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Abstract

In recent decades, large-scale software systems have become mainstream. Such
software systems have complicated the maintenance process by increasing efforts
such as inspection and understanding of the existing source code. Therefore, to
maintain these systems, a great deal of work and time are necessary. To alleviate
this problem, this research focus on a well-known factor hindering the software
maintenance task, a code clone (i.e., a code fragment that has other code fragments
identical or similar to it in the source code). It is widely believed that code clones
complicate software maintenance. For example, when changes to code clones in a
clone set (i.e., a set of code clones that are identical or similar to each other) are
inconsistent, the developer needs to identify inconsistently changed code clones
and apply consistent changes to them.

Thus far, many tools and techniques have been proposed for supporting the
detection and management of code clones. However, most are insufficient for
supporting code clone related tasks during the software maintenance process for
large-scale software systems. To resolve this problem, this study attempts to solve
two important problems that code clones face. That is, “Which type of normaliza-
tion dose make code clones to detected with high speed from large-scale software
systems? ” and “Which supports are necessary for more widely used tools that
support clone refactoring? ”.

To solve the first problem, this research proposes six approaches for detecting
code clones with preprocessing input source files using different degrees of nor-
malizations (e.g., the removal of white spaces, tokenization, and the regularization
of identifiers). More precisely, each type of normalization is applied to the input
source files, and equivalence class partitioning of the files is then conducted during
the preprocessing. Code clones are then detected from a set of files that are repre-
sentatives of each equivalence class using a token-based code clone detection tool
calledCCFinder. The proposed approaches can be categorized into two types, an
approach with non-normalization and approaches with normalization. The former
type is the detection of only identical files without normalization, whereas the latter
category is the detection of identical files with different degrees of normalization
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such as the removal of all lines containing macros in C program. From a case
study, it was observed that the detection times of the proposed approaches are at
least two-times faster than an approach that uses onlyCCFinder. It was also found
that the approach with non-normalization is the fastest of the proposed approaches
for many cases.

To resolve the second problem, this research presents an investigation of clone
refactoring (i.e., merging code clones into a new method) carried out during the
development of open source software systems for promoting the development of
refactoring tools that can be more widely utilized. In this investigation, it was
identified that a “Replace Method with Method Object” is the most frequently
used refactoring pattern for clone refactoring. Moreover, this research discovered
that merged code clone token sequences and the differences in the token sequence
lengths vary for each refactoring pattern.
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Chapter 1

Introduction

This chapter provides a short introduction to this thesis. First, Section 1.1 intro-
duces the motivation. Section 1.2 then illustrates the contributions. Finally, Section
1.3 describes an outline of this thesis.

1.1 Motivation

In recent decades, many companies have released new models in rushed intervals
to achieve superiority over their rivals [16]. To do so, they have frequently reused
robust parts of existing source code for new developments. As a consequence, a
significant amount of code clones (i.e., code fragments that have other code frag-
ments identical or similar to them in the source code) exist within software systems
and between different releases of the models/versions of software systems.

These code clones complicate the maintenance process by increasing efforts,
such as inspections and an understanding of the existing source code. For example,
if code clones belonging to the same clone set (i.e., a set of code clones that are
identical or similar to each other) have been inconsistently-changed, generating
defects in the software system, the developer will need to find the inconsistently-
changed code clones and propagate the required changes to them. To alleviate
this problem, code clones should be documented and properly maintained (e.g.,
merging code clones into a function/method).

There are a multitude of techniques and implemented tools for automatically
detecting code clones and supporting their management [21, 44, 78]. Using a
code clone management tool, a developer can easily apply consistent changes to
code clones [21] or conduct clone refactoring (i.e., merging code clones into a sin-
gle function/method) [44]. Moreover, when code clones have been inconsistently
changed, the developer can readily identify inconsistently-changed code clones us-
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ing a code clone detection tool [46, 62]. Such tools help developers effectively
maintain their software systems.

