access modifier of Method B should be private.

A discrepancy between the declared accessibility and actual

usage of a field or method is called Accessibility Excessiveness
(AE) here, and AE can be a cause of program faults due to

unintended use of the fields or methods.

Existence of AE would be a bad smell of program, and it

would indicate various issues on the designs and developments

of program as follows.

1) Immature Design and Programming Issues: An AE

would cause unwilling access to a field or method

which should not be accessed by other objects in a

later development or maintenance phases as shown in

the example. This is an issue of design and development

processes from the view point of encapsulation [3]. This

problem shows the immaturity and carelessness of the

designer and developer.

2) Maintenance Issues: Sometimes the developer intention-

ally set field or method excessive for future use or for

the purpose of being called from other programs. It is

not easy to distinguish whether AE is intentionally set

by the developer or it is a case of Issue 1, so that the

maintenance of such program is complicated and is not

straightforward.

3) Security Vulnerability Issues: A program with AE has

potential vulnerability of its security in the sense that an

attacker may access an AE field and/or method against

the intention of the program designer and developer [21].

In this paper, we will discuss on an AE analysis method

mostly focusing on its application to Issue 1), and also mention

Issue 2) in our tool implementation. Issue 3) will be a further

research topic. If the maintenance issue would be resolved, we

could identify unintentionally set fields and methods easily,

and fix them with appropriate accessibility modifiers. That

might improve the quality of the software.

We have developed an AE analysis tool ModiChecker [12],

which takes a Java program as input, then analyzes and reports

the excessiveness of each access modifier declared at fields and

methods. Also it can change the detected access modifiers to

proper ones under the consultation of the developer.

ModiChecker is based on a static program analysis frame-

work MASU [8], [16], [31], which allows a flexible composi-

tion of various analysis tools very easily.

Using ModiChecker, we have analyzed several open source

software (OSS) systems to investigate the transition of AE

state from a version to a next version, and the evolution of

AE analysis results over multiple versions of these systems.

As a result, we obtained some observation for the relation of

evolution and AE.

The contributions of this paper are as follows.

(i) We propose an AE classification model for the fields

and methods of Java program. Based on this model, we

also define AE metrics, which would be an indicator of

bad smell of the target program.

(ii) Empirical results of AE analyses for various OSS sys-

tems have been presented, including transition patterns

and evolution pattern of AE metrics.

In the following, we will show AE classification model in

Section 2. Section 3 will describe an AE analysis method and

ModiChecker with Java analysis framework MASU. In Section

4, we will show our experiments of using ModiChecker with

several research questions. Section 5 will discuss our approach

and results associated with related works. Section 6 will

conclude our discussions with a few future works.

II. ACCESSIBILITY EXCESSIVENESS CLASSIFICATION

MODEL

Table I shows Accessibility Excessiveness Classification
(AE classification), which lists all the combinations of the

declarations and actual usages. The vertical column shows

the declaration of an access modifier for a field or method

in the source code. The horizontal row shows its actual usage

from other objects. Each element in AE classification is an

Accessibility Excessive identifier (AE id) which identifies each

AE case. For example, if a method has public as the

declaration of the access modifier, and it is accessed only by

TABLE I
ACCESSIBILITY EXCESSIVENESS CLASSIFICATION

�����������Declaration
Actual Usage

Public Protected Default Private No Access

Public pub-pub pub-pro pub-def pub-pri pub-na
Protected – pro-pro pro-def pro-pri pro-na
Default – – def-def def-pri def-na
Private – – – pri-pri pri-na

the objects of the same class, the AE id is pub-pri meaning

that it could be set to private.

We also define AE ids for special cases. AE ids pub-

pub, pro-pro, def-def, and pri-pri are the cases that there is

no discrepancy between the declaration and actual usage, so

those are proper cases for quality programming. AE ids pub-

na, pro-na, def-na, and pri-na indicate that those fields or

methods are declared but they are never used. These two cases

are technically not AE in the sense those are not ordinary

discrepancy between the declaration and actual usage, but

we include them for better understanding of access modifiers

usage. In total, we will use 14 AE ids here. The cases with

“–” means that those are detected as error at the compilation

time, so that those are not executable program and they are

out of the scope of the AE analysis.

The purpose of the AE analysis is to determine an AE id

for each field and method in the input program.

