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Abstract

This thesis proposes a programmer performance model in order to
evaluate the activities of a programmer in a quantitative and objective way. This
model is then extended to evaluate the activities of the programmers of a team.
Analysis of experimental evaluations shows the validity and the effectiveness of
the proposed model. In addition, this thesis describes a measurement
environment called GINGER which automatically collects and analyzes the data
from the activities of programmers during software development and shows the
obtained and analyzed data to the programmers as feedback information. By
providing these features, GINGER aims to control the software developfnent
project in a meaningful and objective way.

The programmer performance model and the team performance model
are defined based on a novel concept of error life span. The life span of an error
is defined as the time duration from when the error manifests itself in the
software to when the error is removed from the software. Results of
experimental evaluations show that the programmer performance model has a
high correlation with the "aptitude” of a student programmer. Additionally, the
team performance model, which is defined by regarding a team as a virtual
programmer, turns out to have a high correlation with the time a team spends
debugging.

- The proposed GINGER environment evaluates the activities of

programmers by concentrating its attention on programmer productivity.



Additionally, the concept of program modification is introduced as a metric to
‘estimate the activitieé of programmers and based on this metric, GINGER tries to
analyze the activities of programmers in detail and to improve programmer
productivity by using the analysis. A prototype system of GINGER is currently
being developed and the validity and usefulness of the prototype system are
shown by experimental evaluation in an academic environment.

In Chapter 1, related progress and topics in software engineering are briefly
summarized for background and the outline of the thesis is described.

Chapter 2 describes the software development process, product, and
software metrics. The software metrics include as objects of evaluation the
software development process as well as the software product.

Chapter 3 introduces a new concept of error life span and proposes a
programmer performance model based on the concept. Then, the programmer
performance model is extended to a team performance model in order to
evaluate the activities of programmers on a team. The team model makes it
possible to devise an optimal team organization strategy based on the model.

Chapter 4 describes the experimental evaluation of the proposed models
in both academic and industrial environments. The results of the experimental
evaluations prove that the models are valid and effective in evaluating the
activities of software development. Furthermore, a method is presented to
automatically collect the estimated values of the error life spans based on the
textual changes among successive versions of the program text made during the

coding and debugging processes.
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Chapter 5 describes the major functions of project management during
software developxﬁent. The chapter stresses that "controlling” is the most
important of these functions.

Chapter 6 presents the system organization and functions of GINGER.
GINGER supports collecting and analyzing data during software development. It
supports information feedback to improve programmer productivity with
respectlto measurement-based control of the software development project. The
first prototype system of GINGER is described.

Chapter 7 shows some experimental results of the prototype system.
Results of experiments show that the prototype system provides the primitive
functions needed to measure and control the software development process and
product as well as to evaluate programmer productivity.

Chapter 8 presents a summary of the ideas discussed in the thesis and
draws some conclusions. Finally, it summarizes future research work and

describes key points for designing future measurement environments.
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Chapter 1: Introduction

1.1 Progress in software engineering

Large software systenis often provide incomplete functionality for what
customers want, take too long to construct, cost too much time, use too much
memory space or other resources to run, and rarely evolve to meet the changes
needed [Lamb 1988]. These problems associated with development of software,
especially large-scale software, have emphasized the need for a more disciplined
and systematic approach. In the late 1960's, the term "software engineering" was
coined as a rubric for a variety of techniques and tools to allow the production of
cost-effective, reliable software within specified time constraints [Conte et al.
1986].

In the IEEE standard [IEEE 1983], software engineering is defined as the
systematic approach to the development, operation, maintenance, and
retirement of software. Boehm, on the other hand, defines software engineering
as the application of science and mathematics by which the capabilities of a
computer equipment are made useful to man via computer programs,
procedures, and associated documentation [Boehm 1981].

In the intervening years, the practitioners and researchers have developed
many techniques for addressing these problems mentioned above. These
techniques are mainly for

- coping with the complexities of large systems,

- managing cooperating groups of programmers, and



- measuring the quality of a software system [Lamb 1988].
In addition, a number of notable concepts, which are still useful as the
' foundation for developing and maintaining the current software, have been
established. These concepts include: |

- software development and maintenance methods and models,

- assessment methods,

- software project management, and

- software development environments.

The DoD's STARS (Software Technology for Adaptable, Reliable System)
program is one of the typical trials to apply these concepts to a practical software
development [Druffel et al. 1983]. Actually, the STARS program intends to
improve producﬁ{rity while achieving greater systefn reliability and adaptability
by using software engineering techniques in all phases of the software life cycle.

‘The driving need is to have the capabilities of producing more powerful,
reliable, and adaptable systems through software development, and in-service
support processes that are more responsive, predictable, and cost-effective.

The major technological aspects within the STARS program are
summarized as the following four areas [Conte et al. 1986]:

- Measurement and Project Management Tasks Area,

- Human Resources and Human Engineering Tasks Area,

- Application-Specific Task Area, and

- Support Systems Task Area.



1.2 Measurement in software development"

The Measurement Task Area is considered to be the most important area
within the STARS program since the ability to measure objectively is a
foundation for all scientific and engineering disciplines [Dunham & Krusei
1983]. In other words, software engineering can attain the status of a scientific
discipline only if it is built upon a solid foundation of objective measurement.
Thus, the maturity of software engineering as a discipline may be reflected in the
degree to which the use of metrics becomes normal and natural in the software
development and maintenance process [Conte et al. 1986].

In general, activities for the measurement task area concern the
development of evaluation criteria and their associated measures and metrics,
and the experimental evaluation of techniques, methods, and tools. The strategy
for progress needs, amdng other things, to establish success criteria for other task
areas, and execute cost/benefit analysis of various opportunities. It also needs to
collect baseline data against which to measure progress, instrument automated
supports environments, and develop techniques for experimentally testing
hypotheses related to software development and in-service support [Druffel et al.
1983].

Practical benefits of measurement consist of the following capabilities, (1)
through (5) [Conte et al. 1986] [Dunham & Krusei 1983]: »

(1) Describing the current state of the world — the ability to describe
quantitatively the current state of software parameters, such as software

‘quality, resources expended, and productivity.



(2) Monitoring progress and providing feedback — the ability to monitor
progress, to anticipate problems, and to provide feedback to software
personnel about potential problems.

(3) Predicting project parameters such as cost, delivery time, functions, quality
etc. — the ability to predict software parameters, such as system Acost,
delivery time, and reliability.

(4) Expressing requirement and goals quantitatively — the ability to express
requirements quantitatively both as goals and as acceptance criteria.

(5) Analyzing costs and benefits — the ability to quantify trade-offs that can be
used by management in allocating resources.

This thesis focuses on the first two, and proposes ‘a concrete method to

implement them.

1.3 Understanding software development activities

The most fundamental function of measurement is to describe the current
state of development. For complex software, this is extremely important because
it allows us to discern trends and pattern [Druffel et al. 1983].

