
On Refactoring Support Based on Code Clone Dependency Relation

Norihiro Yoshida1, Yoshiki Higo1, Toshihiro Kamiya2, Shinji Kusumoto1, Katsuro Inoue1

1Graduate School of Information Science and Technology, Osaka University
{n-yosida, y-higo, kusumoto, inoue}@ist.osaka-u.ac.jp

2National Institute of Advanced Industrial Science and Technology
t-kamiya@aist.go.jp

Abstract

Generally, code clones are regarded as one of the fac-
tors that make software maintenance more difficult. A code
clone is a set of source code fragments identical or similar
to each other. From the viewpoint of software maintainabil-
ity, code clones should be removed. However, sometimes
there are dependency relations among each of which belong
to the different code clone, and it is advisable to refactor
all of such code clones at once. In this paper, we focus on
the case that such code fragment corresponds to a method
body in Java programs. We defined “chained method” as
a set of methods that have dependency relations. A set of
“chained methods” whose elements are each other’s code
clone is called “chained clone”, and an equivalence class
of “chained clone” is called a “chained clone set”. We pro-
pose a refactoring support method for “chained clone set”
by providing an appropriate refactoring pattern to them. Fi-
nally, we present the “chained clone set” refactoring sup-
port tool that we have developed, together with some case
studies to show the usefulness of the proposed method.

1 Introduction

Refactoring[7] is a disciplined technique for restructur-
ing an existing body of code, altering its internal structure
without changing its external behavior. That is to say, refac-
toring is a technique to improve the maintainability of soft-
ware. On the other hand, it needs some experience to iden-
tify the part of software where refactoring should be ap-
plied. Such parts are called bad smells[7]. Duplicated code,
long methods, long parameter list are examples of the bad
smells.

Code clones are fragments of the code which are exactly
the same as or similar to each other. Source codes including
code clones are more difficult to maintain than ones without
code clones. Especially, for large scale software, it is very
important to find code clones and there are a lot of research

studies to find code clones automatically[1, 2, 3]

We have also been developing a code clone detection tool
CCFinder[9]. CCFinder detects code clones from program
source codes and outputs the locations of them in source
codes. Since the code clones detected by CCFinder are
not necessarily appropriate for refactoring, we have pro-
posed a code clone refactoring support environment, called
Aries[8], using code clone analysis results by CCFinder.
Aries extracts structural blocks in code clones (e.g. class,
method body, if-statement) from Java programs and pro-
vides the user how each code clone could be removed. We
have applied Aries to several open source software and re-
move many of them without changing external behavior.

Through applications of Aries to several Java applica-
tions, we found that a code clone which is a set of method
bodies in Java programs sometimes has dependency rela-
tions among the methods in it. Also, for practitioners, it is
effective to conduct refactoring all of such code clones at
once. In this paper, we intend to refactor such code clones.

Here, we define chained method as a set of methods that
hold dependency relations. For given chained methods, if
each set of the corresponding methods is a code clone, we
call the set of chained methods chained clone. Then, we
have proposed a refactoring method for them. According
to the characteristics of them, we provide an appropriate
refactoring pattern to them. Finally, we have developed a
refactoring support tool for them and applied it to several
open source Java programs. As the results, we found actual
chained clones in those programs and refactored them (i.e.,
merged the code fragments and applied the regression tests).

Section 2 describes code clones. Section 3 explains the
proposed approach to refactor the chained clone and the
refactoring support tool. Section 4 evaluates the applica-
bility of the tool. Finally, Section 5 concludes this paper
and discusses the future works.

2 Code Clone

Here, we define some terminologies regarding code
clones. Next, we briefly explain our previous research re-
sults, a code clone detection tool CCFinder, and a refactor-
ing support environment Aries for code clones detected by
CCFinder.

2.1 Definition of code clone

A clone relation is defined as an equivalence relation
(i.e., reflexive, transitive, and symmetric relation) on code
fragments[9]. A clone relation holds between two code
fragments if (and only if) they are the same sequences. (Se-
quences are sometimes original character strings, strings
without white spaces, sequences of token type, and trans-
formed token sequences.) For a given clone relation, a pair
of code fragments is called a clone pair if the clone rela-
tion holds between the fragments. An equivalence class of
clone relation is called a clone set. That is, a clone set is
a maximal set of code fragments in which a clone relation
holds between any pair of code fragments. A code fragment
in a clone set of a program is called a code clone or simply
a clone.

2.2 Detecting Code Clone

CCFinder detects code clones both within files and
across files from programs and outputs the locations of the
clone pairs on the programs. The length of minimum code
clone is set by the user in advance. The Clone detection of
CCFinder is a process in which the input is source files and
the output is a lot of clone pairs. The process consists of the
following four steps:

Step1 Lexical analysis: Each line of source files is divided
into tokens corresponding to a lexical rule of the pro-
gramming language. The tokens of all source files are
concatenated into a single token sequence, so that find-
ing clones in multiple files is performed in the same
way as single file analysis.