Also, we are interested in the statistic measures of AE

ids for the input program, which would be important clues

of program quality. Here, we define AE field metric and AE
method metric for a program. The AE field metric is a set

of the metric values for all 14 AE ids: {|pub − pub|, |pub −
pro|, ..., |def − na|, |pri − pri|, |pri − na|}, where |AEid|
means the number of the fields having that AE id in the

input program. In the same way the AE method metric is

also defined. We may simply call AE metric to mean either

AE field metric or AE method metric.

III. AE ANALYSIS TOOL MODICHECKER

A. Approach to AE Analysis

To perform the AE analysis, we need to know the decla-

ration of the access modifiers of each field or method of the

input program. This is easily done by parsing the program.

Also, we have to investigate into the actual usage of each

field or method. For this work, we employ a static source-

code analysis, which identifies other classes that may possibly

access the target field or method. For these purposes, we have

used a Java program analysis framework MASU [8], [16], [31].

MASU has been originally designed to implement pluggable

multi-linguistic metric infrastructure, but it is very useful as a

Java program analysis framework. MASU transforms the input

Java program into a language-independent Abstract Syntax

Tree (AST). For this AST, various analyses are performed

on class level, method level, and variable level. Caller-callee

relations and variable usage are obtained by these analyses.

Masu
framework

Source code

Required library
(.jar files)

AST
construction

AST
analysis

AST DB

Access modifier
declaration

analysis

Field/method
usage analysis

Discrepancy
detection

Source code
generation

Corrected source code ModiChecker

Input

AE report

Change instruction

Final output

Developer

Fig. 2. Architecture of ModiChecker

B. Overview of ModiChecker Architecture

Fig. 2 shows the architecture of ModiChecker. Firstly,

ModiChecker reads source code and all of the required library

files (normally, the library files are in .jar files) in Java. The

source code is transformed to an AST associated with various

static code analysis results.

After analyzing the AST, we get the access modifier declara-

tion and also usage of each field and method in AST database.

From the AST database, we can easily obtain the declaration

of the access modifier for each field or method. Also, actual

usage of each field and method, i.e., information of who may

access each field or method, is also obtained from the AST

database.

By comparing the declaration and actual usage of the field

and method, ModiChecker reports AE information to the

developer.

ModiChecker is a system with 521 source files and 102,250

LOC in Java, developed based on MASU framework as men-

tioned above. MASU framework itself accounts for 519 source

files and 102,000 LOC in Java (41,000 LOC are automatically

generated code by ANTLR [24]) .

C. Handling Special Cases

ModiChecker treats some special cases as follows.

Abstract Class and Interface: First, in the case of the

abstract method declared in abstract class and interface, they

are not called from any instances. ModiChecker detects such

an abstract method and an interface, and reports No Access for

them. Second, in the case of the non-abstract method defined

in an abstract class, ModiChecker reports AE in the same way

as a method defined in a non-abstract class.

Overriding Methods: In the case of the method overriding

another method, that overriding method in a subclass must

have an access modifier with an equal or more permissive level

class A

public method C()

class B

public method C()

Used publicly

Used privately

Fig. 3. Access Modifier of Overriding Method

to the access modifier of the overridden method. ModiChecker

detects such an overriding method and reports AE between the

access modifier of the overridden method and its actual usage.

For example, in Fig. 3, assume that we have two classes

class A and class B with method A.C and method
B.C of access modifier public for both. method B.C
overrides method A.C so ModiChecker does not recom-

mend private for method B.C even if method B.C is

actually used inside class B only.

In dynamic binding cases, if a class accesses a method of a

superclass, ModiChecker will consider that class also accesses

the method of all subclasses of the superclass. By this way,

dynamic binding cases should not bring about any bad effect

to ModiChecker analysis result.

IV. EXPERIMENTS

In our previous work [12], we have applied ModiChecker to

a single version of source code, and found some attributes of

AE including what kind of AEs are found, how many AEs are

in the code itself. In this paper we would like to step forward

to analyze the evolution of source code, see when is the best

timing for developers to check AEs.

A. Research Questions and Targets

We have conducted several experiments with some open

source software (OSS) systems. The objectives of these ex-

periments are to know the following research questions.

RQ1: Are the AE fields and methods are fixed in the
next versions? What is the AE state transition in
the versions?

RQ2: Do the AE metric values change over OSS evolu-
tion? If so, what is the evolutional pattern?

We have performed these experiments on a PC workstation

with dual Intel Xeon 5160(3.00 GHz) processors and 8 GB

memory under Windows 7 Enterprise.

B. RQ1: Transition of AE State

We are interested in knowing if AE state of a field or method

is corrected immediately in the next version or not. Life cycle

of AE is an intriguing research topic.