However, most of these techniques and tools are insufficient for large-scale
software systems. With respect to the detection of code clones, most of them
take a long time when the size of the input source code is large. For example,
a token-based code clone detection tool calledCCFinder takes about 40 days on a
single PC-based workstation to detect code clones from 400 million lines of code
[63]. Currently, the tools for code clone management are commonly underused. In
particular, although clone refactoring is a promising approach, the tools support-
ing clone refactoring are underused compared to refactoring tools (e.g.,Eclipse’s
refactoring features) that were not intended to support clone refactoring. To facili-
tate these problems, this study aims to solve the following two Research Questions
(RQs).

RQ1: Which type of normalization dose make code clones to detected with high
speed from large-scale software systems?

RQ2: Which supports are necessary for more widely used tools that support clone
refactoring?

In this thesis, a new approach for detecting code clones in large-scale software
systems and an investigation into clone refactoring during the software evolution
are presented to answer RQ1 and RQ2, respectively.

1.2 Contributions of This Thesis

The contributions of this thesis are as follows:

• First, six approaches for detecting code clones from different release mod-
els/versions are presented and implemented using preprocessing input source
files with CCFinder [49], a token-based code clone detection tool. During
the preprocessing of the proposed approaches, the input source file is nor-
malized to the different degrees of the program elements. For example, one
of the proposed approaches normalizes each input source file by removing
all lines containing only comments, and comments and white spaces before
and after comments. Different degrees of normalization lead to different
granularities of the source code to be detect as code clones.

• Second, for a set of different released models/versions of various software
systems, it was found that the proposed with a preprocessing of the in-
put source files detect code clones faster than an approach that uses only
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CCFinder. It was also found that any normalization takes significant amount
of time during the preprocessing and post-processing and is unable to reduce
the total detection time in many cases.

• Third, an approach using a code clone identification technique called undi-
rected similarity (usim) and a refactoring detection tool calledRef-Finder
to investigate instances of clone refactoring (i.e., the merging of a set of var-
ious code clone types into a single function or a method using refactoring
patterns) are presented.

• Finally, it was discovered that theExtract Method (EM)andReplace Method
with Method Object (RMMO)patterns are used the most when developers
conduct clone refactoring. Moreover, it was found that large token differ-
ences exist between merged code clones when theRMMOandEM patterns
are used on pairs of code clones.

1.3 Thesis Outline

The remainder of the thesis is structured as follows:

Chapter 2: Related works
The thesis begins with a review of studies to help deeply understand the
problemns involved with this thesis. In this chapter, studies on automatic
code clone detection and analyzing code clones during the software evo-
lution are first reviewed. Moreover, studies on the automatic detection of
refactoring instances from the source code history and analyzing the refac-
toring instances during the software evolution will also be introduced.

Chapter 3: Proposing and Evaluating Clone Detection Approaches
This chapter describes six code clone detection approaches with a prepro-
cessing of the input source files. These approaches extendCCFinder by
adapting the preprocessing and post-processing to detect code clones effec-
tively from different model/versions released. Moreover, a comparison of
the proposed approaches and an “approach that uses onlyCCFinder” will
be presented. The goal of this study is to investigate how the normaliza-
tions impact the code clone detection for quickly detecting code clones from
large-scale software systems.

Chapter 4: Investigating Merged Code Clones during Software Evolution
This chapter presents an investigation into merged code clones during the
evolution of three Open Sorce Software (OSS) systems. This investigation
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was conducted using a refactoring detection tool and a token similarity met-
ric. The goal of this investigation was to uncover clues that can contribute to
the development of more widely used tools for clone refactoring.

Chapter 5: Conclusion and FutureWork
The final chapter concludes the thesis by summarizing the main findings, and
providing directions for future research.
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Chapter 2

Related work

This chapter describes previous works related to code clones and refactoring to help
with a deeper understanding of this thesis. Section 2.1 reviews existing studies
on code clones, and Section 2.2 describes state-of-the-art studies on refactoring
detection and analysis during the software evolution.

