
特別研究報告

題目

抽象構文木に基づく静的解析ツールに向けた
多言語拡張可能なフレームワークの提案

指導教員
肥後 芳樹 教授

報告者
石村 涼介

令和 8年 2月 9日

大阪大学 基礎工学部 情報科学科



令和 7年度 特別研究報告

抽象構文木に基づく静的解析ツールに向けた多言語拡張可能なフレームワークの提案

石村 涼介

内容梗概

抽象構文木（AST: Abstract Syntax Tree）は，プログラムのソースコードを構文規則に
従って木構造として表現したデータ構造であり，文や式の階層的な構造を表現する．静的解
析ツールの多くは，このASTを用いて解析処理を行う．しかし，ASTは各プログラミング
言語の文法に基づいて構築されるため，その構造は言語ごとに大きく異なる．
そのため，ASTベースの静的解析ツールの多くは単一のプログラミング言語を対象とし

ており，多言語への対応には大きな実装コストがかかる．これは，解析処理の大半が対象言
語に依存して実装されており，言語間で再利用可能な部分が限定的であるためである．
一方，コンパイラの分野では，LLVMのように，言語非依存な中間表現を用いることで多

言語に対応している．しかし，コンパイラ基盤は主に効率的なコード生成や最適化を目的と
して設計されており，静的解析とは目的や要求される情報の粒度が異なる．特に，静的解析
に必要となる構文構造や意味情報が中間表現への変換過程で抽象化されるため，そのまま静
的解析に利用することは容易ではない．
本研究では，静的解析処理を言語依存部分と言語非依存部分に分離することで，多言語に

拡張可能な静的解析の基盤となるフレームワークを提案する．本研究の目的は，既存のAST

ベースの静的解析ツールを，低コストで多言語対応可能にする基盤を構築することである．
具体的には，言語非依存なデータ構造として拡張 CST(E-CST: Extended Code Structure

Tree)を導入し，フレームワークを設計した．E-CSTは，言語固有の構文構造を抽象化しつ
つ，静的解析に必要な情報を保持する木構造である．
実際に，既存の静的解析ツールであるREPFINDERとPYREFに対してフレームワーク

を適用することで，単一言語を対象とする静的解析ツールを低コストで多言語に拡張できる
可能性を示した．

主な用語

静的解析
抽象構文木 (AST: Abstract Syntax Tree)
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中間表現
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1 まえがき

静的解析とは，プログラムを実行せずにソースコードを解析する手法である．リンタ (Lin-

ter)はその代表例であり，主に構文規則やコーディング規約に基づく検査を行うことで，コー
ド品質の向上や，コードレビューのコスト削減に寄与している．例えば，Pythonを対象と
した flake81 やmypy2などのリンタが開発現場において広く利用されている．
一方，近年の研究では，単純な構文規則やコーディング規約の検査にとどまらず，コード

要素間の関係やリビジョン間の変化といった，より高度な構造情報を用いる静的解析ツール
が提案されている．例えば，PYREF[3]は，Pythonプロジェクトにおいて，リビジョン間の
リファクタリングを検出する静的解析ツールである．REPFINDER[6]は，Javaプロジェク
トにおいて，ライブラリ更新時に欠落したAPIの代替となるAPIを探索する静的解析ツー
ルである．
静的解析では，解析の目的に応じて用いられるデータ構造が異なる．例えば，抽象構文木

(AST: Abstract Syntax Tree)は，プログラムの構文構造を木構造として表現したデータ構
造である．ASTは構文規則やコーディング規約の検査，型解析など，多くの静的解析で用
いられる．一方，制御フローグラフ (CFG: Control Flow Graph)は，文や基本ブロック間
の実行順序をグラフとして表現したデータ構造である．CFGはデータフロー解析や抽象解
釈など，制御構造を考慮した解析に用いられる．
このように，多種多様な静的解析ツールが提案・利用されているが，多くの静的解析ツー

ルは単一のプログラミング言語を対象としており，多言語への拡張には大きなコストを要す
るという課題がある．これは，解析処理の大半が対象言語に依存して実装されており，言語
間で再利用可能な部分が限定的であるためである．したがって，新たに別のプログラミング
言語に対応する際には，解析器の新規実装が必要となり，大きなコストを要する．
一方，コンパイラの分野では，多くのプログラミング言語に対応可能なコンパイラ基盤と