TABLE II
SUBJECT SOURCEFORGE PROJECTS

Name
Versions

Investigated
Total

Versions

Number of
Transitions

(Fields)

Number of
Transitions
(Methods) Years

Apache Ant 1.1 – 1.8.4 23 80920 185156 2003 – 2012
Areca Backup 5.0 – 7.2.17 66 131170 258748 2007 – 2012
ArgoUML 0.10.1 – 0.34 19 85038 252130 2002 – 2011
FreeMind 0.0.2 – 0.9.0 16 8676 30048 2000 – 2011
JDT Core 2.0.1 – 3.7 16 134374 240726 2002 – 2012
jEdit 3.0 – 4.5.2 21 50626 99008 2000 – 2012
Apache Struts 1.0.2 – 2.3.7 34 104218 274271 2002 – 2012

TABLE III
STATE TRANSITION RATIO: FIELDS (%)

Ant Areca ArgoUML FreeMind JDT Core jEdit Struts
a Proper → Proper 0.02 0.01 0.03 0.12 0.02 0.02 0.01
b AE → Proper 0.16 0.01 0.42 0.31 0.30 0.15 0.28
c No Access → Proper 0.02 0.01 0.05 0.07 0.07 0.05 0.01
d Proper → AE 0.04 0.04 0.04 0.38 0.22 0.09 0.14
e AE → AE 0.07 0.01 0.04 0.17 0.12 0.02 0.07
f No Access → AE 0.00 0.01 0.02 0.01 0.01 0.02 0.01
g Proper → No Access 0.03 0.02 0.19 0.21 0.06 0.07 0.05
h AE → No Access 0.03 0.01 0.07 0.02 0.05 0.03 0.03
i No Access → No Access 0.00 0.01 0.05 0.00 0.00 0.00 0.00
j No Existence → Proper 6.41 1.45 6.84 22.59 4.08 6.16 5.57
k No Existence → AE 1.41 0.55 1.56 7.13 1.79 1.78 2.52
l No Existence → No Access 0.21 0.07 1.38 3.27 0.24 0.81 0.59
m Proper → No existence 2.03 0.66 4.05 7.28 0.80 3.48 2.67
n AE → No existence 0.46 0.27 2.20 2.80 0.78 1.07 1.14
o No Access → No Existence 0.13 0.03 1.36 2.04 0.09 0.58 0.22
p Not changed (Proper) 71.42 65.50 58.72 35.85 64.98 63.67 50.34
q Not changed (AE) 15.28 26.74 12.26 12.99 22.72 16.22 29.00
r Not changed (No Access) 2.28 4.62 10.72 4.75 3.66 5.79 7.34

TABLE IV
STATE TRANSITION RATIO: METHODS (%)

Ant Areca ArgoUML FreeMind JDT Core jEdit Struts
a Proper → Proper 0.03 0.00 0.03 0.12 0.02 0.02 0.00
b AE → Proper 0.10 0.03 0.12 0.26 0.22 0.16 0.07
c No Access → Proper 0.13 0.07 0.26 0.36 0.24 0.13 0.09
d Proper → AE 0.05 0.02 0.08 0.13 0.13 0.15 0.04
e AE → AE 0.06 0.00 0.05 0.09 0.12 0.03 0.03
f No Access → AE 0.08 0.01 0.03 0.04 0.03 0.03 0.13
g Proper → No Access 0.07 0.05 0.25 0.34 0.13 0.19 0.05
h AE → No Access 0.05 0.00 0.06 0.03 0.05 0.05 0.01
i No Access → No Access 0.01 0.00 0.02 0.02 0.01 0.00 0.00
j No Existence → Proper 2.31 1.10 3.63 12.34 2.48 3.85 1.96
k No Existence → AE 1.08 0.28 1.06 2.10 0.78 1.38 1.52
l No Existence → No Access 4.44 1.10 5.48 17.41 2.71 3.32 5.73
m Proper → No Existence 0.54 0.63 1.88 5.41 1.04 2.12 0.73
n AE → No Existence 0.28 0.19 0.84 0.68 0.46 0.86 1.08
o No Access → No Existence 0.95 0.71 3.44 9.72 1.27 1.85 2.99
p Not changed (Proper) 26.46 44.30 28.44 23.29 38.83 38.58 19.16
q Not changed (AE) 12.89 11.88 8.92 3.10 11.22 14.02 11.07
r Not changed (No Access) 50.47 39.64 45.42 24.55 40.27 33.24 55.34

We have investigated the repositories of seven OSS projects

written in Java obtained from SourceForge as shown in Table

II. Those were selected due to their long development histories

with sufficient versions.