The measurement of resource expenditures is a good example of the
benefit of this type of description. The resources expended on a project,
particularly in terms of a human effort, are translated directly into costs. By
- collecting and analyzing information about exactly where these resources are
being expended (for example, what phase of the life cycle, what types of activities,
what parts of the system), one can identify the major cost drivers within a

software organization. Then, one can answer questions such as "What types of



activities consume large portions of the available manpower?" and "Where is
the effort being wasted?" Therefore it can lead to the search for software tools or
development methods designed to reduce the cost drivers [Druffel et al. 1983].

This thesis concerns the activities of programmers that contribute to
improved software productivity and quality during software development, and
proposes a programmer performance model to understand and evaluate these
activities. To this end, the concept of error life span has been introduced as one
metric to measure the negative effect of errors on software development
[Matsumoto et al. 1988c] [Matsumoto et al. 1987].

In addition, we discuss the relation between programmer performance
and team performance [Scott & Simmons 1975] and devise a strategy to organize
reliable teams of programmers so that the activities of each team (thus, the
activities of programmers) may increase. Three models, M1, M2, and M3, are
presented to define the performance of a team based on the programer
performance model. M1 summarizes the performance of programmers. M2
takes an average of the performance of programmers. M3 evaluates the sum of
error life spans under the assumption that the team is regarded to be a virtual
programmer. These models are evaluated and compared by applying them to an

experimental software development project.

1.4 Controlling software development activities
In the classic management model [Mackenzie 1969] [Thayer 1988],
management is partitioned into five distinct functions or components:

planning, organizing, staffing, directing, and controlling. These functions can be



classified into two types. The first type includes planning, organizing and
staffing, which are executed before constructing the activities of the software
project, in order to accomplish the objectives of the projeét effectively. In
contrast, the second type includes directing and controlling, which are executed
dynamically during the software construction phase of the project. These latter
are done to carry out the project if deviations from this prescribed plan occur.
Therefore, the second type of functions, directing and controlling, are more
important than the first type of functions. Since it is impossible to forecast all
phenomena in the project when it starts, we have to develop a mechanism to
correct deviations, and ensure the execution of the project in pursuance of the
prescribed plan.

From a manager's perspective, monitoring progress, foreseeing problems
before they get out of control, and taking appropriate corrective actions are very
important to a project's successful completion. In other words, for controlling a
project, the manager has to know the actual state of the project, clarify the
difference between the prescribed plan and the actual state of the project, and
help the developers to accomplish the prescribed plan.

Thus, measurement is one of the most powerful and effective
technologies for controlling software development activities in a quantitative
and objective way. Furthermore, measurement adds visibility to the software
project; tracking can be carried out in a meaningful and objective way [Druffel et
al. 1983]. DeMarco succinctly makes this point in stating, "You can't control what

you can't measure." [DeMarco 1982]



In this thesis, we concentrate on programmer productivity .as a metric to
control the software project. Then, we propose a system that automatically
collects and analyzes the data from the activities of programmers during
software development and shows the obtained and analyzed data to the
programmers as feedback information [Onishi et al. 1986]. This feedback allows
the programmers to recognize their weaknesses and improve their activities
[Basili & Rombach 1987]. We expect that the overall productivity during
development and the quality of the resulting products can be controlled by using
this system.

Other systems and environments for improving both programmer
productivity and the quality of products have been developed. One of them is
the TAME (Tailoring A Measurement Environment) project at the University of
Maryland [Basili & Rombach 1988] which provides a software engineering
process model. This software engineering process model is based upon various
kinds of improvement and goal/question/metric paradigms. The system will
ultimately run on a distributed system consisting of at least one mainframe
computer and a number of workstations. The mainframes are needed to host
the experience base, which can be assumed to be very large. Thus, we can say that
TAME will be a large-scale system. |

The proposed measurement environment, described in this thesis, is also
improvement-oriented and suitable for distributed environments. The

prototype system of the measurement environment uses the existing functions



of UNIX® in order to collect data from many workstations in software
“development. Therefore, it is easy to apply the prototype system to various kinds

of projects if their software is developed on UNIX workstations.

1.5 Outlines of the thesis

First, this thesis proposes a programmer performance model and a team
performance model based on the concept of error life span in order to
understand and evaluate the activities of the programmer and the programmers
of a team in a quantitative and objective way. Then, it describes a measurement
environment called GINGER which automatically collects and analyzes the data
from the activities of programmers during softwére development and shows the
obtained and anaiyzed data to the programmers as feedback information in order
to control (and manage) the software development project in a meaningful and
objective way.

Chapters 2, 3, 4 outline a programmer performance model and a team
performance model. Chapter 2 describes the software development process and
product, and software metrics which evaluate the software development process
and product in a quantitative and objective way. Chapter 3 introduces a new
concept of error life span and proposes a programmer performance model based
on this concept. Then, the programmer performance model is extended to a
team performance model in order to evaluate the activities of programmers of a

team and devise an optimal team organization strategy based on the model.

* UNIX is a registered trademark of AT & T Bell Laboratories. -



Chapter 4 describes the experimental evaluation of the proposed models in both
academic and industrial environments. The results of the experimental
evaluation show the validity and the effectiveness of the model. Furthermore, a
method is introduced for automatically collecting the estimated values of the
error life spans based on the textual changes among successive versions of the
program text during coding and debugging.

Chapters 5, 6, 7 outline a measurement environment, GINGER. Chapter 5
describes the major functions in software development project management and
shows that controlling is the most important function among them. Chapter 6
presents the system organization and functions of GINGER that support
collecting and analyzing data from a software development process and support
information feedback to improve programmer productivity. Then, the first
prototype of GINGER is described. Chapter 7 shows some experimental results
using the prototype system.

Chapter 8 presents a summary of the ideas discussed in the thesis, draws

some conclusions, and summarizes some areas for future research.



Chapter 2: Software Development

2.1 Product and process

One of the purposes of software engineering is to improve software
productivity and quality. Various kinds of studies in this field have been
undertaken over the years. According to the results of these studies, the scope of
the targets to be analyzed and discussed can be classified into two groups: (1)
software products and (2) software development processes.

In the IEEE standard [IEEE 1983], a software product is defined as a software
entity (computer programs, procedures rules, and possibly associated
documentation and data pertaining to the operation of a computer system)
designated for delivery to a user. A software development process is defined to
be the process by which user needs are translated into software requirements,
software requirements transformed into design, the design implemented in
code, and the code tested, documented, and certified for operational use.

When we want to understand and control a software product and a
software development process in a specific way, the concept of a software life
cycle is useful. The software life cycle is defined as the period of time that starts
when a software product is conceived and that ends when the product is no
longer available for use [IEEE 1983]. The software life cycle typically includes a
requirements phase, a design phase, an implementation phase, a test phase, an

installation and checkout phase, an operation and maintenance phase, and
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sometimes, a retirement phase. Each of the phases is defined as follows [IEEE

1983}

(1

vy

3)

“)

()

(6)

v

Requirements phase: the period of time during which the requirements
for a software product, such as the functional and performance
capabilities, are defined and documented.

Design phase: the period of time during which the designs for the
architecture, software components, interface, and data are created,
documented, and verified to satisfy requirements.