して LLVM[7]が知られている．LLVMでは，コンパイル対象となるソースコードを，プロ
グラミング言語に依存しない中間表現である LLVM IRへ変換する．その後の最適化や機械
語生成などの処理は LLVM IR上で行われるため，言語間で共通の処理を再利用できる．ま
た，新たなプログラミング言語に対応する際には，当該言語から LLVM IRへの変換部分の
みを新規実装すればよいため，低コストである．
LLVMのようなコンパイラ基盤と同様に，静的解析においても基盤を構築することで，多

言語への拡張を低コストで実現できると考えられる．LiSA[4]は，CFGに基づく静的解析基
盤であり，現時点では Java，Python，Goを対象言語としている．LiSAでは，解析対象と

1https://flake8.pycqa.org
2https://mypy-lang.org
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なるソースコードを，プログラミング言語に依存しない中間表現である LiSA CFGへ変換
する．以降の解析処理は LiSA CFG上で行われるため，LLVMと同様に，言語間で共通の
処理を再利用できる．
このように，CFGに基づく静的解析ツールを対象とした基盤は存在するが，ASTに基づ

く静的解析ツールを対象とした基盤は発展途上である．そこで本研究では，ASTに基づく静
的解析基盤として，拡張CST(E-CST: Extended Code Structure Tree)を提案する．E-CST

は，RefDiff 2.0[10]で提案された CST(Code Structure Tree)を拡張した言語非依存なデー
タ構造であり，RefDiff 2.0以外の静的解析ツールにも適用可能である．
実際に，既存の静的解析ツールである REPFINDERと PYREFに対して E-CSTを適用

することで，単一言語を対象とする静的解析ツールを低コストで多言語拡張できる可能性を
示す．
本論文の構成は以下の通りである．第 2章では研究の背景について詳細に説明する．第 3

章では提案フレームワークについて述べる．第 4章では提案フレームワークの適用について
述べる．第 5章では関連研究について述べる．第 6章では考察を述べる．第 7章では今後の
課題を述べる．
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2 背景

本章では，研究の背景として，静的解析，抽象構文木，RefDiff，CSTについて述べる．

2.1 静的解析

静的解析とは，プログラムを実行せずにソースコードを解析する手法である．リンタ (Lin-

ter)はその代表例であり，主に構文規則やコーディング規約に基づく検査を行うことで，コー
ド品質の向上や，コードレビューのコスト削減に寄与している．例えば，Error Prone[9]は
Googleが開発した Java言語向けのリンタであり，コンパイル時にASTを解析することで，
実行時にエラーを引き起こす可能性のあるバグパターンを検出する．FindBugs[5]は Java言
語を対象とし，バグパターンとの照合を通じてプログラム内の潜在的な欠陥を検出するリン
タである．
静的解析を実現するためには，解析対象となるソースコードを何らかのデータ構造に変換

する必要がある．代表的なデータ構造として，ASTや CFGが挙げられる．ASTは，プロ
グラムの構文構造を木構造で表現したもの [1]であり，構文規則の検査やリファクタリング
検出などに広く用いられている．一方，CFGは基本ブロックをノードとし，制御の流れを
エッジとする有向グラフ [2]であり，データフロー解析や抽象解釈などに用いられる．
多くの静的解析ツールは，特定のプログラミング言語を対象として実装されている．これ

は，データ構造の構築や解析処理が対象言語の構文や仕様に強く依存しており，複数言語を
同一の枠組みで扱うことが容易ではないためである．その結果，既存の静的解析ツールを多
言語に拡張する場合，大きなコストが発生するという課題が指摘されている [13]．
このような背景から，言語に依存しない共通のデータ構造を用いることで，静的解析ツー

ルの多言語対応を低コストで実現する試み [4][8][13]が注目されている．

2.2 抽象構文木 (AST)

ASTは，プログラムの構文構造を木構造で表現したもの [1]であり，構文規則の検査やリ
ファクタリング検出などに広く用いられている．ASTは，プログラムの意味に直接関係し
ない要素を省略し，構文の本質的な構造のみを表現する点に特徴がある．例えば，括弧や区
切り記号といった情報はAST上では省略されることが多い．
ASTの構造や仕様はプログラミング言語ごとに異なり，また同一言語であっても，処理系

やツールごとに異なるASTが定義される場合がある．そのため，ASTの定義に応じて，対応
するパーサが実装されることが多い．Java言語の場合，Eclipseの JDT(Java Development