Step2 Transformation: The token sequence is transformed,
i.e., tokens are added, removed, or changed based on
the transformation rules that aim at regularization of
identifiers and identification of structures. Then, each
identifier related to types, variables, and constants is
replaced with a special token. This replacement makes
code fragments with different variable names clone
pairs.

Step3 Match Detection: From all the sub-strings on the
transformed token sequence, equivalent pairs are de-
tected as clone pairs.

Step4 Formatting: Each location of clone pair is converted
into a position (line numbers) on the original source
files.

CCFinder adopts suffix-tree algorithm, which is enable
to analyze the system of millions line scale in practical use
time. For the details of CCFinder, please refer to [9].

2.3 Refactoring support environment: Aries

We have proposed a refactoring support method and de-
veloped a support environment Aries for Java programs. In
Aries, CCFinder is used as a code clone detection engine.
But, since code clones detected by CCFinder are sequence
of tokens, they are not necessarily suitable for refactoring.
To solve this problem, Aries extracts structural parts from
code clones as refactoring-oriented ones after they are de-
tected by CCFinder. The followings are the structural parts
extracted from Java programs.

Declaration class { }, interface { }

Method method body, constructor, static initializer

Statement if, for, while, do, switch, try, synchronized

Also, Aries characterizes refactoring-oriented code
clones using several metrics. Here, we explain a metric
DCH(S)(the Dispersion in the Class Hierarchy). DCH(S)
represents position and distance relationship between code
fragments in a clone set S in the class hierarchy. Suppose
that S includes code fragments f1, f2, · · · , fn and Ci

denotes the class which includes code fragment fi. Then,
if the classes C1, C2, · · · , Cn have some common parent
classes, Cp is defined as the nearest common parent class
(Java employs a single inheritance so that nearest parent
class is decided unique). Also, D(Ck, Ch) represents
the distance between class Ck and class Ch in the class
hierarchy, then DCH(S) is defined as the following
formula:

DCH(S) = max {D(C1, Cp), · · · , D(Cn, Cp)}

The value of DCH(S) becomes larger as the degree of
the dispersion of S becomes large. If all fragments of S are
in the same class, the value of its DCH(S) is set to 0. If
all fragment of a clone set are in a class or its direct child
classes, the value of its DCH(S) is set to 1. Exceptionally,
if classes which have some fragments of a clone set S don’t
have any common parent class, the value of its DCH(S) is
set to ∞.

Using DCH(S), the user can predict how each code
clone can be removed. Considering a clone set S1, which is
a set of refactoring-oriented code clones. The followings
are guidelines of refactoring for each case of DCH(S1)
value.

the value is 0 : Code clones in S1 could be easily removed
using “Extract Method” pattern in the same class, since
this value means all code clones in S1 are in the same
class.

the value is greater than 0 : Code clones in S1 should be
removed using “Pull Up Method” pattern. Since this
value means all classes having code clones in S1 ex-
tends some common parent classes. The user can re-
move code clones by pulling up them to the common
parent class.

the value is ∞ : The code fragments of S1 are widely
spread in the class hierarchy of the target software.
To remove code clones in S1, the practitioners have
to move code clones to some other classes like a utility
class using “Move Method” pattern.

This metric is measured for only the class hierarchy
where the target software exists because it is unrealistic that
the user pulls up some methods which are defined in the
target software classes to library classes like JDK.

Based on the DCH(S), we propose new metrics for
chained clones in the next section.

3 Proposed method

3.1 Motivation

We have applied Aries to several open source and com-
mercial Java programs and then got some feedback from the
practitioners. First one is about granularity of code clones.
A clone set which is a set of method bodies or class def-
initions is effective for refactoring from the viewpoint of
software maintenance. On the other hand, refactoring small
code fragments is not useful because of several regions.

Second one is about dependency relations among code
clones. Sometimes there are dependency relations among
methods each of which belongs to a different clone set, and
it is desirable to refactor all of such clone sets at once.

Figure 1 shows an example of clone sets that have depen-
dency relations. Suppose that we apply “Pull Up Method”
pattern to the clone set α. Aries provides the user with the
guidance that a1, b1 and c1 could be merged into a method
and be pulled up to the parent class S. Similarly, Aries pro-
vides the practitioner with guidance that a2, b2 and c2 could
be merged into a method and be pulled up to S. These guid-
ances are useful. But in this case, there could be more so-
phisticated refactoring method.

