
Bachelor Thesis

Title

Impact of Logging Configuration Changes in Source Code

and Project Configuration File

Supervisor

Professor Katsuro Inoue

Author

Liang Qiu

2022/2/8

Department of Information and Computer Sciences

School of Engineering Science, Osaka University

Reiwa 3rd Bachelor Thesis

Impact of Logging Configuration Changes in Source Code and Project Configuration File

Liang Qiu

Abstract

Logs are essential component of software programs and widely used by software develop-

ers. There are two ways to do logging configurations, the one in source code and another

in project configuration file, playing an important role on the practicality, constancy, and

stability of logging. Although recent research has been conducted to understand current

practice on logging statements in source code and importance of project configurations

file, but no existing research focuses on the impact of logging configuration changes in

source code and project configuration file. To fill this gap of lacking studying collective

effect of project configuration file and logging statements in source code, in this paper, we

conduct an exploratory study for aiming to investigate the impact on the logging output

of changes in logging statements in source code and project configuration file. The subject

of the survey is the open-source project ActiveMQ which is written in Java using the log4j

library. We confirm that the logging statements output status are more affected by project

configuration file change than by logging statements change in source code. Developers

change the log level in source code or the threshold in project configuration file to change

the log statements output status.

Keywords

Logging statements

Log level

Project configuration file

1

Contents

1 Introduction 4

2 Background 6

2.1 Prior study on logging . 6

2.2 Logging mechanism . 6

2.3 Prior study on log level and logging configuration 8

3 Preliminary Study 9

3.1 An Overview of the Studied System . 9

3.2 Log Level Distribution in Source code and Project Configuration File Thresh-

olds Distribution . 9

3.3 Changes of Log Level in Source Code and Project Configuration File Thresh-

old . 11

4 Survey Outline 14

4.1 RQ1: How does changing the log level and threshold of configuration file

affect the output of the log? . 15

4.2 RQ2: When the the log message output status is changed, what type of file

is being changed, source code file, configuration file or both? 16

4.3 RQ3: For the same log message, does its output status change frequently? . 17

5 Results and Discussions 21

5.1 RQ1: Result . 21

5.1.1 In the case of log statement unit . 21

5.1.2 In the case of commit unit . 21

5.2 RQ2: Result . 22

5.2.1 In the case of log statement unit . 22

5.2.2 In the case of commit unit . 22

5.3 RQ3: Result . 22

6 Threats to Validity 25

7 Conclusion 26

Acknowledgement 27

2

References 28

3

Figure 1: An example of a logging statement

1 Introduction

Log is an essential component of software programs and widely used by software de-

velopers for recording valuable run-time variable information and error messages during

program execution [7]. The logging components deal with the demand from the appli-

cation code and output the logging information to the specific targets. If the logs are

not properly output, it will be difficult to find the cause of the problem when it occurs.

On the other hand, proper log output makes it easier to identify the cause of the system

problem. Using run-time information, we can handle failure diagnosis and make it easier

to understand the program, and so on. A logging statement, typically consists a log level

to specify the severity of the logged event, a textual part indicating the event, and one or

more variables [3][4][13]. An example of a logging statement is shown in Figure 1.

However, appropriate logging is difficult to reach in practice. Both logging too little

and logging too much is undesirable [3]. Too detailed logging may create unsustainable

overhead for the system while too rough log may miss critical information. So we can say

that it is not a trivial task to set up a properly designed logging component, considering

the huge kinds of logging requests. To address the trade-off, popular logging libraries such

as Apache Log4j [2] provide log levels to control the number of log messages recorded on

the disk [9]. The logging libraries can simplify the writing of the logging component, but

inserting log requests into the application code requires a fair amount of planning and

effort.

There are two ways to do logging configurations, the one in source code and another

in project configuration file, playing an important role on the practicality, constancy,

and stability of logging. Prior researches find that many problems exist in the practice

of writing logging statements, such as missing failure information [12], improper logging

level [13], and duplicated log message [8]. Besides writing logging statements in source

code, setting project logging configurations is also highly crucial for output essential log

4

messages. Previous studies find that about 32.4% of loggers are configured to control the

logging activities of external libraries [15]. Although recent research has been conducted

to understand current practice on logging statements in source code and importance of

project configurations file, but no existing research focuses on the relationship of logging

statements in source code and project configurations file.