Transition of a field and method with respect to the AE

state changes between two consecutive versions is presented

in Figure 4. In this transition there are four states. Proper

means that the accessibility of the target field or method is

proper. AE indicates that the target is an AE field or method,

and No Access shows the target is not accessed by anyone. No

Existence means that the target does not exist at the previous

or next version. This state is employed to show the transitions

������

��

������
��

��

�	
������

���

�

�

�

��	

�

�

��

��

�

�

�

�

Fig. 4. Transition Diagram of Access Modifiers between Two Versions

when a field or method is newly added or deleted in the next

version.

All possible transitions are labeled from a–r. a and p are

both self transitions, but they are different in the sense that at

a some change for the access modifier was made, and at p no

change was performed. In the same manner, e and i are the

cases of some changes, and q and r are those of no change.

Table III and Table IV show the state transition ratios of the

fields and methods in each OSS system.

As we can see in these tables, one of the high ratio transition

group is self transitions without access modifier change (i.e.,

p, q, and r). This would mean that the access modifiers are

rarely revised in the next version.

Another high ratio is the transition from “No Existence to

Proper (j)” and “No Existence to No access (l).” For the field

AE transition (Table III), we can see that j is generally higher

than l. This would mean that most of newly added fields have

proper access modifiers rather than just created. On the other

hand, for the method AE transition (Table IV), l is generally

higher than j, meaning that many methods are created without

preparing their use.

We can observe that the transition from “AE to No Existence

(n)” shares higher ration than the transitions from “AE to

Proper (b)” in both cases of field and method. This would

suggest that the developers tend to remove or completely

change the fields and methods, rather than to correct AE access

modifiers.

Answer to RQ1: Changing the access modifiers for the
fields and methods are generally infrequent. They are
fairly stable even in the case of AE.

C. RQ2: Evolution of AE Metric Values

In previous section, we have observed that the AE state are

fairly stable once they are created in a version of source code.

Here, we have quantitatively analyzed the creation of AE fields

and methods over the evolution history.

We have examined 22 versions of Ant [23] from version

1.1 to 1.8.4, including 7 major version releases and 15 minor

version releases. We can identify a major version release

by the second version number change for a version number

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1.
1

1.
2

1.
3

1.
4

1.
4.

1
1.

5
1.

5.
1

1.
5.

2
1.

5.
3.

1
1.

5.
4

1.
6.

0
1.

6.
1

1.
6.

2
1.

6.
3

1.
6.

4
1.

6.
5

1.
7.

0
1.

7.
1

1.
8.

0
1.

8.
1

1.
8.

2
1.

8.
3

1.
8.

4

To
ta

l A
E

Fi
el

ds
/M

et
ho

ds

To
ta

l L
O

C

Version

Total AE Fields (without No Access) Total AE Methods (without No Access)
Total LOC (without comments)

Fig. 5. Grow of AE Fields and Methods over Total LOC

composition “1.major.minor”. Other changes are minor version

releases.

Fig. 5 shows the growth of the total number of LOC of

each version without counting comment lines, associated with

AE field and method metric values of each version. A red

bar represents the total number of AE fields, and a green bar

indicates the total number of AE methods, both of which do

not include No Access or Proper AE ids.

We see there is a strong correlation between the total LOC

and AE fields/methods. The correlation coefficients are 0.93

for LOC and AE fields and 0.98 for LOC and AE methods.

These indicate strong correlation between them. Also, as we

have discussed in previous subsection, AE methods exist more

than AE fields in all versions.

We have investigated the changes of AE metric values of

two consecutive versions. Fig. 6 shows the changes of the

number of same AE ids in two consecutive versions of Ant.

Here, a change means that the the absolute value of the

difference of the number of AE fields in two versions. In most

cases, the newer version adds new AE fields, so the number

of the newer version is larger than that of the older version.

There are cases of small decreases in the newer versions, but

those are rare ones.

As we can see in this figure, when a major version release

happens, many changes on AE fields occur, most of which

are addition of new AE fields. In this case, many actual AE

ids such as pro-pri are added in the newer major versions. It

seems that there is significant distinction of AE id changes

between major and minor version release cases.

Each AE id change has been examined by Mann-Whitney

U test to assess the significance of the difference between

major and minor version release cases. With 5% significance

level, the difference was confirmed for each AE id (pub-pro,

pub-def, pub-pri, pro-def, pro-pri, and def-pri) and each No

Access.