Tools)3が提供するASTが広く知られており，専用のパーサも JDTに含まれている．Python
3https://www.eclipse.org/jdt/
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言語においては，標準ライブラリとして astモジュール4が提供されており，ソースコード
からASTを生成することが可能である．

2.3 RefDiff

RefDiff[11]とは，Javaプロジェクトにおいて，異なるリビジョン間のソースコードを比
較し，リファクタリングを自動的に検出する静的解析ツールである．例えば，メソッドM

がクラスXからクラスYへ移動された場合，RefDiffはその変更をMove Methodとして検
出する．
このようなリファクタリング検出においては，条件文や式の詳細な構文構造よりも，コー

ド要素の包含関係や名前，位置関係といった構造的情報が重要となる．RefDiffでは，Java

ソースコードからASTを構築し，構築したASTからクラス，メソッド，フィールドなどの
情報を抽出することで解析を行う．
当初，RefDiffは Java言語のみを対象としていたが，RefDiff 2.0では多言語に拡張され，

Java，JavaScript，Cの 3言語に対応可能となった．RefDiff 2.0では，多言語対応を実現す
るために，CSTと呼ばれる言語非依存なデータ構造が導入された．

2.4 CST

CSTとは，RefDiff 2.0において導入された言語非依存なデータ構造であり，Java，JavaScript，
Cのいずれかの ASTをもとに構築される．CSTはASTと同様に木構造でプログラムを表
現するが，すべての要素を表現するのではなく，クラスやメソッド，関数といった要素のみ
に着目する．一方，条件文や式などの詳細な要素は抽象化され，リファクタリング検出に必
要な情報に限定した表現となっている．
図 1，図 2のソースコードから得られる CSTの例を図 3に示す．CSTは 1リビジョンに

つき 1つ生成されるため，図 3では同一リビジョンに属する 2つのソースコードから 1つの
CSTが生成されている．CSTのルートノードは，各ソースコードをトークン単位に区切っ
た状態で保持し，類似度の計算に使用する．また，ルートノード以外のノードは，クラスや
メソッドを表現しており，識別子 (例:plus(int, int))を持つ．クラスを表現するノードには
名前空間 (例:com.ex.)が付与され，メソッドを表現するノードには引数名リスト (例:[x, y])

が付与される．このような設計により，クラスやメソッドの移動や名称変更といったリファ
クタリングを効率よく検出できる．
また，ノード間には，継承関係や呼び出し関係などの関係が明示的に付与されており，ク

ラス階層や依存関係に基づく解析を効率的に実施できる．例えば，図 1におけるmainメソッ

4https://docs.python.org/ja/3/library/ast.html
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package com.ex;

public class Main {

public static void main(String [] args) {

Calculator c = new Calculator ();

int r = c.plus(2, 5);

System.out.println(r);

}

}

図 1: Javaコードの例 (com/ex/Main.java)

package com.ex;

public class Calculator {

public int add(int x, int y) {

return x + y;

}

/**

* @deprecated Use add(int , int) instead.

*/

@Deprecated

public int plus(int x, int y) {

return x + y;

}

}

図 2: Javaコードの例 (com/ex/Calculator.java)

ドは図 2における plusメソッドを呼び出しているため，図 3ではmainメソッドを表現する
ノードから plusメソッドを表現するノードへ有向辺が付与されている．
CSTのノードは，各プログラミング言語のASTノードから生成されるが，その表現は言

語非依存となるよう設計されている．CST上で表現されるASTノードの一覧を表 1に示す．
例えば，JavaではクラスやメソッドがCSTのノードとして表現される一方，JavaScriptや
Cにおいても，それぞれの言語における関数やファイルが共通の概念として CST上に表現
される．すなわち，CSTは言語間の差異を吸収する中間表現であるといえる．
なお，リビジョン間で追加・削除・変更されたファイルのみを対象としてCSTが構築され

る．未変更のファイルはリファクタリング検出において重要な役割を果たさないためである．
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Class
identifier : Calculator

namespace : com.ex.

Method
identifier : add(int, int)

parameters : [x, y]

Method
identifier : plus(int, int)

parameters : [x, y]

Class
identifier : Main

namespace : com.ex.