Implementation phase: the period of time during which a software
product is created from design documentation and debugged.

Test phase: the period of time during which the components of a software
product are evaluated and integrated and the software product is
evaluated to determine whether or not the requirements have been
satisfied.

Installation and checkout phase: the period of time during which a
software product is integrated into its operational enviroriment and tested
in this environment to ensure that it performs as required.

Operation and maintenance phase: the period of time during which a
software product is employed in its operational environment, monitored
for satisfactory performance, and modified as necessary to correct problems
or to respond to changing requirements.

Retirement phase: the period of time during which support for a software

product is terminated.
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2.2 Software metrics

Measuring the software product and the development process throughout
the software life cycle, described in subsection 2.1, is essential for improving
software productivity and quality. Software metrics are often classified into
product metrics and process metrics, and are applied respectivefy to either the
software product or the development process [Conte et al. 1986].

Product metrics are measures of the software product [Conte et al. 1986]. -
Product metrics include the size of the product (such as the number of lines of
code or some count of tokens in the program), the logic structure complexity
(such as flow of control, depth of nesting, or recursion), the data structure
complexity (such as the number of variables used), the function (such as type of
software: business, scientific, systems, and so on), and combinations of these
[Conte et al. 1986].

Among these product metrics, the complexity metric for a progrdm is the
most well-known product metric. It is used for the implementation phase and
the test phase. The complexity metric is often a good indicator of whether a
product is well-designed, understandable, and easy to modify [Basili 1980].
Unfortunately, the complexity metric and most product metrics may reveal
nothing about how the software product has evolved into its current state [Conte
et al. 1986].

Process metrics quantify attributes of the development process (including
product evolution) and of the development environment [Conte et al. 1986].
Process metrics can evaluate such various items as.development techniques (the

use of top-down or bottom-up development techniques, structured
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programming, and other software engineering techniques), developmental aids
(the use of design languages and systems, editors, interactive systems, and
version control systems), supervisory techniques (such as the type of team
organization and number of communication paths), and resources (human,
computer, time schedule, and so on) [Conte et al. 1986].

The software reliability growth model is a well-known process metric
(model) used for both the test phase and the operation and maintenance phase
[Matsumoto et al. 1990] [Musa et al. 1987]. The software reliability growth model
can estimate the mean time to failure (MTTF), the number of residual faults in
product and so on.

Most process metrics require greater efforts ‘to collect and analyze data than
do product metrics. It is especially difficult to collect reliable data on human
activities. However, process metrics can provide more valuable information for

improving software productivity and quality than can the product metrics.

2.3 Programmer activities

Among the attributes of the development process, mentioned in
subsection 2.2, the human resource is one of the most important to be evaluated.
The reason why we emphasize the human resource is that human activities are
strongly related to productivity and to the quality of software [Curtis 1985].
Moreover, there are very large individual differences in human activities with
respect to productivity and quality of software. For example, Sackman, Erikson
and Grant [Sackman et al. 1968] showed that for most performance variables,

there are very large individual differences in the programming performance.

13



Also in COCOMO (COnstructive COst MOdel)[Boehm 1981], the programmer
capability is one of the major attributes, having a range of 2.03 for software
productivity. The programmer capability is the highest cost driver among 14 cost
drivers in COCOMO.

However, since there are no model-based approaches to evaluate
programmer activities, it has been believed that programmer activities cannot be
measured absolutely. Thus, very simble but insufficient measures have been
widely used in the practical applications. For example, the number of years that a
team has been using a programming language, the number of years that a
programmer has been with the organization, the number of years that a
programmer has been associated with a programming team, and the number of
years of experience constructing similar software or managers' intuitive

evaluations have been used.

2.4 Team activities

Generally, large software systems are developed by teams that consists of
many analysts, designers, programmers and so on. Several ideas have already
been proposed to organize a software development team efficiently [Myers 1976].

The chief programmer team concept was originated by Mills [Baker 1972].
The team is headed by a chief programmer (that is, a senior-level programmer
who is highly skilled and experienced). The chief programmer performs all of
the design tasks, writes the code for all critical modules, and performs the
integration and testing of the team's code. He or she is also the primary interface

to outside organizations such as other teams and the user organization and thus
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reduces the number of lines of communication among prbject hembers. The
chief programmer is assisted by a back-up programmer and a programming
librarian [Myers 1976]. The remainder of the team varies on the particular stage
of the project [Myers 1976]. |

The specialist team has been proposed by Brooks [Brooks 1975]. The major
differences between this team and the chief programmer team are that the team
members remain within the same team for the entire project and each member
of the team has a special assignment that takes advantage of his or her particular
talents [Myers 1976].

Another proposal for programming teams is the democratic team
[Weinberg 1971]. This team is different from other teams in that it has no
formally appointed leader or initial individual assignments. A particular team
member may become an informal leader when the team enters a stage for which
that team member is most qualified. The team makes its own work assignments
based on the talents of the members. One big difference between this team and
the chief programmer team is that the democratic team stays together from
project to project. When a project is completed, the team is not broken up but is
assigned as a whole to a new project. This means that the rapport, working
relationships, and group standards within the team are maintained from project
to project.

These organizations are valuable because they recognize that
programming is largely a social activity rather than an individual activity [Myers
1976]. However, programming teams do have a few disadvantages. The work of

each individual programmer is less visible to the project manager, making
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performance evaluations more difficult. In the teams with a formal leader, the
leader can become the sole interface between the manager and other team
members, leading to significant morale problems. Therefore, a quantitative and
objective method needs to be devised to evaluate the performance of team

member and team.
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Chapter 3: Programmer Performance Model

3.1 Error and fault

It is widely recognized that errors have a close relation to software
productivity and quality. Numerous studies have been conducted in the field of
so called "error analysis" in order to clarify the effect of each error on software
productivity and quality. For example, Weiss [Weiss 1979] used errors as a way of
evaluating the software development process. He investigated causes of errors
and efforts involved in fixing errors and proposed methods of error detection
and correction.

According to Basili and Rombach [Basili & Rombach 1987], an "error" is a

defect in the human thought process made while trying to understand

Problem understanding phase Tool usage phase

Error Error

Software

X Fault
- Fault
-3 Fault

Figure 3.1 Error and fault
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information for solving a problem or while tryihg to use methods and tools. A
"fault” is the concrete manifestation of an error within the software. Figure 3.1
illustrates these definitions. |

In the IEEE standard [IEEE 1983], an error is defined as a human action that
results in software which contains a fault. Examples include omission or
misinterprétation of user requirements in a software specification and incorrect
translation or omission of a requirement in the design specification. And, a fault
is defined as a manifestation of an error in software. A fault, if encountered, may
cause a failure (synonymous with bug).

Myers has said that an error is a mistake in translating information [Myers
1976]. Software production, then, is simply a number of translation processes,
translating the initial problem into various intermediate solutions until a
detailed set of computer instructions is produced. Software errors (faults) are
introduced whenever one fails to completely and accurately translate one
representation or solution of the problem to another more detailed
representation [Myers 1976].