To fill this gap of lacking studying collective effect of project configuration file and log-

ging statements in source code, in this paper, we conduct an exploratory study for aiming

to investigate the impact of changes in logging statements in source code and project

configuration file on the logging output. The subject of the survey is the open-source

project ActiveMQ[1] which is written in Java using the log4j library. Our preliminary

study confirms that there are enormous logging statements in source code through the

project ActiveMQ. The log level of these logging statements change frequently over the

development of the project ActiveMQ which consists with the prior study showing that

developers take great effort on maintaining and updating log level over the lifetime of

a project. We explore the changes in development history by tracing the development

history to clarify the impact of logging configuration changes in source code and project

configuration file. From our study we find that the log statements output status are more

affected by project configuration file change than by log level change in source code. With

the result, we can argue that developers should be more careful when changing project

configuration file.

Paper organization. The remainder of the paper is organized as follows. Section 2

introduce the prior study about logging and some background knowledge about logging.

Section 3 describes the studied open source project and performs an empirical study on

the log level distribution and track the change of log level and configuration file threshold

in the studied project. Section 4 describes the research questions we are concerned about

and the approached that we used to answer these questions. Section 5 presents the results

of our case study. Section 6 discusses threats to the validity of our findings. Finally,

Section 7 draws conclusions.

5

2 Background

In this section, we discuss the existing study about logging, log level, and logging con-

figuration. Also, we introduce the specification of the log4j library which we use as the

study case in this research.

2.1 Prior study on logging

Prior research on logging statements has been conducted from three main perspectives.

What to log for. The rich information in logs is essential for many tasks in the

software development, such as failure diagnosis [6][11], performance analysis [5], and user

behavior analysis [14].

How to log. The logging component receives logging requests from application source

code and outputs the formatted logging information to the specified destinations [15].

Where to put log statements. To avoid logging too little or too much, developers

need to proper decision on where to log in their logging practices during development. Prior

study divided the place of developer log into 5 categories, Assertion-check logging, Return-

value-check logging, Exception logging, Logic-branch logging , Observing-point logging. The

category of observing-point logging has the highest number of logged snippets among the

five categories [3].

2.2 Logging mechanism

Log levels are beneficial for both developers and users to determine the suitable quantity

of logs to output during the running of the program. With log levels, developers and users

can allow the output of logs for crucial events (e.g., errors), while block logs for less

important events (e.g., debug events). Developers and users use the mechanism of to

trade-off the enormous information in logs. Common logging libraries such as Apache

Log4j [2] typically has six log levels, including trace, debug, info, warn, error, and fatal.

The most verbose log level is “trace” and the least verbose log level is “fatal”. The log

level of logging statements to be output during running is controlled by the users. For

instance, a user determines the log level to output at the “info” level and “info” will be

the threshold. Only the logging statements with the “info” level or with a log level that is

less verbose than “info” (“warn”, “error” and “fatal”) would output. The following code

snippet shows an illustrative example for the logging mechanism with setting log level in

source code.

6

Listing 1: The logging mechanism with setting log level in source code

// Logging code

import org.apache.log4j.Logger;

public class log4jTest{

public void logging (){

BasicConfigurator.configure ();

// default log level:info

Logger logger = Logger.getLogger(log4jTest.class);

logger.info(" access log")

logger.trace ("will not output ")

}

}

// Generated Log

INFO log4jTest - access log

To help manage these log statements without the need to modify them manually, the

libraries also provide logging configurations, which can allow users to control logging be-

haviors not embedded within their code but from an external configuration file. The

following code snippet shows an illustrative example for the logging mechanism with set-

ting threshold in configuration file.