Method
identifier : main(String[])

parameters : [args]

Call

Root
tokenizedSource : [com/ex/Main.java : ~~~]

[com/ex/Calculator.java : ~~~]

図 3: CSTの例

表 1: CST上で表現されるASTノード [10]

言語 ASTノード
Java class, enum, interface, and method

C file and function

JavaScript file, class, and function
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Java AST
Parser

JavaScript AST
Parser

C AST
Parser

Java AST

JavaScript AST

C AST

Java E-CST
Parser

JavaScript E-CST
Parser

C E-CST
Parser

E-CST E-CST Visitor Analysis Result

Java

JavaScript

C

Language-independent

図 4: 提案フレームワーク

3 提案フレームワーク

本フレームワーク (図 4)の目的は，静的解析処理を言語間で共通化することである．その
ために，言語非依存なデータ構造として，CSTを多様な静的解析でも利用できるように拡
張した CST（以降 E-CST）を導入する．

3.1 E-CST

E-CSTとは，RefDiff 2.0において導入された CSTを，リファクタリング検出に限らず，
より一般的な ASTベースの静的解析にも適用可能とした言語非依存なデータ構造である．
CSTが持つ言語非依存性を維持しつつ，より多様な静的解析に必要となる情報および操作
を追加している．CSTは，クラスやメソッド，関数といった要素に着目し，リファクタリン
グ検出に特化した設計となっている．そのため，リファクタリング検出以外の静的解析で重
要となる，型情報やAPIの利用に関する情報などは，十分に表現されていない．E-CSTは
この点を補完し，ASTベースの静的解析の基盤として利用可能な表現へ拡張したデータ構
造である．

3.1.1 保持する情報

E-CSTが保持する情報を表 2に示す．E-CSTでは，CSTに対して以下の情報を追加した．

• 引数型リスト (parameterTypes)

• 返り値の型 (returnType)

• 非推奨メッセージ (deprecatedMessage)

CSTでは引数名リスト (parameterNames)のみ保持していたが，E-CSTでは引数および
返り値の型情報を保持することで，メソッド探索やAPI間の比較において型情報を用いるこ

11



表 2: E-CSTが保持する情報
情報 例 備考
tokenizedSource [”private”, ”void”, ...] ルートノードのみ
identifier ”plus(int, int)”

namespace ”com.ex.” クラス，ファイルのみ
parameterNames [”x”, ”y”] 関数，メソッドのみ
parameterTypes [”int”, ”int”] 関数，メソッドのみ
returnType ”int” 関数，メソッドのみ
deprecatedMessage ”Use hoge() instead.”

とができる．また，非推奨メッセージを保持することで，非推奨APIの代替候補探索やAPI

移行支援などへの応用が期待できる．これらの情報は，従来の CSTでは直接的に扱われて
いなかったものであり，本フレームワークを適用可能な静的解析ツールの幅を広げている．
なお，表2に示した情報は，文字列型として保持する．identifier，namespace，returnType，

deprecatedMessageは文字列型として保持する．parameterNamesおよび parameterTypes

は文字列型の順序付きリストとして保持し，引数宣言順に格納する．tokenizedSourceはトー
クンを表す文字列型の順序付きリストとして保持する．

3.1.2 提供する操作

E-CSTが提供する操作を表 3に示す．E-CSTでは，CSTに対して以下の操作を追加した．

• ソースコード全文の復元

• Visitorパターン用の accept()メソッド

まず，ソースコード復元に関する差異について述べる．CSTでは，単一のノードをソース
コードに復元することは可能であったが，ソースコード全文を復元する操作は提供されてい
なかった．そこで E-CSTでは，ルートノードを入力とし，各ファイルパスに対応するソー
スコード文字列の集合を出力する復元操作を定義した．本操作は，ルートノードが保持する
tokenizedSourceを用いて，各ファイルのソースコードを再構成する．これにより，E-CST

上では保持していない詳細な構文情報を，必要に応じて元のソースコードから参照でき，構
造情報とテキスト情報を組み合わせた解析が可能となる．
次に，走査機構の差異について述べる．CSTでは，ルートノードを起点とする深さ優先探

索 (pre-order)を実行できる．しかしこの機構は，単一のコールバック関数を適用する形式
の走査であり，ノード型ごとの処理分岐や post-orderの深さ優先探索などは定義されていな
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表 3: E-CSTが提供する操作
操作 備考
全ノードの走査 深さ優先探索 (pre-orderのみ)

関係グラフを辿る 呼び出し関係または継承関係
ノードをソースコードに復元
ソースコード全文の復元
Visitorを acceptする Visitorパターン用

い．そこで E-CSTでは，E-CST Visitorを引数として受け取り，ノード到達時 (pre-order)