Myers has also pointed out that a person has to perform the following
four steps in order to translate information [Myers 1976].

Step 1: He (or she) receives the information using his read mechanism R.

Step 2: He stores this information in his memory M.

Step 3: He retrieves from his memory this information and other
information describing the translation process, performs the

translation, and sends the result to his writing mechanism W.
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Step 4: The information is physically depressed by--wr.iting,-i.typing on a
terminal, or speaking.

Myers has summarized the errors that may be generated in each step [Myers
1976]:

Step 1: Errors are introduced by misreading the input information, seeing
what is expected as opposed to what is actually there, making
assumptions about missing facts, or simply overlooking information.

Step 2: Errors in this step result from misinterpreting or misunderstanding
the input information. The reason may be that the information may
be too complex, the person may not have the necessary education
background, or the information may be ambiguous.

Step 3: The largest source of errors in this step is the phenomenon of
forgetting the input information or how to perform the translation

~ properly. Weaknesses in other mental abilities, such as clarity of
thought and retrieval of related knowledge, also contributes errors.

Step 41 Many people do not write or express themselves clearly and that
obscures their output. If there is a large amount of output
information, the person takes shortcuts or assumes that facts will be
“intuitively obvious" to his audi.ence.

The emphasis on error and fault in these past studies shows its
prominence in, and therefore the necessity of studying it in regards to, the
activities of programmers. Unfortunately, it is practically impossible to count
errors. We can however count faults which are manifestations of errors in

software, to evaluate the activities of programmer. "Error" in this thesis is
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almost the same as "fault” in this subsection. However multiple faults which are

" clearly caused by one defect are treated as one error.

3.2 Error life span

In order to measure the negative effect of errors on thé. develdpment
processes, one may want simply to count the total number of errors involved in
the prbgram texts throughout the processes. We believe, however, that counting
the total number of errors is insufficient since each error has different effects on
the software productivity and quality. Thus, we introduce a weight into the
error, which could represent a particular rate of effect of each error. The weight
to be introduced in this thesis is called a life spah (time duration) of the error.

An error life span T, for an error e has been defined as time duration from
when the error e manifests in the software to when the error e is removed from
the software [Matsumoto et al. 1988c] [Matsumoto et al. 1987]. Figure 3.2 shows an
example of error life span T,. In Figure 3.2, x and O represent respectively the
times of error manifestation and error removal.

For example, we consider a case in which an error causes some faults in a
program text. If the life span of an error is long, that is, the faults remain for a -
long period of time in the program text, then the programmer would have a
hard time removing them. One cause of this difficulties is that the programmer
would forget the details of the old code relating to the faults. Also the erroneous
codes affect other codes appended to the program text afterward. Hence, we
naturally think that an error with a long life span has a high (negative) effect to

the project progress and the program reliability.
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Figure 3.2 Error life span

Similar concepts to the error life span can be seen in several earlier papers
[Mills 1976] [Weiss & Basili 1985]. Mills [Mills 1976] introduced the concept of
"error days" for estimating the quality of an acceptable system. "Error days" is, for
each error removed, defined to be the sum of the days from its creation to its
detection. He has implied, though without empirical evidence, that this
measure is an indication of probable future errors and of the effectiveness of the
design and testing processes. Weiss and Basili [Weiss & Basili 1985] have used
changes as a way of evaluating the software development processes. They
mentioned that "the length of time each error remained in the system" would
be useful information for evaluating the software development processes.

However no collection and analysis of such data were made.
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We have actually collected data from student projects and studied the
relation between the value we obtained and the programmer performance. The
time used for measuring the life span in our experiments is actual terminal

access time rather than calendar days used for the error days.

3.3 Programmer performance model
We believe that the error life span could indicate some aspects of
programmer performance, as well as the product quality as suggested by Mills
[Mills 1976]. The error life span closely relates to the performance of the
programmer in the following two ways:
(1) the number of errors made in the software development processes, and
(2) the rate of detection and removal of these errors.
The value called a "score", is defined to indicate some aspects of
programmer performance. The score SI for each individual programmer is

formally defined by formula (3.1).
o< (Sum of error life span5)-1

) . (3.1

where f : Normalizing function,
p : Complexity of given problem.
In this definition of SI, the following two assumptions are made.
(1) The specification (of a problem) is not modified during software
development. |
(2) Designing, coding, and debugging are completed by the same programmer.
This definition of SI comes from the fact that programmer, who makes

less errors and removes these errors in shorter time, gets better performance.
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For the normalizing function f(p), the square of the final program size, i.e.,
L2is used in this thesis. The explanation of why we chose L2 follows. XT, is
rewritten by
2T, = avgxN .. (3.2)
where avg : The average of the error life spans,
N : The number of the total errors.
Since avg and N are considered to depend on the complexity p of the problem,

both avg and N should be normalized by p in such a way that,

avg N
X .. (33
P Cp G3
where p : Complexity of the problem.

In the experiments, to be described in Chapter 4, there is only a small
difference among the specifications. Thus, we think that the complexity p of the
problem is estimated by‘ the final program size L (the number of the lines in the
final prdgram text). As the result, L2 is employed as the normalizing function.

Thus, the score SI in the formula (3.1) for each individual programmer is

rewritten by the formula (3.4).
Te\1
SI = ( ZL;) .. (34)

where T, : An error life span.

L : The final program size.
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3.4 Team perfoi'mance model

Let us consider a case that software is developed by a team, which consists
of n programmers. Based on the programmer performance model mentioned in
Section 3.3, three models M1, M2 and M3 are defined to measure the
performance of each team. In the following, let SI;denote the score of a
programmer j (1< j< n). For the sake of simplicity, the following notation

%%gf ..(35)

where Ej=2T,,
is used instead of the ndtation in (3.4).

The first two models M1 and M2 are defined by using the scores SI;'s (j =

1,2, ..., n) of the programmers of the team.

Model M1 A
The score for a team (in short, called team score) ST1 is defined as follows;
n .
ST1 =" SI; .. (3.6)
j=1

Model M2

The score ST2 is defined as follows;

1 n
§T2= -3 SI; . « (37)
i=1

The model M3 is defined by regarding a team as a virtual programmer.

Model M3

The team score ST3 is defined as follows;
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ﬂh@g%f .. (3.8

Next, we discuss the strategies for team organization in order to maximize
the team score. In the following discussion, we consider an application of
models M1, M2 and M3 to a new project P. The following three assumptions are
made.

(1) The scores SI; (j=1,2,..,n) are known beforehand (for example, for the

past project P' similar to the project P).

(2) For each programmer, the value of the score doesn't depend on the
project. (Thus the score for projects P and P' are the same.)
(3) For the project P, it is possible to estimate the final program size L (= 2Lj)

[Boehm 1981].

Let 5Ij, Lj and E; denote the values for a new project P, and SI}', Lj' and Ej' denote

the values for an old similar project P'.