2.1 Code Clones

A code clone is a code fragment that has other code fragments identical or similar
to it in the source code. A clone set is a set of code clones that are identical
or similar to each other. Code clones can be categorized into the following four
types based on the textual (Type-1, Type-2, and Type-3) and semantic (Type-4)
similarities between the pairs of code clones [82]:

Type-1: Identical code fragments except for variations in whitespace, layout, and
comments.

Type-2: Syntactically identical fragments except for variations in the identifiers,
literals, types, whitespace, layout, and comments.

Type-3: Copied fragments with further modifications such as changed, added, or
removed statements, in addition to variations in the identifiers, literals, types,
whitespace, layout, and comments.

Type-4: Two or more code fragments that conduct the same computations but are
implemented through different syntactic variants.

The dissimilarity and abstraction in the definition of code clones increase from
Type-1 to Type-4.

5



Code clones are usually generated through the copying and pasting of existing
code fragments with or without modifications. Such “copy and paste” tasks are the
result of programmer’s mental macros or the inexpressiveness of the programming
languages used. Meanwhile, the avoidance of a new defects, the reuse of a tem-
plate/design, the programmer’s lack of knowledge of the domain/product, and the
development resources also trigger such tasks [50, 81].

Details of previous code clone related studies are introduced in the following
subsections. Existing studies on code clone detection and analysis are reviewed in
Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Code Clone Detection

Thus far, numerous code clone detection techniques and their implemented tools
have been proposed, which can be roughly classified into the following categories:

• String-based techniques [24, 22]

• Token-based techniques [5, 4, 49, 62, 70, 63, 101]

• Tree-based techniques [10, 47, 58, 57]

• Program dependence graph-based techniques [30, 56, 59]

• Memory-based techniques [52]

• Hybrid techniques [7, 45, 80, 79]

Hereafter, techniques and tools from the abovementioned categories are intro-
duced.

String-based techniques
The techniques in this category conduct string-by-string comparisons of the
input source code and detect similar sequences of the strings as code clones.
Ducasse et al. proposed a language-independent clone detection technique
based on line similarities, and implemented a tool calledDuploc [24]. After
removing comments and white spaces from the input source code,Duploc
detects Type-1 and Type-2 code clones using dynamic pattern matching. It
also provides a scatter plot that visualizes the results of code clones for sup-
porting analysis tasks.

Ducasse et al. also presented string-matching techniques with six different
degrees of code normalization (i.e., replacing certain elements of a program

6



with generic placeholders with the aim of removing only nonessential infor-
mation), and then measured their impact on the quality of the code clone
detection [22]. First, noise (e.g., white spaces, tabulations, and comments)
is eliminated from the input source code, and a different degree of code nor-
malization (e.g., replacing identifiers, labels, and basic numeric types with
a special token) is applied to the input source code. Next, code clones are
detected using line-by-line string matching. In a case study, the authors com-
pared different proposed techniques and confirmed that more complicated
normalization results in a decrease in the recall and precision.

Token-based techniques
These techniques tokenize the input source code through normalization, and
then compare the token sequences of lines to detect any code clones. Baker
developed a token-based code clone detection tool calledDup [5, 4]. First,
Dup tokenizes the input source code, and the tokens of the identifiers and
constants are then replaced with placeholders. Next,Dup extracts the pairs
of longest matches using a suffix tree algorithm [66]. It detects pairs of ex-
actly the same code fragments or parameterized matched strings (i.e., a pair
of code fragments in which each identifier or constant in one code fragment
is consistently changed into another identifier and constant in another code
fragment), with the exception of comments, blank lines, and white spaces,
as code clones.