および子ノード走査後 (post-order)に E-CST Visitorの対応メソッドを呼び出す accept操
作を定義した．本操作は値を返さず，解析結果はE-CST Visitorの内部状態として保持され
る．これにより，E-CSTを変更することなく新たな解析処理を追加可能となり，汎用的な
ASTベースの静的解析基盤へと拡張されていることが分かる．

3.1.3 E-CSTの例

図 1，図 2のソースコードから得られる E-CSTの例を図 5に示す．ここで，E-CSTの木
構造自体は，図 3のCSTと同様である．すなわち，E-CSTはCSTと同様に，1リビジョン
につき 1つ生成される．また，CSTと同様に，mainメソッドを表現するノードから plusメ
ソッドを表現するノードへ，呼び出し関係を表す有向辺が付与されている．
一方，図 5においてメソッドを表現するノードに注目すると，本フレームワークにおいて

新たに追加された，引数型リスト，返り値の型，非推奨メッセージが保持されている．また，
クラスを表現するノードに注目すると，本フレームワークにおいて新たに追加された非推奨
メッセージが保持されている．

3.2 処理の流れ

本フレームワークは 3段階の処理に分けられる (図 4)．

1. ASTの構築
解析対象となるソースコードをASTに変換する．ここでは既存のASTパーサを用い
る．例えば Java言語の場合は，JDTのASTパーサを用いる．

2. E-CSTの構築
ASTをもとに E-CSTを構築する．例えば Javaの ASTをもとに E-CSTを構築する
場合，Java専用の E-CSTパーサを用いる．すなわち，E-CSTパーサは解析対象とな

13



Class
identifier : Calculator

namespace : com.ex.

depMsg : null 

Method
identifier : add(int, int)

parameterNames : [x, y]

parameterTypes : [int, int]

returnType : int

depMsg : null 

Method
identifier : plus(int, int)

parameterNames : [x, y]

parameterTypes : [int, int]

returnType : int

depMsg : Use add(int, int) instead. 

Class
identifier : Main

namespace : com.ex.

depMsg : null 

Method
identifier : main(String[])

parameterNames : [args]

parameterTypes : [String[]]

returnType : void

depMsg : null 

Call

Root
tokenizedSource : [com/ex/Main.java : ~~~]

[com/ex/Calculator.java : ~~~]

図 5: E-CSTの例

る言語ごとに開発する必要がある．

3. 静的解析の実行
E-CST上で静的解析を実行する．E-CSTは言語非依存なデータ構造であるから，解
析対象の言語にかかわらず，解析器を再利用できる．解析器としては，Visitorパター
ンに基づくE-CST Visitorを想定している．これにより，E-CST側を変更することな
く解析器を開発できる．
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4 提案フレームワークの適用

本章では，既存の静的解析ツールであるREPFINDERと PYREFに対し，提案フレーム
ワークの適用例を示す．

4.1 適用方法

提案フレームワークの適用は，以下の 3段階の手順により行う．

1. E-CSTへの変換
解析対象となるソースコードを E-CSTへ変換する．対象言語に対応した E-CSTパー
サが既に存在する場合はそれを利用し，存在しない場合には，当該言語の ASTを入
力として E-CSTを構築する E-CSTパーサを新たに実装する．

2. 静的解析の実行
構築したE-CSTに対して静的解析を実行する．E-CSTはVisitorパターンを採用して
いるため，解析内容に応じたE-CST Visitorを実装することで，E-CSTの構造を変更
することなく解析処理を追加できる．この解析器は言語非依存であり，同一のVisitor

を複数のプログラミング言語に対して再利用可能である．

3. 解析結果の収集・利用
解析結果を収集・利用する．E-CST上で得られた解析結果は，リファクタリング検出
や非推奨 APIの検出，コード要素間の関係解析など，さまざまな静的解析に応用で
きる．

4.2 REPFINDERへの適用

4.2.1 REPFINDERの概要

REPFINDERは Javaプロジェクトにおいて，ライブラリ更新時に欠落した APIの代替
となるAPIを探索する静的解析ツールである．ライブラリ更新時，一部のAPIは削除され
たり非推奨 (deprecated)とされたりするため，欠落することがある．その結果，ライブラリ
利用者は欠落APIの代替APIを手動で探す必要があり，これは大きなコストのかかるソフ
トウェア保守作業となる．REPFINDERでは代替APIを自動的に発見するために，以下の
3段階の探索を行う．