Here, we focus on the six methods (a1, b1, c1, a2, b2,
c2), they might be divided into two sets {a1, b1, c1} and
{a2, b2, c2} based on the dependency relations. Also, the
two sets could be merged at once depending on the depen-
dency relations.

Clone Set �� �� = { a1, b1, c1 }

Clone Set
�� ��

= { a2, b2, c2 }

Chained Clone CC = ({ a1, b1, c1}, { a2, b2, c2})

Class A

Method a1

Method a2

Class S

Chained Clone CC

Class B

Method b1

Method b2

Class C

Method c1

Method c2

Clone Set �� �� = { a1, b1, c1 }

Clone Set
�� ��

= { a2, b2, c2 }

Chained Clone CC = ({ a1, b1, c1}, { a2, b2, c2})

Class A

Method a1

Method a2

Class S

Chained Clone CC

Class B

Method b1

Method b2

Class C

Method c1

Method c2

Figure 1. Clone sets that have dependency
relations

In this paper, we define a set of code clones(clone pairs
or clone sets) including dependency relations as chained
clone(see Figure 1) and propose a refactoring support
method based on patterns of the chained clone.

3.2 Chained Clone

Preparatory to define a chained clone, we define a termi-
nology a chained method. A chained method means a set of
methods that hold dependency relations. Here, we consider
the following two types of dependency relations:

(1)Calling methods

(2)Sharing variables (reference and assignment)

Figure 2(a) shows an example of a chained method,
whose dependency relations are type(1). Here, the method a

calls b, and b calls c. On the other hand, Figure 3(a) shows
an example of a chained method, whose dependency rela-
tions are type(2). In this figure, a assigns some values to
x and refers y, b assigns some value to y, and c refers x,
respectively.

Method a

Method b

Method c

Call

Call

Method a

Method b

Method c

Call

Call

(a) example

Call

Call

a

b

c

Call

Call

a

b

c

(b) corresponding
graph

Figure 2. Chained method whose dependency
relations are calling methods

Method a

Method b

Method c

Variable x

assignment

reference

reference

assignment
Variable y

Method a

Method b

Method c

Variable x

assignment

reference

reference

assignment
Variable y

(a) example

Ax

Ay
Ry

Rx

a

b

c

Ax

Ay
Ry

Rx

a

b

c

(b) corresponding graph

Figure 3. Chained method whose dependency
relations are sharing variables

Next, we define the chained clone. At first, we trans-
form the Chained Method into a labeled graph representa-
tion (named chained method graph). Here, a node repre-
sents a method and an edge represents a dependency rela-
tion. The types of labels for the dependency relation are as
follows:

“Call”: Calling methods,

“Ai”: Sharing variable i in terms of assignment, and

“Rj”: Sharing variable j in terms of reference.

Figures 2 and 3 include examples of a chained method
and the corresponding graph representation.

For given chained methods CM1 and CM2, we trans-
form them into chained method graphs G1 and G2. Then,
for G1 and G2, if the following three conditions are satis-
fied, we call the pair of CM1 and CM2 as a chained clone.

(1) G1 and G2 are isomorphic,

(2) For each pair of the corresponding nodes between G1
and G2, a clone relation holds.

(3) In G1 and G2, a label of the corresponding edge is
identical.

As in the case that as an equivalence class of a clone
relation is called a clone set described in Section 2.1, an
equivalence class of a chained clone is called a Chained
Clone Set.

3.3 Typical Chained Clones and Applicable
Refactoring Patterns

Here, we explain four cases of chained clones.

Case 1
Case 1 is a case that a chained clone is contained in a

single class. We can merge them easily. Figure 4 shows an
example of refactoring of Case 1. In this figure, the methods
a11 and a12 are merged into the method a1 and the methods
a21 and a22 are merged into the method a2 because they
have a clone relation respectively.

Class A

Method a11

Method a21

Chained Clone

Method a12

Method a22

Class A

Chained Clone

Method a1

Method a2

Clone
Pair

Clone
Pair

Class A

Method a11

Method a21

Chained Clone

Method a12

Method a22

Class A

Chained Clone

Method a1

Method a2

Clone
Pair

Clone
Pair

Figure 4. Case 1

Case 2
In Case 2, a chained clone satisfies the following two

conditions:

• A clone relation is held among methods each of which
has the same parent class.

• All method bodies of each chained method in the same
class respectively.

In Case 2, each set of methods that have a clone relation
can be merged into a new method in the parent class. It can
be refactored by using “Pull Up Method” pattern. Figure 5
shows an example of refactoring in Case 2. Methods a1 and
b1 are merged into the method ab1 in the parent class S and
the methods a2 and b2 are merged into the method ab2 in
the parent class S.