Strategy for model M1

By assumption, the formula

n n
ST1=Y =Y s . (39)
j=1 j=1

is obtained. Thus, if there is no limit on the total number of programmers in the
team, the best way to organize programmers is to collect as many as possible.
However this organization seems impractical. But when there is a limit on the
number, collecting only programmers with high score is the best way (which

seems to be a practical conclusion).
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Strategy for model M2

By assumptions, the formula

1 1<
ST2 = 7; SI; = 72} SI} - (3.10)
j= j=

is obtained. Thus, the best approach is to collect only programmers with high
scores and to keep the value of n as small as possible. An exceptional case is that
a programmer with the highest score develops all modules of program.

It is clear that in both models M1 and M2, collecting programmers is the
only key factor. How to distribute m modules (to be developed) among n

programmers in the team doesn't affect the optimality of the strategy.

Strategy for model M3
By the definition, if the relation
gl%l. = SLTZZ' =...= SLT’:I' .. (3.11)
holds, then the value of ST3 becomes maximum. At that time, the relation
ST3 = i SI .. (3.12)
j=1

is derived. Thus, the best way is that, in the new project P, each programmer j ( j

=1,2, .., n) develops program modules with size L;, that is proportional SI;'.
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Chapter 4: Experimental Evaluation of Models

4.1 Overview

In order to evaluate the proposed models, three experimental software
development projects (Experiments 1, 2 and 3) have been executed in academic
and industrial environments. Experiments 1 and 2 have been done in an
academic environment [Matsumoto et al. 1988c] [Matsumoto et al. 1987]
[Matsumoto et al. 1986]. The purpose of Experiment 1 is to show the validity and
the effectiveness of error life span T, and score SI. In Experiment 1, project data
on nine students were collected. Each student developed a compiler for a subset
of PL/I, Pascal or C using Pascal or C. Final program sizes were about 1000~2500
lines. |

The purpose of Experiment 2 is to compare the scores SI 's of the same
students. In Experiment 2, project data on six students .were collected. Each
student developed a compiler for a subset of Pascal using C and a kind of
inventory control program using Pascal. Final program sizes of compilers were
about 1000 lines and those of inventory control programs were about 300 lines.

In both Experiments 1 and 2, to obtain error life span T,, we traced and
analyzed by hand all the files used in the projects. The time unit for T, was
terminal access time. In addition, we assumed the case that a programmer was
given a specification of the program to develop and that the same programmer

performed all the work, i.e., designing, coding and debugging. It was also
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assumed that. the programmer completed the development within a specific
time frame.

Experiment 3 has been done in an industrial environment to show the
validity and the effectiveness of the team score ST. In Experiment 3, eight teams
of programmers developed the same system, a file processing prografn in a
business application, using COBOL. The system consisted of 18 program
modules. The final program sizes ware about 2000 lines. In Experiment 3, to
obtain error life span T,, we used an automatic estimation method for the sum
of error life span. The details of the automatic estimation method are described

in Section 4.4.

4.2 Experiment 1
4.2.1 Experimental data

We collected project data on nine students. Each student developed a
compiler for a subset of PL/I, PASCAL, or C using PASCAL or C. They had
studied the theory of compiler construction in their classes; however, they had
no previous experience in constructing compilers.

In this experiment, we did not measure actual error life spans, but we

collected a closely related value T,. T, is the life span of the faults in the
program text, caused by an error e. In other words, we started counting T, when
a fault caused by e was first embedded in the program text, and stopped counting
when all of the faults caused by e were removed. Thus errors removed before
coding were not counted here. This was because we had no appropriate method

to count all the errors.
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It might have been useful to investigate the details of errors which the
programmer made. However, such an investigation would have been another
task for the programmer, thus inhibiting the project's progress. Hence, we
decided not to inquire directly as to the details of the programmer's errors, but to
analyze the textual changes among successive versions of the program texts and
to estimate the number of the errors from the faults found in the texts.

Textual changes reflect the coding and debugging processes and we can
collect them automatically with less effort. For each textual change, we also
collected the reason for the textual changes as annotated by the programmer
himself using an on-line data collecting tool. From the textual changes and the
reasons, we determined e and its life span T, by hand. In this analysis, syntactic
errors were not counted as e. We assumed that most errors which affected the
coding and debugging processes were found as e by this analysis, and other errors
which never gave faults on the texts could have had only a limited effect. In the
following, we use the phrase, "error life span” in the sense of T,.

We counted the successive time that each student accessed a terminal and
used it as a time unit for error life span T,. Although this did not precisely
correspond to the actual time devoted to the project, we used this time unit for
two reasons. One is that the terminal access time could be traced automatically.
The second reason, which is more substantial, is that employing the terminal
access time more sharply contrasted the difference of the computed values for
each programmer, as compared with employing the actual time consumed. That

is, the programmer who designed and debugged a large amount of his code on
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Table 41 Data of Experiment 1

S| PO il aces| ot | s | omorit | S |aeragein

size time (min.) " errorso (men.) speal:: l('rr‘lii.) ST 1. courses
#1 2098 7955 77 93750 1218 469 69.6
#2 1685 6202 101 29715 294 95.5 715
#3 1530 5906 61 28620 469 81.8 74.0
#4 1789 8021 78 67020 859 47.8 65.8
#5 1094 4754 55 32145 584 372 729
#6 1661 3463 35 11550 330 238.9 82.8
#7 2111 5838 26 24045 923 185.3 71.6
#8 1084 | 8651 49 66765 1363 17.6 69.6
#9 2420 5139 33 49170 1490 119.1 734

the desk and who did not use the terminal extensively, had an advantage in the
computed values.

Table 4.1 shows the program size (which is the number of lines in the
program text when the program completes), the total of the terminal access time,
the total number of errors, the sum of the error life spans, the average of the
error life spans, the score SI, and the grade point average in computer science
courses. |

For example, student #2 made 101 errors and student #7 made only 26

errors. As for the sum of the error life spans, ZTe, however, student #1, who

made 77 errors, had the highest value, 93750, and student #6, who made 35
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errors, had the lowest value, 11550. It was not always true that a student who

made the most errors had the highest value of ZTe, and a student who made
the least errors had the lowest value of ZTe. This was because each student had
a unique average value of his own error life spans, and there was not a high
correlation between the average and the total number of errors.

Student #8 had the lowest score, 17.6, and student #6 had the highest
score, 238.9. The order of students with respect to the scores was the same as the
order with respect to our intuitive impression of student performance. Below,
we discuss the reasons why some students received high scores and low scores.
High Scores
(1) Student #6 (238.9)

He spent a large amount of time in designing and coding on the desk
(without using terminal) and only used the terminal for a very short period.

(2) Student #7 (185.3) and Student #9  ( 119.1)

They referred to text book that precisely describes how to construct a
PASCAL compiler using PASCAL. Since they could obtain basic algorithms and
data structures from that book, the number of errors was reduced and the
development period was shortened.

Low Scores
(1) Student #8 (17.6)

He started coding using the terminal even though he did not have a good
grasp of compiler theory at the beginning. Furthermore, he did not clearly
understand the specification of the compiler at the beginning; thus, he had to

modify the program text extensively.
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(2) Student #5. 1 (37.2)

He made many errors caused by poor understanding of the
implementation language; C. He also incorrectly designed the parsing section of
the compiler and he had trouble determining the errors when he detected the
faults during the test phase. |
4.2.2 Evaluation
(1) 3T, vs. terminal access time

In the definition of score SI, the life span T, of the errors is introduced as a
weight of the error. In order to prove the validity of this idea, XT, (the sum of
error life spans) is compared with the total terminal access time which seems to
directly correspond to the programmer performance.