0

50

100

150

200

250

1.1
to
1.2

1.2
to
1.3

1.3
to
1.4

1.4
to

1.4.1

1.4.1
to
1.5

1.5
to

1.5.1

1.5.1
to

1.5.2

1.5.2
to

1.5.3.1

1.5.3.1
to

1.5.4

1.5.4
to

1.6.0

1.6.0
to

1.6.1

1.6.1
to

1.6.2

1.6.2
to

1.6.3

1.6.3
to

1.6.4

1.6.4
to

1.6.5

1.6.5
to

1.7.0

1.7.0
to

1.7.1

1.7.1
to

1.8.0

1.8.0
to

1.8.1

1.8.1
to

1.8.2

1.8.2
to

1.8.3

1.8.3
to

1.8.4

pri-na
def-na
pro-na
pub-na
def-pri
pro-pri
pro-def
pub-pri
pub-def
pub-pro

Major
version
release

Fig. 6. Change of # of AE Fields in Two Consecutive Versions of Ant

In the same manner, we have analyzed the evolution of AE

method metric. Fig. 7 shows the changes of the number of AE

fields in two consecutive versions of Ant. Here, the changes

are mostly the addition of the new AE methods, with rare

cases of very small decreases in the newer versions.

The major version releases contain many No Access AE ids,

most of which are newly added pub-na. The major version

releases seem to have much more changes than the minor

versions. To confirm this, we have also conducted U test for

each AE id with 5% significance level. The differences of

the major and minor version releases were confirmed for each

AE except for pub-pri, def-pri and def-na, due to their small

numbers of subjects.

The changes of AE fields and methods might be affected by

the total changes of source code in two consecutive versions.

The correlation coefficient between the source code changes

and the AE field changes was 0.85, and that between the

source code changes and the AE method changes was 0.69

(including No Access AE ids). There values are not so high,

suggesting that the changes of AE metric values do not simply

reflect the source code changes, but they could be used as

independent indicators of the characteristic of major and minor

version releases. We need further investigation of the AE

metric change by tracing each AE field and method, and by

analyzing other system evolution to validate this observation.

Answer to RQ2: The AE metric values generally increase
along with the growth of the total system size. Also, the
numbers of some AE ids for fields and methods are largely
changed at the major version releases, compared to the
minor version releases.

V. DISCUSSIONS AND RELATED WORK

A. Validity of AE Analysis and ModiChecker Approach

ModiChecker effectively detects and reports issues on the

accessibility excessiveness for the input source programs,

which cannot be detected by ordinary static analysis tools such

as FindBugs [29] or Jlint [30].

A use-case of ModiChecker is that the developer performs

the AE analysis by herself to check the problems on her

code. The developer would easily recognize the AE fields and

0

200

400

600

800

1000

1200

1400

1.1
to
1.2

1.2
to
1.3

1.3
to
1.4

1.4
to

1.4.1

1.4.1
to
1.5

1.5
to

1.5.1

1.5.1
to

1.5.2

1.5.2
to

1.5.3.1

1.5.3.1
to

1.5.4

1.5.4
to

1.6.0

1.6.0
to

1.6.1

1.6.1
to

1.6.2

1.6.2
to

1.6.3

1.6.3
to

1.6.4

1.6.4
to

1.6.5

1.6.5
to

1.7.0

1.7.0
to

1.7.1

1.7.1
to

1.8.0

1.8.0
to

1.8.1

1.8.1
to

1.8.2

1.8.2
to

1.8.3

1.8.3
to

1.8.4

pri-na
def-na
pro-na
pub-na
def-pri
pro-pri
pro-def
pub-pri
pub-def
pub-pro

Major
version
release

Fig. 7. Change of # of AE Methods in Two Consecutive Versions of Ant

methods, which can be accessed from external programs, and

also which will be used in the future. So, she can efficiently

identify the AE fields and methods caused by the bad design

and coding, and she can fix those with the correction feature

of ModiChecker.

Another use-case of ModiChecker is to validate program

quality at the validation time of system development or main-

tenance. Program managers and quality managers would run

this tool to see the issues of the access modifiers, and they

would explore the overall program quality with the AE metric.

As we have seen in our experiments, we would find many

AE fields and methods. This might be a bad smell of program

quality, but identifying the reasons of AE is not easy for others.

We need to device a method of tracing AE fields and methods,

and collecting data of future usage of AE fields and methods,

so that some mechanism of automatic detection of such AE

might be found.