Kamiya et al. developed a tool calledCCFinder that detects Type-1 and
Type-2 code clones based on token similarities [49]. The steps used to detect
code clones from the input source code are as follows: First, each line of the
input source files is divided into tokens corresponding to a lexical rule of the
programming language. The tokens of all files are concatenated into a single
token sequence. In addition, the white spaces (including ‘\n’ and ‘\t’) and
comments between tokens are removed from the token sequence. The token
sequence is then transformed, (i.e., tokens are added, removed, or changed
based on the transformation rules) and, each identifier related to the types,
variables, and constants is replaced with a special token for detecting Type-2
code clones. Next, from all of the substrings in the transformed token se-
quence, equivalent code fragments are detected as code clones. A suffix-tree
matching algorithm [38] is used to compute the matching, in which the clone
location information is represented as a tree with sharing nodes for leading
identical subsequences, and the clone detection is conducted by searching
the leading nodes on the tree. Finally, each location of a code clone is con-
verted into line numbers of the original input files.D-CCFinder extends
CCFinder to detect code clones from large-scaled software systems [63].
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To detect code cones at high speed, it partitions the code clone detection into
smaller pieces for distribution in very large software systems.

CP-Miner, proposed by Li et al., detects code clones and bugs that are in-
duced by code clones using a frequent subsequence mining (i.e., an asso-
ciation analysis technique used to discover frequent subsequences in a col-
lection of sequences) technique [62].CP-Miner tokenizes the input source
code with replacement of identifier names such as variables, functions, and
types with a special token. After converting a tokenized source code into
hash values,CP-Miner detects code clones using an enhanced algorithm of
closed sequential pattern mining [103] from sequences of the hash values.

Murakami et al. proposed a code clone detection technique usingSmith-
Waterman and the longest common subsequence (LCS) algorithm to detect
gapped code clones [70]. This technique normalizes (i.e., user-defined iden-
tifiers are replaced with specific tokens) a tokenized source code and then
calculates a hash value for every statement. After identifying similar hash
sequences using the tailored Smith-Waterman algorithm [86], it identifies
gapped code clones using the LCS algorithm.

Yamanaka et al. presented a lightweight technique aimed at detecting func-
tion clones, using information retrieval techniques [101]. A feature vector
is generated for each function of the input source code using the Term Fre-
quency Inverse Document Frequency (TF-IDF) and reserved keywords, and
clustering of the generated vectors is then conducted by means oflocality
sensitive hashing (LSH) [31]. Finally, clones are detected based on the
similarities between each pair of feature vectors.

Tree-based techniques
In these techniques, input source code is represented as a tree structure, and
code clones are then detected by identifying isomorphic subtrees.CloneDR,
developed by Baxter et al., detects code clones using abstract syntax tree
[10]. CloneDR partitions subtrees of abstract syntax tree using hash values,
and then detects code clones by comparing subtrees that have the same hash
values.

Deckard, developed by Jiang et al., computes certain characteristic vectors
from the abstract syntax trees [47]. These vectors are clustered using LSH,
and subtrees with vectors in a cluster are then detected as code clones.

Koschke et al. proposed a technique that uses a suffix tree to identify code
clones from an abstract syntax tree [58]. This approach parses the input
source code and generates an abstract syntax tree. It then serializes the ab-
stract syntax tree and the abstract syntax tree input into suffix tree. It detects
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code clones of syntactic units by decomposing the identified code clones into
complete syntactic units.

Koschke proposed a technique for detecting code clones between a subject
system and a corpus (i.e., a set of software systems) aimed at identifying
potential license violations [57]. This technique generates a suffix tree for a
subject system and then compares every file in the corpus with the generated
suffix tree using anMD5 hash function.

Program dependence graph-based techniques
These techniques transform input source code into a program dependence
graph [26], a representation of a program that represents only the control
and data dependency between statements and predicates, and then identi-
fies isomorphic program dependence graph subgraphs to detect code clones.
Komondoor and Horwitz presented a program dependence graph-based code
clone detection technique and implemented a tool calledPDG-DUP [56],
which partitions all program dependence graph nodes into equivalence classes
and then finds isomorphic program dependence graph subgraphs using (back-
ward) program slicing. It then reports the isomorphic program dependence
graph subgraphs as code clones.