1. JavaDoc非推奨メッセージをもとに探索
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Java AST
Parser Java AST Java E-CST

Parser E-CST E-CST Visitor Analysis ResultJava

Language-independent

REPFINDER
Visitor

図 6: 提案フレームワークの適用例 (REPFINDER)

2. 自ライブラリを探索

3. 外部ライブラリを探索

3段階の探索によって，既存手法よりも高い再現率で代替APIを提示できることが報告さ
れている．
REPFINDERは，API間の構造的関係や継承関係を解析するため，Javaの ASTに基づ

いた静的解析を行う．具体的には，クラス階層の探索やメソッドシグネチャの比較を通じて，
欠落APIと類似したAPIを代替APIの候補として抽出する．すなわち，REPFINDERは
JavaのASTに強く依存している．
その結果，REPFINDERの探索アルゴリズム自体は他のプログラミング言語にも適用可

能な性質を持つ一方で，実装上は Java専用のツールとなっている．

4.2.2 REPFINDERへの適用例

REPFINDERへのフレームワークの適用例を図 6に示す．具体的な適用手順は以下の 3

段階である．

1. E-CSTへの変換
Javaソースコードを JDTのASTパーサによりASTへ変換し，そのASTを入力とし
てE-CSTを構築する．クラス，メソッド，継承関係，呼び出し関係，および JavaDoc

非推奨メッセージを E-CST上のノードおよび関係として表現する．

2. 静的解析の実行
REPFINDERの探索処理を，E-CST Visitorを用いて再実装する．E-CST Visitorを継
承したREPFINDER Visitorを実装し，継承関係やシグネチャ類似性の解析を，Visitor
パターンによる E-CST走査として実現する．走査では，欠落APIが属していたクラ
スの親クラスや子クラスを辿り，型やシグネチャが類似する APIを候補として収集
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する必要がある．E-CSTでは，継承関係や包含関係が明示的に表現されているため，
Visitorパターンを用いた走査によって探索を実現できる．

3. 解析結果の収集・利用
欠落APIに対する代替API候補を抽出する．

このように，提案フレームワークを適用することで，REPFINDERの探索処理は Javaの
ASTから独立し，E-CSTに基づく言語非依存な解析処理として再構成されると考えられる．
同様の E-CSTパーサを他言語向けに実装することで，REPFINDERの解析器を再利用し，
低コストで他のプログラミング言語へ拡張できると考えられる．

4.3 PYREFへの適用

4.3.1 PYREFの概要

PYREFは，Pythonプロジェクトを対象として，リファクタリングを自動的に検出する静
的解析ツールである．PYREFは，RefactoringMiner[12]から着想を得た手法をPython向け
に適用し，PythonのASTを用いてコード要素をモデル化することで，メソッド単位のリファ
クタリング検出を実現している．具体的には，RENAME METHOD，ADD PARAMETER，
EXTRACT METHOD，MOVE METHODなどを検出する．
PYREFは，リビジョン間で変更されたファイルのみを対象とし，PythonのASTからモ
ジュール，クラス，メソッド，文といったコード要素を抽出する．抽出した要素をノードとし
て表現し，異なるリビジョン間のノード同士を対応付けることで，どのノードがどのノード
に変化したか特定し，リファクタリング候補を検出する．この解析処理は，PythonのAST

に強く依存している．
その結果，PYREFの探索アルゴリズム自体は他のプログラミング言語にも適用可能な性
質を持つ一方で，実装上は Python専用のツールとなっている．

4.3.2 PYREFへの適用例

PYREFへのフレームワークの適用例を図 7に示す．具体的な適用手順は以下の 3段階で
ある．

1. E-CSTへの変換
Pythonソースコードを，astモジュールを用いてASTへ変換し，そのASTを入力と
して E-CSTを構築する．モジュール，クラス，メソッドといった PYREFの解析に
必要なコード要素を，E-CST上のノードとして表現する．
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Python AST
Parser Python AST Python E-CST

Parser E-CST E-CST Visitor Analysis ResultPython

Language-independent

PYREF Visitor

図 7: 提案フレームワークの適用例 (PYREF)