ModiChecker is sufficiently fast to do these use-cases,

so that the users can efficiently validate and correct their

programs with the interactive correction feature.

We have used a source-code level analysis approach using

MASU here. We can think another approach of the bytecode

level analysis. This approach would be easily implemented,

but tracing back from the bytecode information to the source

code level would not straightforward.

B. Empirical Analysis Results of OSS Systems

As shown in previous section, we have found many AE

fields and methods in the target systems we have used in our

experiments. The AE metric values generally increase along

the increase of the system sizes. It seems that the developers

add many new AE fields and methods along the version

evolution without doing serious refactoring to fix the AE fields

and methods.

Life cycle of AE fields and methods in the system evolution

would be an interesting research topic. As a partial answer for

this, we have investigated the transition of AE states in RQ1.

Further interest includes the issues such as what is the life

time and who fixed the AE status. To analyze these, we need

to trace each AE field and method over version history. This

is an important future work of this research.

To recognize intentional AE fields and methods for future

use without interviewing the developers is not easy. As a

simple estimation method, we can consider the following

approach which could figure out some part of the excessive

fields/methods for future use, using test programs associated

with the target program.

The first step is checking the source files without test

programs and we get the result of ModiChecker for the target

program itself. Then we add the test programs and check them

together without counting the fields/methods in test programs.

The AE fields/methods found in the first step but not in the

second step could be the fields/methods for future use, since

they were actually accessed by the objects of test programs.

The test designer anticipated that those fields/methods should

be access from outside the program in the future.

C. Threat to Validity

In our approach, we have used a static analysis method for

Java source programs. This approach has a fundamental issue

such that reflection code in Java cannot be analyzed correctly.

This is not only our own issue but other static analysis

approaches, including bytecode level static analysis, contain

this issue. However, even with such limitation, the results

obtained from ModiChecker and its AE analysis are very

useful information to the program developers and maintainers.

We would think of dynamic analysis approach for the

AE analysis [5], [18]. The dynamic analysis is performed

by collecting execution traces, and by analyzing them for

specific objectives. This approach would solve the issue of

the reflection easily, but the weakness of the dynamic analysis

still remains. In the dynamic analysis, we have to choose

appropriate test executions to cover practical use-cases of the

target program. Without such consideration, the result would

be partial and it cannot be generalized. Another issue is to

handle large amount of execution trace data efficiently. To

handle the target programs with practical sizes, we need to

devise some compaction method to reduce the execution trace

sizes [13], [19].

In our experiments, we have used seven OSS systems to

know the characteristics of AE and the AE metric. These

would be insufficient to get general consequence, especially

on the case of evolution pattern of the AE metric, which was

obtained only from Ant’s 22 versions. We will continue to

analyze various OSS systems, as well as proprietary industry

systems developed under some organizational development

disciplines. It would be considered that such disciplined devel-

opment would create less AE fields and methods, but we need

validation with some data of proprietary industry systems.

D. Related Work

Access Modifier Analysis: There are some previous works

related to ours. Müller has proposed bytecode analysis for

checking Java access modifiers [11]. They have developed a

tool named AMA (Access Modifier Analyzer), which analyzes

Java bytecode for the similar objectives of ours. However, the

bytecode level analysis for the fields and methods does not

always correspond to the source code level analysis, due to

the extra fields and methods added at the compilation time.

Also, they have reported no empirical results of using their

tool. In this paper, we have clearly defined the concept of AE,

and shown the empirical results with several target systems.

Tai Cohen studied the distribution of the number of each

Java access modifier in some sample methods [4]. Security

vulnerability analysis has been studied using static analysis

approaches [6]. Among these researches, an issue of access

modifier declaration has been discussed by Viega et al. [21],

where a prototype system Jslint has been presented without

any detailed explanation of its internal algorithm and archi-

tecture. Also, Jslint only gives warning for the fields/methods

which are undeclared private, while our tool supports all kinds

of access modifier declarations based on analyzing actual

usage.

Vidal et al. have empirically studied similar AE analysis

to Java open-source software, and found that at least 20% of

defined methods are over-exposed, and 70% of the methods of

subject applications are defined as public [20]. They also found

that libraries have on average more over-exposed methods than

plain applications, less than 10% of the over-exposed methods

defined in early versions of the applications become non-over-

exposed in future versions.

The idea of using access modifier metrics would be related

to our previous work [9]. In that paper, the number of each

Java access modifier is used as one of the metrics for checking

the similarity between Java source codes.