Krinke proposed a code clone detection technique based on fine-grained pro-
gram dependence graphs [59]. The technique detects similar syntactic struc-
tures (Type-1, Type-2, and Type-3 code clones) as well as similar semantics
(Type-4 code clones) by comparing the subgraphs of the program depen-
dence graphs.

Gabel et al. presented a technique for detecting code clones including se-
mantic code clones (i.e., semantically similar code fragments) [30]. This
technique maps carefully selected program dependence graph subgraphs to
their related structured syntax, and then detects clones usingDeckard’s vec-
tor generation and LSH-based clustering.

Memory-based techniques
Kim et al. proposed an approach for detecting code clones based on abstract
memory, and implemented a tool calledMeCC [52]. MeCC computes the
abstract memory states from input programs using a static analysis, and then
detects code clones by comparing the abstract memory states. It is able to
detect Type-4 clones such as pairs of statement-reordered code clones.

Hybrid-based techniques
A hybrid approach (e.g., hybrid code representation/techniques) is also used
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in such techniques to detect code clones. Roy and Cordy developed a text-
based hybrid clone detection tool calledNiCad [80, 79]. NiCad identifies
and normalizes potential clones using flexible pretty-printing. It then pro-
ceeds to normalize the input source code and compare text lines of potential
code clones using the LCS algorithm.

Basit and Jarzabek developed a tool calledClone Miner for detecting struc-
tural clones (i.e., larger granularity code clones such as similar files or di-
rectories) [7]. Clone Miner detects structural clones using frequent item-
set mining [37] from the repeated combinations of simple clones (i.e., frag-
ments of duplicated code) detected byRepeated Tokens Finder(RTF) [8],
a token-based code clone detection tool.

Finally, Hummel et al. proposed an incremental index-based code clone
detection approach [45]. An index allows the lookup of all clones for a
single file, and can be updated efficiently, when files are added, removed, or
modified. This approach computes MD5 hash values from tokenized source
code and then generates statement indices from the MD5 hash values. It
detects code clones by retrieving the index from the databases.

2.1.2 Analysis of Clone Evolution

Many studies have been conducted on identifying the possible impact of code
clones during the software evolution. Mandal et al. investigated the clone evo-
lution history to identify candidates for clone refactoring [65, 69]. They analyzed
the clone evolution from 13 subject systems using association rules [65]. Their
analysis was conducted based on the idea that if code clones belonging to the same
clone set are changed together, preserving their similarity during the software evo-
lution, they can be important candidates for clone refactoring. Thus, the authors de-
tected code clones from 13 subject systems usingNiCad, and then mined for code
clones following the similarity-preserving change patterns using association rules.
They found that, on average, 7.04% of the code clones follow similarity-preserving
change patterns, and that more than half of them are method-level clones. How-
ever, they also found code clones that have changed with non-cloned code or code
clones belonging to other clone sets, which should not be removed through clone
refactoring but should be tracked to consistently update them in the future. Thus, to
find candidates for tracking, they also mined code clones from six subject systems,
and identified candidates for tracking at an overall rate of 10.27% [69].

Thus far, several studies have investigated clone removal during the software
evolution [11, 32, 105, 106]. G̈ode investigated clone removal aimed at gaining in-
sight to improving clone detection and refactoring tools. In this study, Type-1 and
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Type-2 code clones were detected from four subject systems, and then manually in-
vestigated to determine whether such code clones were deliberately removed. This
investigation revealed that method extraction is the most frequently used refactor-
ing pattern to eliminate code clones, and that most of the removed code clones
are contained within the same or closely related files. Bazrafshan and Koschke
expanded on G̈ode’s study by analyzing not only deliberately removed but also ac-
cidently removed code clones from seven subject systems. Their analysis found
that code clones are accidently removed more frequently than they are deliberately
removed, and that Type-2 code clones are more frequently removed than Type-1
code clones. Zibran et al. investigated the changes and removal patterns of Type-1,
Type-2, and Type-3 code clones from a total of 228 releases of six OSS systems
to characterize the patterns of clone change and removal during the software evo-
lution. Their study was conducted based on code clones detected byNiCad and
the clone evolution model constructed bygCad [85], a code clone genealogy ex-
tractor. Their study found that a few early releases of software systems experience
more significant clone removal than later releases. It was also found that the most
of the code clones underwent changes only once, before they were removed. Fur-
thermore, they investigated 329 releases of nine software systems and additionally
revealed that inconsistent changes were found to have dominated over consistent
changes of code clones [106].