2. 静的解析の実行
PYREFが行うリファクタリング検出処理を，E-CST上の解析として再実装する．E-

CST Visitor を継承した PYREF Visitor を実装し，リファクタリング検出処理を，
Visitorパターンによる E-CST走査として実現する．PYREFのリファクタリング検
出では，メソッド名，所属クラス，モジュール構造，およびコード要素間の対応関係
が重要となる．E-CSTでは，これらの構造的情報が言語非依存な形式で保持されてい
るため，PythonのASTに依存することなく，Visitorパターンによる走査およびノー
ド間関係の解析によって，リファクタリング検出を実現できる．

3. 解析結果の収集・利用
メソッド単位のリファクタリング操作を抽出する．

このように，提案フレームワークを適用することで，PYREFのリファクタリング検出処
理は PythonのASTから切り離され，E-CSTに基づく言語非依存な解析処理として再構成
されると考えられる．同様の E-CSTパーサを他言語向けに実装することで，PYREFの解
析器を再利用し，低コストで他のプログラミング言語へ拡張できると考えられる．
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5 関連研究

本章では，静的解析を対象とした多言語拡張可能なフレームワークに関する関連研究につ
いて述べる．

5.1 LiSA

LiSA(Library for Static Analysis)[4]は，CFGベースの静的解析ツールを対象とした多言
語拡張可能なフレームワークである．現時点では Java，Python，Goの 3言語を対象として
いる．
LiSAの基本的な設計思想は，解析対象のプログラミング言語に依存する処理と，言語非

依存な解析アルゴリズムを明確に分離する点にある．具体的には，各言語のソースコード
はフロントエンドによって LiSA内部の中間表現である LiSA CFGへ変換され，その後の
解析はすべてこのCFG上で実行される．この設計思想は，LLVMにおける中間表現である
LLVM IRを用いた多言語対応と同様であり，一度解析基盤を実装すれば，複数言語に対し
て共通の解析処理を再利用できる．
なお，LiSAでは，データフロー解析および抽象解釈に基づく数値解析を中心に，幅広い

静的解析を実装可能である．
このように，LiSAは CFGに基づく言語非依存な中間表現を導入することで，多言語対

応かつ拡張性の高い静的解析フレームワークを実現している．

5.2 GAST

GAST(Generic Abstract Syntax Tree)[8]は，さまざまなプログラミング言語で記述され
たソースコードを，言語非依存な ASTへ変換することを目的とした静的解析基盤である．
共通の構造を持つGASTへ変換することで，単一の解析アルゴリズムによる静的解析を可
能にする．現時点では Java, Python, C#などの言語に対応している．
GASTの基本的な設計思想は，各プログラミング言語固有の構文的差異をGAST上で吸

収し，構文構造に基づく解析を言語非依存に実施できるようにする点にある．各言語のソー
スコードは，既存のパーサを用いてASTへ変換された後，あらかじめ定義された対応規則
に基づいてGASTへ変換される．この変換の正当性は，ASTとGASTの構造的同値性を検
証するバリデーション機構によって保証される．具体的には，ノード数や階層構造，親子関
係が変化しないことが確認される．
GASTは主に，プログラムの構造やコード要素間の関係に着目した静的解析を想定して

いる．具体的には，コードクローン検出，ソフトウェアメトリクス (サイクロマティック複
雑度など)の計測などへの利用が期待されている．また，GASTは異なるプログラミング言
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語で実装されたプログラムを，共通の表現上で比較できる点に特徴がある．これにより，言
語を跨いだコードクローン検出や構造的類似度の解析など，従来は困難であった言語横断的
な解析が可能となる．
GASTと E-CSTの差異について述べる．GASTは各言語のASTの構造を可能な限り保

持しつつ，それらを言語非依存な構造へ変換することを目的としている．そのため，文や
式，制御構造といった細かい粒度の構文要素まで詳細に表現する汎用的なAST基盤であり，
コードクローン検出やメトリクス計測など，構文構造全体を対象とする解析に適している．
これに対し，本研究で提案した E-CSTは，AST全体の統一を目的とするものではなく，ク
ラス，メソッド，フィールドといった粗い粒度のコード要素に着目する点に特徴がある．す
なわち，GASTはASTの一般化によって汎用的な多言語解析基盤を目指しているのに対し，
E-CSTは解析目的に基づくASTの一部の抽象化によって簡潔かつ軽量なデータ構造を目指
している．また，GASTではASTとの構造的同値性を維持することが設計上重要であるの
に対し，E-CSTでは元のAST構造を完全には保持せず，解析に不要な構文情報を意図的に
捨象する．この点において，両者は設計方針および想定する解析粒度が本質的に異なる．
このように，GASTは汎用的なAST統合基盤であるのに対し，E-CSTは特定の静的解析