Static Code Analyzers: There are a lot of static code

analysis tools for Java [29], [30]. Those tools are very pop-

ular these days in the development of Java programs. They

find possible bugs or bad coding patterns such as deadlock,

overloading, array boundary overflow, and so on. Rutar et. al.

have compared five of those tools, and reported the difference

[14]. However, none of these tool currently available publicly

or commercially have the feature for analyzing the AE fields

and methods.

Static Code Analysis for Object Oriented Languages: Ana-

lyzing actual usage of fields and methods are related to various

static analysis techniques of object oriented languages, such as

reference analysis, point-to analysis, call graph analysis, and

class analysis. Reference analysis and point-to analysis are

static methods for identifying reference objects of a pointer

or variable [1], [10], [17]. It is based on the control flow

and data flow analyses, and also context sensitivity or flow

sensitivity of method calls is used [22]. In our AE analysis,

MASU provides information of possible reference of fields,

which would be considered as a simple point-to analysis.

Call graph analysis is a method to establish caller and callee

relations for the given program [7]. There are many tradition

in ordinary programming languages, and also many methods

have been proposed and actually implemented as tools for

the object oriented languages [25], [26], [28]. In MASU, the

caller-callee relations is constructed by estimating possible

candidate callees for each method invocation.

These analyses in object oriented languages need a basis of

class analysis, which determines the classes of the objects to

which reference variables may point. This is a fundamental

analysis so that there are many research works presented [7],

[15]. MASU performs this analysis as a part of other analyses

mentioned above.

VI. CONCLUSIONS

ModiChecker has been used to analyze many OSS systems

to investigate our approach with two research questions. The

analysis results show the characteristics of AE fields and

methods, including their transition and evolution.

We have found that our system is very useful to detect fields

and methods with the excessive access modifiers, and that

there are many AE fields and methods with various reasons

including bad design and coding. According to the result of

AE analysis for software evolution, we also found that the

number of AEs increases when the major version was released.

We understood that it would be better for developers that they

would like to check AEs before releasing new major version,

to find out potential bugs effectively. We are confident that

the AE analysis with ModiChecker is an important method to

support quality programming and understanding in Java.

Throughout the experiments, we found that there are two

types of AEs, AEs by design or coding errors, and intentional
AEs for further extensions or accesses from external software.

Our tool has a feature to opt-out intentional AEs manually to

cope with the situation. As the further work, we are developing

a mechanism to detect intentional AEs automatically, by

analyzing class diagrams or test codes of target source codes.

Investigating abstract classes would also be needed to clarify

how many AEs are in existing software. Interviewing software

developers to ask why/how they create and resolve AEs in their

software would also be an interesting further direction of this

research.

ACKNOWLEDGMENT

The authors would like to thank to Quoc Dotri who con-

tributed to the initial development of ModiChecker. Also, we

would like to thank to Tatsuya Ishizue and Riku Ohnishi for

the support to this work. This work is partially supported by

Japan Society for the Promotion of Science, Grant-in-Aid for

Scientific Research (S) (No.25220003) and Osaka University

Program for Promoting International Joint Research.

REFERENCES

[1] L. Andersen, “Program Analysis and Specialization for the C Program-
ming Language”, Ph.D. thesis, DIKU, University of Copenhagen, 1994.

[2] K. Arnold, J. Gosling and D. Holmes, “The Java Programming Lan-
guage, 4th Edition”, Prentice Hall, 2005.

[3] G. Booch, R.A. Maksimchuk, M.W. Engel, B.J. Young, J. Conallen
and K.A. Houston, “Object-Oriented Analysis and Design with Appli-
cations”, Addison Wesley, 2007.

[4] Tal Cohen, “Self-Calibration of Metrics of Java Methods towards the
Discovery of the Common Programming Practice”, The Senate of the
Technion, Israel Institute of Technology, Kislev 5762, Haifa, 2001.

[5] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen and R.
Koschke, “A Systematic Survey of Program Comprehension through
dynamic Analysis”, IEEE Tran. on Software Engineering, Vol. 35, No. 5,
pp.684–702, 2009.

[6] D. Evans, and D. Larochells, “Improving Security Using Extensible
Lightweight Static Analysis”, IEEE software, vol.19, No.1, pp. 42-51,
Jan/Feb 2002.

[7] D. Grove, and C. Chambers, “A Framework for Call Graph Construc-
tion Algorithms”, ACM Transactions on Programming Languages and
Systems (TOPLAS), Vol. 23, No. 6,pp. 685–746, 2001.