Listing 2: The logging mechanism with setting threshold in configuration file

// Logging code

import org.apache.log4j.Logger;

public class log4jTest{

public void logging (){

// no need to embed within code

Logger logger = Logger.getLogger(log4jTest.class);

logger.info(" access log")

logger.trace ("will output this time")

}

}

// Project configuration

log4j.rootLogger = trace , console

log4j.console.appender = org.apache.log4j.ConsoleAppender

log4j.appender.console.layout = org.apache.log4j.SimpleLayout

// Generated Log

INFO log4jTest - access log

TRACE log4jTest - will output this time

7

2.3 Prior study on log level and logging configuration

Prior research finds that developers often struggle with choosing an appropriate log level

for each log statement and take great effort on maintaining and updating log level over

the lifetime of a project [13]. Li et al. leverage ordinal regression models to automatically

suggest the most appropriate level for each newly-added logging statement [7]. Zhi et al.

conduct a research on how logging configurations are used and revealed lots of findings

about current practice of project configurations files [15]. However, there is no existing

research on the collective impact of log level in source code and project configuration file.

8

Table 1: AN OVERVIEW OF THE STUDIED SYSTEM

System LOC1 NOC2 NOF3 NOCOF4 Studied develop. history

ActiveMQ 459K 10.9K 5.2K 42 2005-12 to 2022-01

1 LOC refers to the lines of code.
2 NOC refers to the number of commits.
3 NOF refers to the number of files.
4 NOPCF refers to the number of project configuration files.

3 Preliminary Study

Before studying the impact of logging configuration changes in source code and project

configuration file, we conduct a preliminary study in order to identify the conditions of the

characteristics of the studied system. This preliminary study includes the overview of the

studied system and the distribution of log level in source code and thresholds in project

configuration file. Also, we track the changes of log level in source code and threshold in

project configuration file to get the number of added log statements and the number of

deleted log statements in each commit.

3.1 An Overview of the Studied System

Studied System. In this study, we focused on Apache ActiveMQ[1] project. The Java

source code for these programs is massively using log4j logging library, which is the subject

of this research. Table 1 shows an overview of the system.

3.2 Log Level Distribution in Source code and Project Configuration File

Thresholds Distribution

As Algorithm 1 and Alogirthm 2 shows, we study the distribution of log level in source

code and project configuration file thresholds.

Log Level Distribution in Source Code

We traversed all files of the target project. For the file with the suffix name“ .java”,

we traversed each line of the file to determine if it contained LOG.info/warn/debug...

or log.info/warn/debug... to get the number of each log level in java source code.

Project Configuration File Thresholds Distribution

For the project configuration file, we iterate through the file named “log4j.properties”.

9

Table 2: The Distribution of Log Levels in Source Code and Configuration File Thresholds

fatal error warn info debug trace

project configuration file thresholds 0 0 15 13 8 6

log levels in source code 0 513 479 3617 1336 368

Algorithm 1: Distribution of log level in source code and project configuration

file thresholds
Input: project filepath

Output: number of log level in source code

1 for file in filepath do

2 if file.suffix equals ’.java’ then

3 for line in file do

4 if LOG.level or log.level in line then

5 number of the log level ++

6 //level is one of info, warn, debug, trace, error, fatal

7 end

8 end

9 end

10 end

11 Output the number of log level;

In this studied system, all threshold-setting sentences start with “log4j.looger.org.apache”

or “log4j.rootLogger”. So we check the line containing “log4j.logger.org.apache” or

“log4j.rootLogger” to determine if it contains INFO/WARN/DEBUG/TRACE/ER-

ROR/FATAL to get the number of thresholds.

As result, we clarified the distribution of source code log levels and configuration file

thresholds in the studied system. Table 2 shows the distribution of the log levels in source

code and project configuration file thresholds in the studied system.

10

Algorithm 2: Distribution of project configuration file thresholds

Input: filepath

Output: number of project configutaion file thresholds

1 for file in filepath do

2 if file.name equals ’log4j.properties’ then

3 for line in file do

4 if ’log4j.logger.org.apache’ or ’log4j.rootLogger’ in line and ’#’ not in

line then

5 if threshold in line then

6 number of the threshold ++

7 //threshold is one of INFO, WARN, DEBUG, TRACE, ERROR,

FATAL

8 end

9 end

10 end

11 end

12 end

13 Output the number of thresholds;

3.3 Changes of Log Level in Source Code and Project Configuration File

Threshold

As Table 2 shows, we found that there are enormous log statements in this study case.

We want to figure out how many of them have ever been modified, that is, the log level

in source code changes. So, we use PyDriller [10] which is a Python framework that

helps developers in analyzing Git repositories to extract information about modified files.