Class A Class B

Class S

Method ab1

Method ab2

Class A

Method a1

Method b2Method a2

Class B

Method b1

Class S

Chained Clone

Clone Pair

Clone Pair
Class A Class B

Class S

Method ab1

Method ab2

Class A

Method a1

Method b2Method a2

Class B

Method b1

Class S

Chained Clone

Clone Pair

Clone Pair

Figure 5. Case2

Case 3
In Case 3, the chained clone satisfies the following two

conditions:

• A clone relation is held between methods each of
which does not have the same parent class.

• All method bodies of each chained method in the same
class respectively.

It is possible to conduct a refactoring by making a new
parent class for the classes including the chained meth-
ods. That means “Extract Super Class” pattern is applied
to the chained methods in a chained clone and then they are
merged into new methods in the new parent class. Merg-
ing them into new methods in the new parent class, which
means they can be refactored by applying “Extract Super
Class” pattern. Figure 6 shows an example of a refactor-
ing in Case 3. At first, a class S is made as a parent class
for classes A and B. Then, methods a1 and b1 (that have
a clone relation) are merged into the method ab1 in S and
also methods a2 and b2 are merged into the method ab2 in
S.

Class A Class B

Class S

Method ab1

Method ab2

Class A

Method a1

Method b2Method a2

Class B

Method b1

Chained Clone

Clone Pair

Clone Pair
Class A Class B

Class S

Method ab1

Method ab2

Class A

Method a1

Method b2Method a2

Class B

Method b1

Chained Clone

Clone Pair

Clone Pair

Figure 6. Case 3

Case 4
In Case 4, the chained clone satisfies the following con-

ditions:

• A clone relation is held between methods each of
which has the same parent class.

• Chained methods exist in different classes. That is,
dependency relations exist among two or more classes.

In Case 4, each of the method having a clone relation
can be merged into a new method in its parent class, which
means they can be refactored by using “Pull Up method”
pattern. Figure 7 shows an example of refactoring in Case
4. Methods a1 and b1 are merged into the method ab1 in the
parent class S1 and also methods a2 and b2 are merged into
the method ab2 in the parent class S2. However, the benefit
of refactoring is smaller than Cases 1, 2 and 3.

3.4 Categorization of Chained Clones

In Section 3.3, we classified chained clones into four cat-
egories. Here, we propose a method to classify chained
clones by using two metrics. Now, we consider the follow-
ing two groups of methods for classifying chained clones.

G1 The group of the methods having clone relations.

Chained Clone

Class A

Method a1

Class B

Method b1

Class C

Method b2Method a2

Class D

Class S1

Class S2

Class A

Method ab1

Class B

Class C

Method ab2

Class D

Class S1

Class S2

Clone Pair

Clone Pair

Chained Clone

Class A

Method a1

Class B

Method b1

Class C

Method b2Method a2

Class D

Class S1

Class S2

Class A

Method ab1

Class B

Class C

Method ab2

Class D

Class S1

Class S2

Clone Pair

Clone Pair

Figure 7. Case 4

Table 1. Categorization of Chained Clones
H

H
H

H
H

G1
G2

R1 R2 R3

R1 Category 11 Category 12 Category 13
R2 Category 21 Category 22 Category 23
R3 Category 31 Category 32 Category 33

G2 The group of methods having dependency relations.

Next, we consider the distance and position relationship
in the class hierarchy among methods in above two groups.
Here, we classify the relations as follows:

R1 All methods in group exist in the same class,

R2 All methods in its group have a common parent class,
and

R3 Some methods in its group have no common parent
class.

Combing the above groups and relations, we classify the
chained clones into 9 categories shown in Table 1.

The following refactoring patterns can be applied to the
categories 11, 21 and 31.

• Category 11

Category 11 corresponds to Case 1. As shown in Fig-
ure 4, we can merge the chained clone in the same
class.

• Category 21

Category 21 corresponds to Case 2. As shown in Fig-
ure 5, we can apply “Pull Up Method” pattern to the
chained clone.

• Category 31

Category 31 corresponds to Case 3. As shown in Fig-
ure 6, we can apply “Extract Super Class” pattern to
the chained clone.

On the other hand, it is difficult to refactor the chained
clone all together for other categories.

This classification can be applied to the chained clone
set. Figure 8 shows an example of a chained clone set.
There is a common parent class S among the methods that
have clone relations. Also, each chained method is in the
same class. So, it is classified into Category 21. Thus, “Pull
Up Method” pattern can be applied to this chained clone set
and we should get the same result as shown in Figure 6.