を効率的に実現するという目的に特化したデータ構造であるという点で差異がある．

5.3 UNICOEN

UNICOEN[13]は，複数プログラミング言語に対応するソースコード処理フレームワーク
であり，言語とツールの多対多の関係を多対一に簡略化することを目的としている．そのた
めに，シンタックスに基づく言語非依存な統合コードモデルを提供し，各言語のソースコー
ドを統合コードモデルへマッピングすることで，共通 API上で解析および変形処理を記述
可能としている．統合コードモデルは木構造を有し，クラス・メソッド・ブロックなどを再
帰的に保持するASTに近い構造を持つ．
これに対し，本研究で提案したE-CSTは，言語とツールの関係を一般化するフレームワー

クではなく，ASTベースの特定の静的解析を効率的に実現するための目的に特化した中間
表現である．UNICOENが構文構造を網羅的に保持する言語非依存AST基盤であるのに対
し，E-CSTはクラス，メソッド，フィールドといった粗い粒度のコード要素に限定して情
報を抽出し，解析に不要な構文情報は保持しない．
また，UNICOENは解析のみならずコード変形も含めた汎用的ツール開発を想定し，ツー

ル開発者向けAPIおよび言語拡張者向けAPIを提供するフレームワークである．一方，E-

CSTは独立したAPI基盤を提供するものではなく，言語間で構造差異を吸収しつつリファ
クタリングの対応関係を同一基準で比較するためのデータ構造である．
このように，UNICOENが言語非依存なASTフレームワークによって多様なツール開発
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を支援する基盤であるのに対し，E-CSTは特定の静的解析を効率的に実現するという目的
に特化したデータ構造であるという点で，設計思想と適用範囲が異なる．
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6 考察

本章では，E-CSTに対する考察を述べる．
REPFINDERおよび PYREFへの適用を通じて，本フレームワークは，異なるプログラ

ミング言語を対象とし，かつ異なる解析目的を持つASTベースの静的解析ツールに対して，
共通の解析基盤を提供可能であることを示した．この結果は，本フレームワークが高い汎用
性を有することを示唆している．
従来，これらの静的解析ツールはそれぞれ対象言語のASTに強く依存して実装されてお

り，多言語への拡張は困難であった．しかし，本フレームワークを用いることで，解析処理
を言語非依存な部分として切り出すことができ，また前処理となる言語依存部分を E-CST

パーサに分離できる可能性が示された．
一方で，本フレームワークはASTベースの静的解析を対象としており，すべての解析を

E-CST上で完全に表現できるわけではない．例えば，式レベルの詳細な構文解析や制御フ
ローを考慮する解析では，E-CSTのみでは情報が不足する場合がある．このような制約を
踏まえると，本研究のアプローチは，CFGベースの解析基盤である LiSAと相補的な関係
であると考えられる．
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7 今後の課題

本章では，今後の課題について述べる．

7.1 E-CSTパーサの整備

現時点では E-CSTパーサは未整備であり，特に Python用パーサは未実装である．Java，
JavaScript，Cについても，RefDiff 2.0で用いられている CSTパーサは存在するものの，
E-CSTパーサは未実装である．今後は，E-CSTパーサを実装し，実際に REPFINDERや
PYREFを多言語に拡張することで提案フレームワークの有効性を示す必要がある．

7.2 他の言語非依存な中間表現との連携

例えば，LiSA CFGが表現する制御フロー情報と，E-CSTが保持する構造的情報を組み
合わせることで，単一の中間表現では困難であった，より高度な静的解析の実現が期待さ
れる．
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8 あとがき

本研究では，ASTベースの静的解析ツールを対象とした，多言語拡張可能なフレームワー
クとして E-CSTを提案した．E-CSTは，CSTが持つ言語非依存性を維持しつつ，型情報
や非推奨メッセージといった静的解析に有用な情報を拡張したデータ構造である．
また，既存の静的解析ツールであるREPFINDERおよび PYREFに適用することで，解

析処理を対象言語のASTから切り離し，言語非依存に再構成できる可能性を示した．これ
により，単一言語向けに開発されたASTベースの静的解析ツールを，低コストで多言語に
拡張できることが期待される．E-CSTは，API移行支援，リファクタリング検出，コード
構造解析など，さまざまなASTベースの静的解析への応用が可能であり，今後の静的解析
基盤となり得る．
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