Specifically, we track the changed log levels in source code of the modified files on each

commit to figure out the changes of log level in source code and proeject configuration file

threshold. With PyDriller, we can get the diff parsed in a dictionary containing the added

and deleted lines. The dictionary has 2 keys:“ added”and“ deleted”, each containing

a list of Tuple (int, str) corresponding to (number of line in the file, actual line). As

Algorithm 3 shows, we can traverse the whole dictionary with “added” and “deleted” as

the key to get the number of added logs and the number of deleted logs respectively in

each commit. Table 3 shows the result.

11

Table 3: The change of the log level in source code

fatal error warn info debug trace

number of added logs 15 1467 1448 6173 3271 870

number of deleted logs 15 954 969 2556 1935 502

From the results of the Table 3, we can see that developers change the log level frequently,

which means that changing the log level is very costly for development. This is also

consistent with the findings of previous study.

12

Algorithm 3: Number of added logs and deleted logs

Input: project url

Output: number of added logs and deleted logs

1 for commit in the commit history of project url do

2 for file in the modified files of the commit do

3 for line in the values of the dictionary corresponding the key ’added’ of the

file do

4 if Log.level or log.level in line then

5 number of the added log level ++

6 //level is one of info, warn, debug, trace, error, fatal

7 end

8 if log4.logger.org.apache.activemq in line and threshold in line then

9 number of the added threshold ++

10 //threshold is one of INFO, WARN, DEBUG, TRACE, ERROR,

FATAL

11 end

12 end

13 for line in the values of the dictionary corresponding the key ’deleted’ of the

file do

14 if Log.level or log.level in line then

15 number of the deleted log level ++

16 //level is one of info, warn, debug, trace, error, fatal

17 end

18 if log4.logger.org.apache.activemq in line and threshold in line then

19 number of the deleted threshold ++

20 //threshold is one of INFO, WARN, DEBUG, TRACE, ERROR,

FATAL

21 end

22 end

23 end

24 end

25 Output the number of added logs, deleted logs, added thresholds, deleted

thresholds;

13

Figure 2: Issues of logging

4 Survey Outline

Even if the level of the log output statement or the threshold in the project configuration

file is changed, there are cases where the final output does not change. As Figure 2 shows,

both the log level in the source code and the threshold in project configuration file affect

the output of the log, however we don’t know how each change actually affects the output

status of log statements. In this study, we would like to clarify the impact of logging

configuration changes in source code and project configuration file. In particular, how

the changes of log level in source code and threshold in project configuration file jointly

determines the output is the subject we are most interested in studying here.

We use PyDriller to tracks changes in terms of commit, and analyse the impact of these

changes on the log message output.

In each commit, some logs are completely deleted, some new logs are added, some

logs are modified, and some logs remain unchanged. We use a dictionary to store these

information. The keys are log messages, and the values are their log levels. With PyDriller,

we can know whether the file is added, deleted, or modified for each commit. Each time

a new log statement is added, we record its log level and log message as a pair on the

dictionary. Each time a log statement is deleted, we remove the information about it from

the dictionary. If it is modified, we modify the corresponding key and value. In this way,

we can dynamically study the overall change process of the log. The Figure 3 shows the

14

Figure 3: Flowchart dynamic

flow chart of the entire dynamic process.

In order to study the effect of log changes on the output at a more detailed level, we set

up the following research items.

4.1 RQ1: How does changing the log level and threshold of configuration file

affect the output of the log?

Motivation. As we found in the preliminary study, the log levels and threshold of con-

figuration file are frequently modified in a project development. In this research question,

we want to figure out how these changes of log levels impact the output of the log.

Approach. Specifically, we will examine two detailed questions described below. We

will calculate the answers to these two detailed questions, as well as analyze the meaning

behind these results. Below, we describe the two detailed questions.

15

1:How many log output statements never change their log level out of all the log output

statements?

For this question, we will count how many log statements have changed their log level,

and then subtract these from the total number of log statements to get the number (per-

centage) that have not changed. In the dynamic analysis above, we track the modified

log statement. If the log message has not changed and its log level or configuration file’s

threshold has changed, we count the change as a valid result. Note that if there is a log

message that corresponds to a log level that changes more than once, we only count one

of them as a valid result. For one modified log statement, if its log message changes, we

will not treat it as a valid result even if its log level or configuration file’s threshold has

changed, because we will treat it as a new log statement once the log message has changed.