Class A

Method a1

Method a2

Class S

Chained Clone Set

Clone Set �� �� = { a1, b1, c1 }

Clone Set �� �� = { a2, b2, c2 }

Class B

Method b1

Method b2

Class C

Method c1

Method c2

Class A

Method a1

Method a2

Class S

Chained Clone Set

Clone Set �� �� = { a1, b1, c1 }

Clone Set �� �� = { a2, b2, c2 }

Class B

Method b1

Method b2

Class C

Method c1

Method c2

Figure 8. Example of chained clone set

Up to now, we explain a refactoring process for a chained
clone that includes just two chained methods. Next, we de-
scribe a refactoring support method for chained clone sets.

3.5 Metrics to classify chained clone sets

Based on the above discussions, we propose two metrics
for classifying chained clone sets. One is a metric to evalu-
ate G1 and the other is to evaluate G2. The metrics represent
the relations among the given methods in the class hierar-
chy. In order to investigate the relations, we measure the
relations among the methods by using an idea of the metric
DCH(S) described in section 2.3.

We propose new metrics based on DCH(S). First one
is a metric DCHS(CCS) for evaluating G1. Suppose a
chained clone set CCS and each of chained methods con-
sists of m methods. Here, CCS is divided into n subset
of clone sets, S1, S2, · · · , Sn (where S1 ∪ S2 ∪ · · · ∪ Sn =
CCS, Si ∩ Sj = ∅, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j). Also,
clone set Si includes m methods M1, M2, · · · , Mm. Then,
DCHS(CCS) is defined as the following formula:

DCHS(CCS) = max{DCH(S1), · · · , DCH(Sn)}

Similarly, based on DCH(S), we define a metric to eval-
uate G2. Suppose a chained clone set CCS consists of n

chained methods, CM1, CM2, · · · , CMn and each chained
method CMi consists of methods M1, M2, · · · , Mm. Then,
DCHD(CCS) is defined as the following formula:

DCHD(CCS) = max{DCH(CM1), · · · , DCH(CMn)}

Figure 9 shows how to calculate DCHS(CCS). The
chained clone set CCS belongs to Category 21. CCS in-
cludes three chained methods CMi each of which includes
method ai, bi and ci (i = 1, 2). Here, CCS is divided into
two subsets of clone sets, S1 and S2 (where S1 ∪ S2 =
CCS, S1 ∩ S2 = ∅). Then, the value of DCH(S1) and
DCH(S2) is 1 because both S1 and S2 have the same direct
parent class S. So, the value of DCHS(CCS) becomes 1.

Next, using Figure 10, we explain how to calculate
DCHD(CCS). The chained clone set CCS belongs
to Category 21. CCS includes three chained methods
CM1, CM2, CM3. Here, the value of DCH(CM1),
DCH(CM2) and DCH(CM3) becomes 0 because each
of chained method is in the same class, so that the value of
DCHD(CCS) becomes 0.

Based on DCHS(CCS) and DCHD(CCS), chained
clone sets are classfied as in Table 2.

Class A

Method a1

Method a2

Class S

Chained Clone Set CCS

Clone Set �� �� = { a1, b1, c1 }, Clone Set ���� = { a2, b2, c2 }

S1 = { a1, b1, c1 }, S2 = { a2, b2, c2 }

DCHS(CCS) = max { DCH(S1), DCH(S2) } = 1

Class B

Method b1

Method b2

Class C

Method c1

Method c2

S1

S2

Class A

Method a1

Method a2

Class S

Chained Clone Set CCS

Clone Set �� �� = { a1, b1, c1 }, Clone Set ���� = { a2, b2, c2 }

S1 = { a1, b1, c1 }, S2 = { a2, b2, c2 }

DCHS(CCS) = max { DCH(S1), DCH(S2) } = 1

Class B

Method b1

Method b2

Class C

Method c1

Method c2

S1

S2

Figure 9. Calculation of DCHS(CCS) metrics

Class A

Method a1

Method a2

Class S

Chained Clone Set CCS

CM1 = { a1, a2}, CM2 = { b1, b2 } , CM3 = { c1, c2 }

DCHD(CCS) = max { DCH(CM1), DCH(CM2)), DCH(CM3) } = 0

Class B

Method b1

Method b2

Class C

Method c1

Method c2

CM1 CM2 CM3

Class A

Method a1

Method a2

Class S

Chained Clone Set CCS

CM1 = { a1, a2}, CM2 = { b1, b2 } , CM3 = { c1, c2 }

DCHD(CCS) = max { DCH(CM1), DCH(CM2)), DCH(CM3) } = 0

Class B

Method b1

Method b2

Class C

Method c1

Method c2

CM1 CM2 CM3

Figure 10. Calculation of DCHD(CCS) metrics

3.6 Implementation

We have implemented a proposed refactoring support
method that detects chained clones from Java programs,
calculates the proposed metrics and provides refactoring
patterns to the user. Actually, we added the following func-
tionalities to Aries.