Wei and Godfrey analyzed clone refactoring from Linux kernel to understand
the ratio of intentional clone refactoring [95]. Their study found that only a small
fraction of code clones are intentionally refactored.

Several studies have analyzed OSS systems to understand how code clones
evolve [55, 84]. Kim et al. initially presented a model of a clone genealogy (i.e.,
history of how each code clone in a clone set has changed with respect to other
clones in the same set) by mapping code clones across multiple consecutive re-
visions from two Java OSS systems. Their study confirmed that code clones are
either very volatile (i.e., disappear shortly after they are created), or hard to re-
move [55]. Saha et al. investigated the evolution of clones at the release level from
17 subject systems and found that many clone sets are alive and long-lived, either
without any changes or with changes only in the identifier renaming [84].

Two investigations have aimed at identifying how developers create and main-
tain clones [6, 39]. Balint et al. analyzed three OSS systems to identify how devel-
opers copy code [6]. Their study related detected code clones with the developer
information by usingcvs annotate and found that an inconsistent rate of changes
to code clones correlated with the number of developers. In addition, Harder ana-
lyzed the relationship between code clones and the number of developers involved
in the creation and maintenance of the clones for five OSS systems [39]. He found
that several differences, such as the rationale for cloning and the changes applied
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to the clones, exist between single- and multiple-author clones.
Several studies have also analyzed the stability of cloned and non-cloned code

during the software evolution [33]. Krinke analyzed the code clones and changes
in five OSS systems and confirmed that cloned code is more stable than non-cloned
code (i.e., a non-cloned code is more often added and deleted than a cloned code)
[60]. Göde and Harder extended Krinke’s study using a more detailed measurement
and additionally found that Type-1 code clones are less stable than Type-2 and
Type-3 code clones [33]. Mondal et al. also extended Krinke’s study by analyzing
code clones in 12 subject systems written in three different program languages,
namely Java, C, and C# [68]. This study found that Type-1 and Type-2 clones are
unstable, and that code clones in Java and C systems are not as stable as those in
C# systems.

Finally, other studies have investigated the relationship between code clones
and defect proneness [14, 77]. Nicolas et al. studied code clones at the release
level to aim at investigating the effect of inconsistent changes on software quality.
The authors analyzed code clones in three subject systems and found that only a
small fraction of code clones induce software defects at the release level [14]. In
addition, Rahman et al. analyzed four OSS systems using code clones to verify
whether code clones are the source of a really bad smell [77]. Their study revealed
that clones are much less defect-prone than non-cloned code.

2.2 Refactoring

Refactoring was defined by Fowler as a disciplined technique for restructuring an
existing body of source code, altering its internal structure without changing its
external behavior [28]. Refactoring leads to a reduction in the number of bugs and
improved software quality and readability of the source code. The term “refactor-
ing” was originally introduced by Opdyke in his Ph.D. thesis [72]. Fowler pre-
sented 72 refactoring patterns, including theExtract MethodandRename Method,
along with the motivation and specific steps for conducting each refactoring pat-
tern [28]. Hereafter, related works on refactoring detection and investigations into
refactoring instances during the software evolution are summarized. In particu-
lar, these works will help readers understand the study, introduced in Section 4, in
which merged code clones were analyzed during the software evolution based on
detected refactoring instances.