We will give the answer to two questions on this issue.

1. In terms of each log statement, the percentage of log statements which both the log

level in the source code and the threshold in the configuration file are unchanged.

2. In terms of each commit, the percentage of commits where there are no changes in

the log level in the source code and the threshold in the configuration file.

2:How many log output statements change their log levels which have no effect on output?

As we described earlier, for a log statement, it is not only the log level that affects

the output but also the configuration file threshold. For this problem, we not only track

each log level change, but also check the configuration file threshold changes. As shown

in Figure 4 for example, case 1 shows the change which the log level change has no effect

on the output. Case 2 and case 3 show the change with effect on output. The change of

log level in case 2 makes the log message that was to be output will no longer be output.

And the change of log level in case 3 make the log message that was not to be output will

be output.

4.2 RQ2: When the the log message output status is changed, what type of

file is being changed, source code file, configuration file or both?

Motivation. In this research question, we figure out whether both log level and con-

figuration file thresholds change have a significant impact on the output status change. If

many of the changes in output status of the log message caused by changing both factors

at the same time, then we could argue that comparing with the existing studies which only

16

Figure 4: Case of log level change with and without effect

one of them has been studied intensively, both should be considered for further studies. If

not, we could argue that we should focus more on the one with more changes.

Approach. In each commit, we check each log statement whether it will be output by

its log level and its configuration file threshold. If its log level is lower than its configuration

file threshold, then its log message will be filtered out and it will not be output. We use a

dictionary to store these messages. Key is the log message, value is 1 or 0, where 1 means

it will be output and 0 means it will not be output. We keep updating this dictionary

on a per-commit basis, and when we have the same log message with opposite output, we

check whether the log level has changed, or the configuration file threshold has changed,

or both.

4.3 RQ3: For the same log message, does its output status change frequently?

Motivation. In this research question, we want to figure out whether there are many

log statements that whether it is output or not change frequently or these changes of

output are concentrated in a small number of logs.

Approach. In RQ2, we use a dictionary to save each log message and whether it is

output. In this research question, we need to keep track of the number of changes on the

log statement’s output status. When log statement’s output status changes, not only do

we need to invert its output status(1 to 0, or 0 to 1) but also need to record how many

times has it changed. We track their change history (e.g. from error→ info→ error, or

17

error→ info→ warn...)

Algorithm 4 and Algorithm 5 shows the entire analysis process. Algorithm 4 output the

changes of the log messages’ threshold and the changes of output status via configuration

file threshold change. Algorithm 5 output the the changes of the log messages’ log level,

the changes of the output status via log level change, and the history of the log messages’

log level.

18

Algorithm 4: Analyse process1

for commit in the commit history of project url do

for file in the modified files of the commit do

if it is a configuration file then

if it’s change type equals ’ADD’ then

if added statement is a log statement then
1) get the threshold of this configuration file.

2) update the log message’s threshold in the java file which has

the same prefix with the configuration file.

3) update the matter of whether the log message output or not

in the java file which has the same prefix with the configuration

file

end

end

if it’s change type equals ’MODIFY’ then

if modified statement is a log statement then
get the threshold of this configuration file.

if the threshold has changed then

1) update the log message’s threshold in the java file which has

the same prefix with the configuration file.

2) record these changes

3) check if the matter of whether the log message output or not

has changed in the java file which has the same prefix with

the configuration file. If so, record these changes.

end

end

end

end

end

end

19

Algorithm 5: Analyse process2

for commit in the commit history of project url do

for file in the modified files of the commit do

if it is a java file then

if it’s change type equals ’ADD’ then

if added statement is a log statement then
1) Set log message - log level pair, log message’s history, log message’s

output status (default:output).

2) Check if the log statement controlled by a configuration file. If so,

set the log message threshold consistent with the configuration file

threshold.