Table 2. Classifying Chained Clone Set Based
on Proposed Metrics

Category DCHS(CCS) DCHD(CCS)
11 0 0
21 more than 1 0
31 ∞ 0

other Any more than 1

(F1) Detection of chained clone sets,

(F2) Calculation of the proposed metrics for the chained
clone sets, and

(F3) Provision of information of detected chained clone
sets and metrics values through GUI interface.

As for (F1), using the information of clone sets detected
by CCFinder, we analyze dependency relations among them
and identify the chained clone set.

As for (F2), the metrics DCHS(CCS) and
DCHD(CCS) are proposed based on the metric
DCH(S). So, we implemented (F2) by extending the
functionality of calculating DCH(S) in Aries.

As for (F3), we have added the following three GUI
views to Aries(see Figure 11).

Chained Clone Set Selection View : It shows the list of
chained clone sets and metrics of them. This view
shows several metrics1 including the proposed metrics
(DCHS(CCS) and DCHD(CCS)). The category
of each chained clone set is shown for the user to un-
derstand which refactoring pattern could be applied to
it.

Chained Clone Set View : It shows the code fragments
(methods) that are included in the chained clone set
that the user selected in the Chained Clone Set Selec-
tion View. This view consists of the Code Clone List
and the Dependency Relation View. The Dependency
Relation View is a table including chained clone sets
and a list of variables which are used in each chained
clone set.

Source Code View : It shows the source codes of a code
fragment (method) that are selected in the Chained
Clone Set View by the user.

In the actual refactoring process, at first, the user selects
one of the chained clone sets in the Chained Clone Set Se-
lection View based on the category of the chained clone.

1With respect to metrics LEN, POP, DFL, please refer to [8]

Then, he/she browses the list of methods included in the
selected chained clone set through the Chained Clone Set
View. Finally, he/she selects one of them and examines
source codes of the selected methods whether the corre-
sponding refactoring pattern can be applied to it.

4 Evaluation

4.1 Overview

We have conducted case studies to evaluate the useful-
ness of the proposed method. In the evaluation, we focused
on the following points:

• How many chained clone sets exist in an actual Java
programs?

• Is it possible to classify chained clone sets by using the
proposed metrics and to apply appropriate refactoring
patterns to them?

The target software products are the following three Java
programs.

• ANTLR 2.7.4 (47,000 LOC, 285 classes)

• Tomcat 5.5.4 (320,000 LOC,1214 classes)

• JBoss 3.2.6 (640,000 LOC, 3364 classes)

ANTLR is a language tool that provides a framework for
constructing recognizers, compilers, and translators from
grammatical descriptions containing Java, C# or C++ ac-
tions. Tomcat is the servlet container that is used in the
official reference implementation for Java Servlet and Java
Server Pages technologies. JBoss is a leading Open Source,
standards-compliant, J2EE based application server.

4.2 Detected chained clone sets

Tables 3, 4 and 5 show the results including the number
of chained clone sets and the maximum/minimum number
of methods included in them.

Table 3. Chained clone sets in ANTLR
Category # of chained

clone sets
Number of methods
max min

11 3 4 4
21 6 40 6
31 1 4 4

other 0 - -
Total 10 - -

Chained Clone Set List

(Category32, 33)

Chained Clone Set List

(Category31)

Chained Clone Set List

(Category11)

Chained Clone Set List

(Category21)

Chained Clone Set List

(Category12, 13, 22, 23)

Clone Set ID DCHS(CCS) DCHD(CCS)

Chained Clone Set List

(Category32, 33)

Chained Clone Set List

(Category31)

Chained Clone Set List

(Category11)

Chained Clone Set List

(Category21)

Chained Clone Set List

(Category12, 13, 22, 23)

Clone Set ID DCHS(CCS) DCHD(CCS)

(a) Chained Clone Set Selection View

Code Clone List

Dependency Relation View

Code Clone List

Dependency Relation View

(b) Chained Clone Set View

Source Code VIew

Variable List

Code Fragment List

Source Code VIew

Variable List

Code Fragment List

(c) Source Code View

Figure 11. Snapshots

Table 4. Chained clone sets in Tomcat
Category # of chained

clone sets
Number of methods
max min

11 8 12 4
21 4 12 4
31 30 14 4
33 3 14 4

other 0 - -
Total 45 - -

Table 5. Chained clone sets in JBoss
Category # of chained

clone set
Number of methods
max min

11 16 13 4
21 17 8 4
31 13 29 4
23 1 14 14
33 3 44 12

other 0 - -
Total 50 - -

Totally, we could actually find the chained clone sets
from the three Java programs. Next, we analyzed the re-
sult of each program.
ANTLR