Figure 4.1 shows the scatter plots of XT, versus the total terminal access
time. A coefficient of correlation between them is 0.82. On the other hand, a
coefficient of correlation between the total number of errors and the total
terminal access time is 0.45.

Thus it can be said that the sum of error life spans would very closely
relate to the performance of the programmer as compared with the total number
of errors.

(2) Score SI vs. grade p.oint average

In addition, we investigated the grade point average in computer science
courses for each programmer and compared them with the scores. Figure 4.2
shows the scatter plots of the scores versus the grade point averages in computer

science courses.
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Figure 4.1 Sum of error life spans vs. total of terminal access time
(Experiment 1)

We found that a coefficient of correlation between them was 0.75. Moher
and Schneider [Moher & Schneider 1981] have found that "experience" (as
measured by the number of computer science or programming courses) and
"aptitude” (as measured by the grade point averages in computer science
courses) are the major predictors of performance for student programmers. In
our experiment, the experience of each student is almost the same. Hence, we
believe that the difference of our obtained values can be explained simply by
programmer performance. Of course, we do not think that the sum of the error

life spans indicates the complete extent of the programmer performance; rather,
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Figure 4.2 Score vs. grade point averages

we think it indicates one important aspect of programmer performance related

to the productivity and quality of software.

4.3 Experiment 2
4.3.1 Experimental data

We collected data on two different student projects, compiler construction
(Project 1) described in Experiment 1 and a so-called liguor wholesale problem
(Project 2) to be described now. Each had different types of difficulties. For the
liquor wholesale problem, students were given the program specification and

taught roughly how to design the program. We analyzed the data for six students



whd participated in both projects. Methods of collecting and énalyzing data were
the same as for Experiment 1; that is, the errors were determined by hand and
the sums of the error life spans were normalized by L2 (the square of the final
program size). In this experiment, we observed the difference between the scores
of each student for different projects.

4.3.2 Evaluation

Table 4.2 shows the sizes of the programs, the sums of the errof life spans,
and the scores in both projects. Figure 4.3 shows the scatter plots of the scores in
both projects. The order of students with respect to the scores are almost the
same between both projects except for one student. This student, #13, had
misunderstood the syntax of subset-PASCAL when he tried to develop the
subset-PASCAL compiler in Project 1. During this project, he had to change
numerous errors related to the syntax differences. Consequently, this worsened
his score from Project 1.

The averages of the scores are 31.3 in Project 1 and 54.6 in Project 2. (If we
prectude student #13, the average will be 34.1 in Project 1 and 46.8‘ in Project 2.)
We think that the scores are stable enough and L2 is an appropriate normalizing
function for a measure of programmer performance in such small-scale projects,
even though the numerical values we have computed do not by themselves
show the absolute performance of the programmers (in the sense that if
programmer A took 20 and B took 40, then B can program twice as well as A);
We expect that if further data is collected, a suitable normalizing function would

be found which would give absolute meaning to the computed values.
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Table 4.2 Data of Experiment 2

Project 1: Compiler Construction

Project 2: Liquor Wholesale Problem

Sum of error Sum of error
Student |Programsize | life spans Score  |Programsize | life spans Score
(min.) (min.)
#11 1251 65205 24.0 322 3300 314
#12 963 . 24690 37.6 326 2430 43.7
#13 1366 107745 17.3 326 1140 93.2
#14 1260 35790 444 340 1800 64.2
#15 998 25830 38.6 298 2055 432
#16 1149 50940 25.9 296 1695 51.7
100+
Score in Project 1
80
60
iy
40 - 15&
12
x
20 - n 13
: X
Score in Project 2
0 T T T T T - T T T 1
0 20 40 60 80 100

Figure 4.3 Score in two projects

36




4.4 Automatic estimation of error life span

In Experiments 1 and 2, obtaining the error life spans was very expensive.
We had to trace and analyze all the files used in the development projects by
hand and keep a large amount of data concerning the processes. Hence,
obtaining the error life spans in various software development projects is in
practice prohibitive. Furthermore, it follows that it is difficult to show the
prograrrimer the computed value of the error life span periodically during the
development processes (to improve the activity of the programmer).

To find an equivalent value to the error life span, we investigated
correlations among the sum of the error life spans, the average of the error life
spans, and other collected data as shown in Table 4.3. If there were easily
collectable data which had a high correlation with the sum of the error life spans

or the average of the error life spans, we could compute the estimated value

Table 4.3 Coefficient of correlation among data

on Experiment 1
Sum of Average of
error life spans | error life spans
(min.) (min.)
Program size 0.15 0.29
Total of

terminal access 0.82 0.52
time(min.)
Number of

total errors 0.35 -0.35
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very easily. However, since we could not producé such data, we devised a way to
obtain an estimated value of the error life spans automatically. _

In order to do this, we had to determine the errors autématically in some
manner; but, in general, we had no satisfactory mechanical way to recognize the
errors. Dunsmore and Gannon [Dunsmore & Gannon 1980] demonstrated that
program changes (i.e. textual changes between successive version of the
program) were correlated with the total error occurrences in a program written
by 33 programmers. Therefore, we simply estimate that in the program text, each
line modified at each edit session corresponds to one error to be counted. If the
created and deleted times of each line are known, the estimated error life spans
can be collected easily.

Here we assume that software development consists of a sequence of edit

sessions of the program text. For each line j in the program text, we define the

life span Ijj of j at an edit session i as follows:

0  iflinejis not modified at edit session i.

tlij = .. (4.1
tj-t 'ij if line j is modified at edit session i.

where 1 <j <max;, and
max;: Number of lines when edit session i begins.
tj :Time when edit session i terminates.
t’jj : Time of the latest modification of line j before ;.
As mentioned above, we estimate that each non-zero value li]' corresponds to
the life span of an error. Therefore, the estimated value L for the sum of the

error life spans is given by
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’ L= 2 zlif (4.2)

where M is the aggregate of the edit sessions.

We computed L using the data of Experiment 1, and compared L with the
sum zTe of the actual error life span. A coefficient of correlation between them
is 0.86. Thus, we can conclude that the value L estimates the sum of the error life
span quite well.

In the above definition of L, it seems that the number of errors is
overestimated in general. It may be more realistic to state that, instead of each
line, a set of lines which were created at an edit session and modified at another
edit session corresponds to one error. If a programmer modifies several lines of
text in an edit session, and if those modified lines were originally created in the
same edit session, we cbnsider that he or she fixed only one error. But if those
modified lines were originally created in different edit sessions, we count the
number of those edit sessions and treat that count as the number of errors fixed.
Each edit session is distinguished from others by time stamp. We simply sum up
only the distinct lij for each j to find the total of the life spans of the sets at edit
session i.