3) Check if the log message has a threshold. If so, set the log

message’s output status corresponding to the log level and threshold.

end

end

if it’s change type equals ’MODIFY’ then

if modified statement is a log statement then

if the log message of the statement has been paired then

if the log level now differ from before then

1) update the log message - log level pair and record these changes

and update the log message’s history: old log level + ’ ’ + new

log level

2) Check if the log message has a threshold. If so, set the log

message’s output status corresponding to the threshold and the

new log level.

end

end

if the log message of the statement has not been paired then
Set log message - log level pair, log message’s history.

end

end

end

end

end

end

20

Figure 5: Log statements with and without logging configuration change

5 Results and Discussions

5.1 RQ1: Result

5.1.1 In the case of log statement unit

As Figure 5 show, there are 3,080 log statements in total. No log level and project

configuration file threshold has changed in 49.4% (1521) log statements. And in these

49.4% (1521) log statements, 44.9% (1382) are always being output, and 4.5% (139) are

always being not output. Log level , configuration file threshold, or both has changed in

50.6%(1559) log statements. In this case, 30.5% (939) of log statements changed their

output status while 20.1% (620) has not changed. From the results above, we can know

that about 30% log statements changed their output status in the process of the project

evolution.

5.1.2 In the case of commit unit

As Figure 6 show, there are 10,966 commits in total. Changes in log level in source

code and threshold in project configuration file occur in 2.7% of them. In those commits,

23.9% of them have output status change by changing the setting, 76.1% of them have no

change in output status by changing the setting. From the results above, we can know

that about 24% commits have output status change by changing the log level in source

code and threshold in project configuration file.

21

Figure 6: The number of commits with and without change in output status by logging

configuration change

5.2 RQ2: Result

5.2.1 In the case of log statement unit

As Figure 7 shows, 3.7%(35) log statements has changed their output status by the

change of source code log level. 96.3%(90) log statements has changed their output status

by the change of configuration file threshold. From the results above, we can know that

log output statements often change their output due to changes in the threshold in project

configuration file.

5.2.2 In the case of commit unit

As Figure 8 shows, 34.3%(24) of the commits changed only the log level of the source

code, 64.3%(45) of them changed only the configuration file threshold, and 1.4%(1) of

them changed both of them when there are log statements which changed their output

status in each commit. From the commit unit perspective, log output statements also

often change their output due to changes in the threshold in project configuration file.

5.3 RQ3: Result

As Figure 9 shows, 19.2% log statements changed their log level in source code more

than once. Their log levels are commuting without change in the threshold in project

configuration file. The result shows that for about 20% logging statements, their log level

are changed frequently which means developers change these log levels with the intention

22

Figure 7: File changed when log statements output status change in the case of log state-

ment unit

Figure 8: File changed when log statements output status change in each commit

on changing the output.

23

Figure 9: Log statements with once and more than once log level change in source code

24

6 Threats to Validity

External Validity Generality of our results are considered as the external threat to

validity in this research. We choose only one open source project ActiveMQ as our study

case in this research. But other projects may use use other kinds of logging libraries and

different rules, this time the results may not apply to other projects. For example, other

projects may have more than more than 6 gradations in their library. Further study in

different domains and sizes project can benefit our study. Also, since we choose only one

project written in java as our study case, we have not conducted research on projects in

other languages, the results may not apply to the projects in other languages. Conducting

this study on a larger number of items in a variety of other languages would make the

results more generalizable.

Internal Validity In this paper, we used the thresholds in the project configuration

file. However, whether these thresholds can be completely trusted is a remaining issue for

us to figure out. For example, if there is case that the threshold in repository is “info”

but changing to “debug” temporarily when developers want to debug. Further study on

issue like this can make our research more credible.

Construct Validity This paper investigate the impact of logging configuration changes

in source code and project configuration file. As result, project configuration file play a

more important role in the change of log statements output status. Future work should

conduct studies figuring out whether the project configuration file change by developer

change the output status of log statements which are not supposed to be changed. This

could give developer suggestions when they want to change the configuration file. We

expect future work to expand this study.

25

7 Conclusion

Prior studies shows that developers are always struggling with choosing the an appro-

priate log level for each log statement and take great effort on maintaining and updating

log level over the lifetime of a project. There are prior research on recommendation on

choosing log level and revealed lots of findings about current practice of project configura-

tions files. But no existing research focuses on the collective impact of log level in source

code and project configuration file. In this paper, we conduct the study which focus on

the log statements output status change. Some of the key findings of our study are as

follows:

1) Log output statements affected by project configuration file changes were about 30%

of the total in the case of log statement unit, and 24% in the case of commit unit.