We can see that 6 chained clone sets belonging to Cat-
egory 21 are larger than other categories. Also, the num-
ber of methods in the chained clone sets of this category is
relatively large (See Table 3). This reason is that ANTLR
has similar functionalities for each language (Java, C#,
C++) and thus some of them inevitably become code clones.
Actually, there is the CodeGenerator class constructing a
parser, and it has three child classes (named JavaCode-
Generator, CppCodeGenerator and CSharpCodeGenera-
tor) corresponding to these languages. There are a lot of
code clones among these classes.
Tomcat

Table 4 shows that the number of Category 31 is rela-
tively larger compared to the other categories. We consider
that it is due to the characteristic that Tomcat consists of a
lot of components and there are many types of connector
that requests to browsers or Web servers.
JBoss

In JBoss, the number of chained clone sets is the largest
among there programs. Also, it is peculiar that there is a
chained clone of Category 23 (See Table 5). Figure 12
shows a class diagram of it. This chained clone includes
another chained clone belonging to Category21.

Call Call

UnifiedLoaderRepository3

updatePackageMap

(UnifiedClassLoader, URL)

ClassLoaderUtils

updatePackageMap

(UnifiedClassLoader, HashMap, URL, String[])

updateClassNamesMap

(UnifiedClassLoader, HashMap, URL, String[])

updatePackageMap

(UnifiedClassLoader)

loaderToPackagesMap
packageMap

log

UnifiedLoaderRepository3

updateClassNamesMap

(UnifiedClassLoader, URL)

updateClassNamesMap

(UnifiedClassLoader)

loaderToClassNamesMap
classNamesMap

log

reference

reference

Category 21

LoaderRepository

Category 23

Clone
Pair

Clone
Pair

Clone
Pair

Call Call

UnifiedLoaderRepository3

updatePackageMap

(UnifiedClassLoader, URL)

ClassLoaderUtils

updatePackageMap

(UnifiedClassLoader, HashMap, URL, String[])

updateClassNamesMap

(UnifiedClassLoader, HashMap, URL, String[])

updatePackageMap

(UnifiedClassLoader)

loaderToPackagesMap
packageMap

log

UnifiedLoaderRepository3

updateClassNamesMap

(UnifiedClassLoader, URL)

updateClassNamesMap

(UnifiedClassLoader)

loaderToClassNamesMap
classNamesMap

log

reference

reference

Category 21

LoaderRepository

Category 23

Clone
Pair

Clone
Pair

Clone
Pair

Figure 12. Example of Category23

4.3 Refactoring for chained clone set

Next, we tryed to remove the chained clone sets ex-
tracted from ANTLR and Tomcat without chaging external
behavior. At first, we modified source codes of them using
refactoring patterns. Then, we conducted regression tests to
confirm the original functionality being unchanged.

Figure 13 (a) shows an example of a chained clone (Cat-
egory 21) from ANTLR. We have applied the “Pull Up
Method” pattern to it and got the result shown in Figure 13
(b). You can see that code clones are correctly merged and
also the coupling complexity among the parent and child
classes is decreased.

CSharpCodeGenerator

getValueString

mangleLiteralmangleLitral

JavaCodeGenerator

getValueString

CodeGenerator

Chained Clone

grammer reference

reference reference

reference

call call

CSharpCodeGenerator

getValueString

mangleLiteralmangleLitral

JavaCodeGenerator

getValueString

CodeGenerator

Chained Clone

grammer reference

reference reference

reference

call call

(a) Before refactoring

CSharpCodeGenerator JavaCodeGenerator

CodeGenerator

getValueString

mangleLiteral

call

grammer

reference

reference

CSharpCodeGenerator JavaCodeGenerator

CodeGenerator

getValueString

mangleLiteral

call

grammer

reference

reference

(b) After refactoring

Figure 13. Refactoring in Category 21

Figure 14 (a) shows an example of chained clone (Cate-
gory31) detected from ANTLR. For this chained clone, we
have applied “Extract Super Class” pattern and refactored
without changing external behavior shown in Figure 14 (b).

CSharpCharFormatter

escapeString

escapeChar

JavaCharFormatter

escapeString

escapeChar

call call

Chained Clone

CSharpCharFormatter

escapeString

escapeChar

JavaCharFormatter

escapeString

escapeChar

call call

Chained Clone

(a) Before refactoring CSharpCharFormatter JavaCharFormatter

GeneralCharFormatter

escapeString

escapeChar

call

CSharpCharFormatter JavaCharFormatter

GeneralCharFormatter

escapeString

escapeChar

call

(b) After refactoring

Figure 14. Refactoring for Category 31

Figure 15 (a) shows a chained clone (Category11) de-
tected from Tomcat. Methods that are included in the
chained clone are all the same name, but the number and
type of these arguments are different. Also, methods having
the same name have clone relations. The applicable refac-
toring pattern of Category11 is “Extract Method” pattern.