Now, we define another estimated value L’ for the sum of the error life

spans as follows:

M

where I’; : the sum of distinct values of lijfor 1 < j < max;

In this definition, the following two assumptions are made.
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Figure 4.4 Estimated values vs. actual values ZT.
: in Experiment 1.

(1) The purpose of modifications of program text at each edit sessioﬁ is to
remove errors.

(2) A set of lines, which are created at one edit session and modified at
another edit session, corresponds to one error.

We computed L’ again using the data of Experiment 1, and compared L’
with the sum ZTe of the actual error life spans. Figure 4.4 shows the scatter
plots of L’ versus 2T3~ A coefficient of correlation between them is improved to
0.90. Thus, we can conclude that the estimated value L’ is sufficiently equivalent

to the sum of the error life span.
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4.5 Experiment 3
4.5.1 Experimental data

Experiment 3 evaluated team activities in software development. The
programmers were newcomers of a certain computer company. The main
characteristics were summarized as follows.

(1) Eight teams of programmers developed the file processing program in a

| business application using COBOL.

(2) The system (file processing program) consisted of 18 program modules.
This partition of program modules was given to each team. However,
distribution of modules to members of team was freely determined by a
leader of each team.

(3) Each team consisted of 3 to 5 programmers. Teams were organized by an
instructor so that the difference among team performances, in an
intuitive sense, might be low.

(4) Each team was assigned two terminals. Thus, the capability of accessing
terminals seemed relatively to be limited, compared with Experiments 1
and 2.

In Experiment 3, the successive time of each programmer accessing a
terminal was counted and used as the time unit for evaluating T,. In addition,
each programmer had to fill in a form of individual effort time for designing,
coding, and unit debugging. On the other hand, each team leader also had to fill
in a form of team effort time, mainly covering integration of the individuals'

work.
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Figure 4.5 Explanation of effort time

The effort time on a terminal was a time duration counting when a
programmer or team worked on terminal. Similarly, the effort time on a desk
was a time duration of when a programmer or team worked on a desk (not on a
terminal). The effort time on a desk was reported from forms. We used a new
effort time gotten by merging these two as shown in Figure 4.5.

Only 9 modules out of 18 were studied for data based on the following
criteria.

(1) The average of the module size is more than 100 lines. By this, too small
modules are excluded from evaluation.
(2) The average of the ratio of data division size over module size is less than

0.5. Thus, the programs, which mainly consist of data definitions, are also

excluded.
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Table 4.4 Data of Experiment 3

Team Member Program Su'm»of error T.otal effort Score
size life spans time(min.)

ml 289 1490 2009 56

m2 263 10608 5488 7

# m3 385 7192 2652 21
md 137 6109 3633 3

m5 95 6679 3523 1

ml 365 7899 3999 17

m2 278 8510 2706 9

#2 m3 249 6877 2730 9
md 155 1855 3766 12

mb 107 101 2646 113

ml 221 13329 3730 4

#3 m2 600 37620 3409 10
m3 362 27689 4809 5

ml 333 22972 4354 5

m2 230 4896 3039 - 11

# m3 364 3970 4220 33
md 319 21612 3214 5

ml 393 12035 3681 13

4 m2 270 1569 4061 46
m3 342 11907 4173 10

md 240 15147 3886 4

: ml 569 22470 3429 14
#6 m2 375 11789 3243 12
m3 155 1818 2874 13

ml 387 17634 3768 ] 8

m2 328 14194 3407 ) 8

#7 m3 264 4747 2704 15
m4 126 5092 3627 3
mb 172 208 2467 142

ml 583 14497 4426 23

48 m2 203 2268 3211 18
m3 233 14775 4699 4

md 169 25621 5366 1

The experimental data are summarized in Table 4.4. The values for the
sum of error life spans are calculated using formula (4.3) in Section 4.4. Table 4.4
shows the program size (which is the number of lines in the final program text),

the sum of error life spans, the total effort time (time estimated, as shown in
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Figure 4.5, by effort time reported by programmer and terminal access time
~ traced automatically) and score SI. As the time unit for error life span, we used

effort time.

4.5.2 Evaluation
(1) XT, vs. effort time of a programmer
Figure 4.6 shows the scatter plots of XT, versus the total effort time of each

programmer. (In Section 4.2, we compared XT, with the total terminal access

6000 - Total effort time(T)
{min.)

5000

4000

3000 { , X Regression line of Ton S

1000 4

Sum of error life spans(S)

¥ ) v i v ] v 1
0 10000 20000 30000 40000
(min.)

Figure 4.6 Sum of error life spans vs. total effort time
(Experiment 3)



Table 4.5 Coefficient of correlation between Y Te and total effort time

Module 1 2 3 4 5 6 7 8 9
r -046 | 0.85 0.62 | 0.58 0.51 0.39 | 0.66 0.87 0.44

time.) A coefficient of correlation between them is 0.46. It is not high compared
with the result of Section 4.2. (In Section 4.2, a coefficient of correlation between
them is 0.82.)
(2) X T, vs. effort time of module

In addition, we have investigated for the 9 modules the relation between
the sum of error life spans and the total effort time devoted to the module
development. Table 4.5 shows a coefficient of correlation between these two. It is
clear that there is much difference among these values (the highest value is 0.87
and the lowest value is 0.39 among positive values). The main reason for these
results is the difference in the degree of coupling among modules. For module 1,
it is unexpected that a coefficient becomes negative.
(3) Team performance

Table 4.6 shows three scores (ST1, ST2 and ST3) and the team debugging
effort time of 8 teams (#1, #2, ..., #8). The team debugging effort time is the total
effort time for debugging after each unit test for each module has been
completed.

From Table 4.6, the following aspects are observed as for team
performance.

Team performance score ST1 (model M1)

the highest score team #7 176
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Table 4.6 Data of team écores

Team debugging
Team 5T1 5T2 5T3 effort time(min.)
#1 88 18 43 490
#2 160 32 53 460
#3 19 6 18 2200
#4 54 14 29 2170
#5 73 18 38 980
#6 39 13 33 650
#7 176 35 39 570
#8 46 12 25 1430
the lowest score team #3 19

Team performance score ST2 (model M2)
the highest score team #7 35
the lowest score  team #3 6
Team performance score ST3 (model M3)
the highest score team #2 53
the lowest score  team #3 18
We have evaluated the correlation among the three team performance
scores ST1, ST2 and ST3 (see Table 4.7). There are high correlations among ST1,
ST2 and ST3, especially between ST1 and ST2 (A coefficient of correlation is 0.99).
" (4) Team performance vs. debugging effort time |
We have investigated team debugging effort time as shown in Table 4.6
and compared it with team performance scores (ST1, ST2 and ST3). Table 4.7

shows the coefficients of correlations between team scores and team debugging
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Table 4.7 Coefficient of correlation among team scores

and teamn debugging effort time
ST1 ST2 ST3
$T2 0.99 —_— —
ST3 _ 0.80 0.79 —_—
Team debugging 4 g 0.6 -0.83
effort time

effort time. Among the three team performance scores, ST3 has the highest -
correlation with team debugging effort time (A coefficient of correlation is -0.83).
It might be said that the team performance score ST3 (thus, the model M3) is the
most appropriate one for evaluating team perforfnance in software
development.
(5) Team score vs. load distribution

The ratio, final program size to score of programmer j (represented by Kj),
is compared in Table 4.8. We also evaluate the difference between an optimal
ratio of final program size (Kopt) and actual ratio. The resuit shows the
maximum value of Kopt is 62.3, and the minimum value of Kopt is 7.2. 1t is
observed that the value of Kopt is apt to become larger as the number of
programmers becomes smaller (then the size of program, to be developed by one
programmer, becomes larger).