2) The log statements output status are more affected by logging configuration change

than by logging code change.

3) There are logs of cases that for one log statement, developers change its log level in

source code or the threshold in project configuration file to change the log statements

output status.

26

Acknowledgement

First and foremost, I would like to give my sincere gratitude to Professor Katsuro Inoue

for giving me the opportunity to work with him. He provided advice and important

direction to my thesis work.

Second, I would like to thank Associate Professor Makoto Matsushita in Department of

Computer Science, Osaka University for his professional instructions and advice.

Also, I would like to present my thanks to Assistant Professor Tetsuya Kanda for great

instructions throughout the process of writing the thesis, improving the outline and the

argumentation, and correcting the grammatical errors. His insightful comments on every

draft, which provide me with many enlightening ideas, have inspired me to a great extent

What is more, special thanks to Mr Kazumasa Shimari, my tutor who, with extraor-

dinary patience and consistent encouragement, gave me great help by providing me with

necessary materials, advice of great value and inspiration of new ideas. It is his suggestions

that draw my attention to a number of deficiencies and make many things clearer. With

out his strong support, this thesis could not been the present form.

I would like to express my gratitude to all members of Department of Computer Science

for their guidance. Thanks are also due to many friends in Department of Computer

Science, especially students in Inoue Laboratory.

27

References

[1] Apache. activemq. https://github.com/apache/activemq.

[2] Apache. Log4j. https://logging.apache.org/log4j/2.x/.

[3] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dong-

mei Zhang, and Tao Xie. Where do developers log? an empirical study on logging

practices in industry. In Companion Proceedings of the 36th International Conference

on Software Engineering, pp. 24–33, 2014.

[4] Ceki Gulcu. The complete log4j manual. In Quality Open Software, 2003.

[5] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. Performance

debugging in the large via mining millions of stack traces. In 2012 34th International

Conference on Software Engineering (ICSE), pp. 145–155, 2012.

[6] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu, and Dong-

mei Zhang. Identifying impactful service system problems via log analysis. In Pro-

ceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE

2018, p. 60–70, 2018.

[7] Heng Li, Weiyi Shang, and Ahmed E. Hassan. Which log level should developers

choose for a new logging statement? Empirical Software Engineering, Vol. 22, No. 4,

pp. 1684–1716, 2017.

[8] Zhenhao Li. Characterizing and detecting duplicate logging code smells. In 2019

IEEE/ACM 41st International Conference on Software Engineering: Companion Pro-

ceedings (ICSE-Companion), pp. 147–149, 2019.

[9] Tsuyoshi Mizouchi, Kazumasa Shimari, Takashi Ishio, and Katsuro Inoue. Padla: A

dynamic log level adapter using online phase detection. In 2019 IEEE/ACM 27th

International Conference on Program Comprehension (ICPC), pp. 135–138, 2019.

[10] Davide Spadini, Mauŕıcio Aniche, and Alberto Bacchelli. PyDriller: Python frame-

work for mining software repositories. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering - ESEC/FSE 2018, pp. 908–911, 2018.

28

[11] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. Detect-

ing large-scale system problems by mining console logs. In Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09, p. 117–132,

2009.

[12] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaoming Tang,

Yuanyuan Zhou, and Stefan Savage. Be conservative: Enhancing failure diagnosis

with proactive logging. In Proceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation, OSDI’12, p. 293–306, 2012.

[13] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices in

open-source software. In 2012 34th International Conference on Software Engineering

(ICSE), pp. 102–112, 2012.

[14] Sha Zhao, Julian Ramos, Jianrong Tao, Ziwen Jiang, Shijian Li, Zhaohui Wu, Gang

Pan, and Anind K. Dey. Discovering different kinds of smartphone users through

their application usage behaviors. In Proceedings of the 2016 ACM International

Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’16, p. 498–509,

2016.

[15] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, and Tao Xie. An ex-

ploratory study of logging configuration practice in java. In 2019 IEEE International

Conference on Software Maintenance and Evolution (ICSME), pp. 459–469, 2019.

29