For this chained clone, we have applied “Extract Method”
pattern and got the result shown in Figure 15(b).

InstanceSupport

fireInstanceEvent(String, Filter)

fireInstanceEvent(String, Servlet)

fireInstanceEvent(String, Filter, Throwable)

fireInstanceEvent(String, Servlet, Throwable)

Clone
Pair

Clone
Pair

listener
wrapper

reference

reference
Chained Clone

InstanceSupport

fireInstanceEvent(String, Filter)

fireInstanceEvent(String, Servlet)

fireInstanceEvent(String, Filter, Throwable)

fireInstanceEvent(String, Servlet, Throwable)

Clone
Pair

Clone
Pair

listener
wrapper

reference

reference
Chained Clone

(a) Before refactoring

InstanceSupport

fireInstanceEvent(String, Filter)

fireInstanceEvent(String, Servlet)

fireInstanceEvent(String, Filter, Throwable)

fireInstanceEvent(String, Servlet, Throwable)

listener
wrapper

reference

reference
Chained Clone

instanceEvent(InstanceEvent)

Call

Call

Call

Call

InstanceSupport

fireInstanceEvent(String, Filter)

fireInstanceEvent(String, Servlet)

fireInstanceEvent(String, Filter, Throwable)

fireInstanceEvent(String, Servlet, Throwable)

listener
wrapper

reference

reference
Chained Clone

instanceEvent(InstanceEvent)

Call

Call

Call

Call

(b) After refactoring

Figure 15. Refactoring for Category 11

5 Conclusion

In this paper, we focus on a refactoring for a chained
clone that consists of sets of the methods with dependency
relations. At first, we defined chained clones. Next, we
classified chained clones according to their characteristic.
Then, we discussed the applicable refactoring patterns to
each category of chained clones and proposed metrics to au-
tomatically identify the category of them. Finally, we have
implemented the proposed method to find and classify them
by using metrics and added its to our code clone refactor-
ing environment Aries. As the results of the case studies,
we found a few dozen in chained clones in actual Java pro-
grams. As the result, we could remove most of them in
Category 11, 12 and 31. We conclude that the proposed
refactoring method for chained clones works effectively in
refactoring for them.

As shown in Figure 12, some chained clones include an-
other chained clones belonging to other category. We con-
sider that it is necessary to provide information about the
internal structure of chained clones. Also, we are going to
apply our proposed method to some commercial Java pro-
grams and confirm whether there exists chained clones and
whether we can apply appropriate refactoring patterns to
them.

Acknowledgment

This work is supported in part by MEXT, the Com-
prehensive Development of e-Society Foundation Software
program, and JSPS.KAKENHI(17200001).

References

[1] B. S. Baker, A Program for Identifying Duplicated
Code, In Proc. Computing Science and Statistics, 24,
pp.49-57, Mar. 1992.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis, Advanced clone-analysis to support
object-oriented system refactoring, In Proc. of WCRE
2000, pp.98-107, Nov. 2000.

[3] I.D. Baxter, A. Yahin, L. Moura, M.S. Anna, and L.
Bier, Clone Detection Using Abstract Syntax Trees,
In Proc. of ICSM 1998, pp.368-377, Mar. 1998.

[4] R. Komondoor, and S. Horwitz, Using Slicing to Iden-
tify Duplication in Source Code, In Proc. of SAS 2001,
pp.40-56, Jul. 2001.

[5] J. Krinke, Identifying Similar Code with Program De-
pendence Graphs, In Proc. of WCRE 2001, pp.301-
309, Oct. 2001.

[6] S. Ducasse, M. Rieger, and S. Demeyer, A Lan-
guage Independent Approach for Detecting Dupli-
cated Code, In Proc. of ICSM 1999, pp.109-118, Aug.
1999.

[7] M. Fowler, Refactoring: improving the design of ex-
isting code, Addison Wesley, 1999.

[8] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue:
ARIES: Refactoring Support Environment Based on
Code Clone Analysis, In Proc. of SEA 2004, pp.222-
229, Nov. 2004.

[9] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A
multi-linguistic token-based code clone detection sys-
tem for large scale source code, IEEE Transactions on
Software Engineering, vol.28, no.7, pp.654-670, Jul.
2002.

[10] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue,
Gemini: Maintenance Support Environment Based on
Code Clone Analysis, In Proc. of METRICS 2002,
pp.67-76, Jun. 2002.

[11] ANTLR, http://www.antlr.org

[12] Tomcat, http://jakarta.apache.org/tomcat/

[13] JBoss, http://www.jboss.org