To evaluate the difference between Kj and Kgpt, we have calculated the
following value Dk as shown in Table 4.8.

R n
Z IKj'Kopt I
e

Dk =

..(44
Ko (4.9)
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L,
Table 4.8 Ratio of size over score (K i= §TL)
)

kx| K|k | ke Rl Do =220

Team Kopi (%)
#1 521 376 | 183 4571 950 § 133 114 . 51

#2 2151 309 | 277 12.9 0.9 7.2 9.8 67

#3 553 | 60.0| 72.4 — — 62.3 0.3 5

#4 6661 209} 11.0 63.8 — 23.1 4.2 46

#5 30.2 591 34.2 60.0 — 17.1 49 48

#6 406 313 ) 119 — — 28.2 1.1 15

#7 484 | 410} 176 | 420 1.2 7.3 17.3 78

#8 253 ] 113} 583 | 169.0 —_ 25.8 74 46

If there exists no difference between Kj and Kgp¢ then Dk becomes 0. At
that time, the following relation holds:

n .
ST3 =) STj=STI .. (4.5)
j=1

 So, to evaluate the difference between ST3 and ST1, we have calculated the
following value Dgr as shown in Table 4.8.

ST1-ST3
Dst=—"gg7 — % 100 (%) ... (4.6)

N afurally, there is a high correlation between Dk and DsT.

Consider teams #2 and #3 which take respectively the highest and the
lowest values of team performance score ST3 in Table 4.6. Table 4.8 shows that
for team #2 there are large differences among K; for each programmer and Kgpt.
As the result, the value of Dk of team #2 is relativ.ely large. On the other hand,

Table 4.8 shows that Kj for each programmer in team #3 are almost equal to Kgpt.



(As for Dk, team #3 takes the lowest value among these eight teams.) Therefore,
it is concluded that team #2 is superior to team #3 with respect to total team
performance. But in contrast to this, with respect to load distribution in a team,
team #3 is superior to team #2. This tendency is clearly observed: from the
values of DsT in Table 4.8, team #2 decreases by 67% in their performance and

team #3 decreases by only 5% from their optimal (maximum) performance.
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Chapter 5: Software Development Project Management

5.1 Major functions of management

In the classic management model [Mackenzie 1969] [Thayer 1988],
management is partitioned into five separate functions or components:
planning, organizing, staffing, directing, and controlling. Definitions or
explanations for these five functions are shown in Table 5.1.

These functions can be classified into two types. The first type includes
planning, organizing and staffing. These are executed before constructing the
activities of the software project. Their purposé is to enable the objectives of the
project to be accomplished effectively. The second type of functions includes

directing and controlling. These are executed dynamically during the software

Table 5.1 Major functions of management [Thayer 1988]

Activity Definition or Explanation
Planning Predetermining a course of action for accomplishing organizational
objectives.
Organizing Arranging and relating work for accomplishment of objectives and the

granting of responsibility and authority to obtain those objectives.

Staffing Selecting and training people for positions in the organization.

Directing Creating an atmosphere that will assist and motivate people to achieve
desired end results.

Controlling Measuring and correcting performance of activities toward objectives
according to plan.
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construction phase in the project and are done to carry out ‘the project in
pursuance of the prescribed plan if deviation from the prescribed:plan occurs.

The second type of functions, directing and controlling, are more
important than the first type. Since it is impossible when a project starts to
predict exactly all phenomena that will affect it, we have to develop a
mechanism to correct deviations and ensure the execution of the project in
pursuance of the prescribed plan.

Therefore, this thesis focuses on the second type of functions: directing
and controlling. We focus especially on controlling since we want to devise an

environment which can manage the software development project.

5.2 Project control

Controlling a software development project is defined as all the
management activities that ensure that the actual work goes according to plan
[Thayer 1988]. To control the project, a manager has to know the actual state of
the project, know the difference between the prescribed plan and the actual state,
and help the developers accomplish the prescribed plan.

Figure 5.1 shows the data flow between the development environment
and the management environment for controlling a project. The manager
collects process/product data to assess the actual state of the project. After
analyzing the collected data, the manager provides feedback to a developer to
help him or her correct their activities and accomplish the prescribed plan.
Therefore, data collection and information feedback are essential activities for

controlling the software development project. The full support of a
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Figure 5.1 Controlling software development project

development énvirohment and a management environment is necessary to
control the software development project.

Based on these considerations, we propose a new environment,
measurement environment, which consists of a development environment
and a management environment. The measurement environment consists
mainly of four logical units: Data Collection, Data Management, Data Analysis
and Information Feedback (see Figure 5.2). Among these four units, Data
Collection is included in the development environment and the rest are
included in the management environment. The details of the measurement

environment will be described in Chapter 6.
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Figure 5.2 Basic units of measurement environment

5.3 Data for controlling

To control the software project effectively, we have to collect and analyze
objective and quantitative data which represent the activities of developers. In
this thesis, we concentrate on programmer productivity as the metric for
evaluating the activities of developers.

Programmer productivity is well explained by using an input-process-
output scheme (see Figure 5.3) as follows [Chen 1978]: the programmer is a
processor, the input is a program specification, and the output is a set of
programs written in a good programming style. Then a measure of programmer

productivity can be defined as the number of valid source statements coded per
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Figure 5.3 Input-process-output scheme
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Figure 54 Extended input-process-output scheme

busy hours, where valid source statements are the source statements of an
executable computer source program.

In several earlier papers [Chen 1978] [Walston & Felix 1977], the measure
of programmer productivity in software development was defined similarly as
the ratio of the quality/quantity of the resulting program to the programming

efforts necessary to arrive at a satisfactory program. For example, Walston and



Felix [Walston & Felix 1977] defined the measure of prograrhming productivity
as the ratio of delivered source code to the total effort (in man-months) required
to produce the code.

In this thesis, we are interested in not only measuring programmer
productivity, but also in improving programmer productivity based on analysis
results from software developmental data. However, the input-process-output
scheme in Figure 5.3 is not sufficient to describe programmer activity since the
scheme cannot answer questions of why a programmer expends such a large (or
small) amount of effort. Therefore, we extend the input-process-output scheme
to the one shown in Figure 5.4. In practical software development, the first
version of a program usually does not satisfy a given specification since the
program may not fulfill all the functions required in the specification, or may
contain many errors. Then the programmer modifies or debugs the program a
number of times and finally gets a program satisfying the specification.

Generally, it 