[8] Y. Higo, A. Saito, G. Yamada, T. Miyake, S. Kusumoto, and K. Inoue,
“A Pluggable Tool for Measuring Software Metrics from Source Code”,
The Joint Conference of the 21th International Workshop on Software
Measurement and the 6th International Conference on Software Process
and Product Measurement (IWSM-MENSURA), Nara, Japan, pp.3–12,
Nov. 2011.

[9] K. Kobori, T. Yamamoto, M. Matsushita , and K. Inoue, “Java Program
Similarity Measurement Method Using Token Structure and Execution
Control Structure”, Transactions of IEICE , Vol. J90-D No.4, pp. 1158–
1160, 2007 (in Japanese).

[10] A. Milanova, A. Rountev, and B. Ryder, “Parameterized Object Sensi-
tivity for Points-to Analysis for Java”, ACM Transactions on Software
Engineeing and Methodology, Vol. 14, No. 1, pp. 1-41, 2005.

[11] A. Müller, “Bytecode Analysis for Checking Java Access Modifiers”,
Work in Progress and Poster Session, 8th Int. Conf. on Principles and
Practice of Programming in Java (PPPJ 2010), Vienna, Austria, 2010.

[12] D. Quoc, K. Kobori, N. Yoshida, Y. Higo and K. Inoue, “ModiChecker:
Accessibility Excessiveness Analysis Tool for Java Program”, 28th
National Convention of Japan Society for Software Science and Tech-
nology, Vol. 28, pp. 78-83, Nara, Japan, 2011.

[13] S. Reiss, and M. Reniers, “Encoding Program Executions”, 23rd Inter-
national Conference on Software Engineering, pp. 221–230, Toronto,
Canada, 2001.

[14] N. Rutar, C. Almazan, and J. Foster, “ A Comparison of Bug Finding
Tools for Java”, 15th International Symposium on Software Reliability
Engineering (ISSRE 04), pp. 245– 256, Saint-Malo, France, 2004.

[15] B. Ryder, “Dimensions of Precision in Reference Analysis of Object-
Oriented Programming Languages”, 12th International Conference on
Compiler Construction, pp. 126–137,Warsaw, Poland, 2003.

[16] A. Saito, G. Yamada , T. Miyake, Y. Higo, S. Kusumoto and K.
Inoue, “Development of Plug-in Platform for Metrics Measurement”,
International Symposium on Empirical Software Engineering and Mea-
surement, Poster Presentation, Lake Buena Vista, 2009.

[17] B. Steensgaard, “Points-to analysis in almost linear time”, 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 32–41, St. Petersburg, FL, 1996.

[18] T. Systa, “Understanding the Behavior of Java Programs”, 7th Working
Conference on Reverse Engineering, pp.214-223, Brisbane, Australia,
2000.

[19] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto and K. Inoue, “Ex-
tracting Sequence Diagram from Execution Trace of Java Program”, 8th
International Workshop on Principles of Software Evolution (IWPSE
2005), pp.148-151, Lisbon, Portugal, 2005.

[20] S. A. Vidal, A. Bergel, C. Marcos and J. A. Dı́az-Pace, “Understanding
and Addressing Exhibitionism in Java Empirical Research about Method
Accessibility”, Technical Report of Departamento de Ciencias de
la Computación, http://swp.dcc.uchile.cl/TR/2014/TR DCC-20141204-
004.pdf.

[21] J. Viega, G. McGraw, T. Mutdosch and E. Felten, “Statically Scanning
Java Code: Finding Security Vulnerabilities”, IEEE software, Vol.17 No.
5 pp. 68-74, Sep/Oct 2000.

[22] R. Wilson, “Efficient Context-Sensitive Pointer Analysis for C Program”,
Ph.D. Thesis, EE Dept., Stanford University, 1997.

[23] Ant, http://ant.apache.org/.
[24] ANTLR, http://www.antlr.org/.
[25] cflow, http://www.gnu.org/software/cflow/.
[26] CodeViz, http://www.csn.ul.ie/ mel/projects/codeviz/.
[27] Controlling Access to Members of a Class, The Java Tutorials,

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html .
[28] Doxygen, http://www.stack.nl/ dimitri/doxygen/.
[29] FindBugs, http://findbugs.sourceforge.net/.
[30] Jlint, http://jlint.sourceforge.net/.
[31] MASU, http://sourceforge.net/projects/masu/.

All company names, brand names, service names, and product names that
appear throughout this paper are trademarks or registered trademarks of their
respective companies.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