The definition of refactoring detection used in this paper is as follows: Suppose
that(va, vb)(0 ≤ a < b ≤ n) are a pair of versions extracted from a set of succes-
sive versions(v0, . . . , vn−1, vn), andC = {c0, . . . , cm−1, cm} is a set of changes
occurring between versionsva andvb. If a subset (not empty) of setC subsumes
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refactoring operations defined in the refactoring catalog suggested by Fowler, the
subset is detected as a refactoring performed between versionsva andvb. In gen-
eral, refactoring detection tools take a pair of versions(v1, v2) as input, and then
outputs a list of refactoring performed between versionsv1 andv2.

State-of-the-art studies for the automatic detection of refactoring instances from
histories of source code changes can be categorized as follows [19]:

• Rule-based techniques [1, 2, 20, 35, 29, 54, 75, 92, 96, 97, 98, 100]

• Code clone-based techniques [15, 96]

• Metrics-based techniques [18, 64]

• Dynamic analysis-based techniques [89]

• Graph matching-based techniques [51, 90]

• Search-based techniques [13, 41, 42, 51, 64, 73, 93]

In this paper, only rule-based detection techniques are discussed, a complete
discussion can be found in [19].

The rule used in these techniques is the criterion for determining whether refac-
toring was performed based on changes (e.g., additions, deletions, and movements)
of the program elements (e.g., classes, methods, and parameters) and the similarity
of elements between two versions. For example, to detect refactoring instances of
theExtract Methodpattern, a technique proposed by Prete et al. [54, 75] extracts
program elements as facts and then computes the similarities of the facts between
two versions. Finally, if the computed results match a predefined rules that states
the “source code of a new method is extracted from a changed method in the old
version, the new method calls the old method, and source code of the new and
old methods are similar to each other” then the target source code is detected as
a refactoring instance of theExtract Methodpattern. Figure 2.1 summarizes the
process of this type of detection.

The techniques proposed by Antoniol et al. and Advani et al. detect refactoring
instances based on Fowler’s definition of refactoring patterns [1, 2]. Antoniol et al.
presented a technique for detecting refactoring instances at the class level (e.g.,
Class ExtractionandClass Split) based on the predefined conditions to investigate
the evolution of classes in Java software systems. Their technique extracts identi-
fiers from each class, and then weights the extracted identifiers based on the TF-
IDF (Term Frequency-Inverse Document Frequency) [3]. Next, it converts each
class into a vector based on the weight of the class, and, finally, determines the
refactoring instances according to the conditions based on changes (e.g., a newly
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Figure 2.1: Overview of a rule-based refactoring detection technique

added class) in each class and the cosine of the angle between two vectors rep-
resenting the classes. Furthermore, this approach was applied to 40 releases of
dnsjavaand identified theClass Replacement, Merge and Split, andFactor Out
refactoring. Advani et al. developed a tool for detecting refactoring instances
according to the predefined criteria aimed at investigating whether certain refactor-
ing patterns are related [1]. This tool reports refactoring instances when predefined
criteria for 15 refactoring patterns are matched with changes in the class entities
(e.g., methods and fields). As a result of applying the tool to seven OSS systems,
this study found that theRename Method, Rename Field, Move Method, andMove
Field patterns are frequently related with other refactoring patterns.

Görg and Weißgerber implemented a tool calledREFVIS for detecting the
refactoring instances based on changes (e.g., add, remove and unchanged) in the
signatures of the classes and methods between two versions [35].REFVIS also
provides a feature that visualizes the detection results at the classes and methods
levels. Weißgerber and Diehl presented a technique for detecting refactoring in-
stances based on added, changed, or removed classes; interfaces; methods; and
fields between two versions [96]. It then ranks the refactoring instances based on
similarities in the source code between the two versions usingCCFinder. This
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technique is able to detect similar source codes as refactoring instances, whereas
REFVIS only reports two exact source code as refactoring instances.

Xing and Stroulia’sUMLDiff detects refactoring instances between two ver-
sions [97, 98, 100].UMLDiff extracts logical facts such as the types, names, and
modifiers of the packages and classes from two input program versions. It then
computes their similarities based on their changes, additions, movements, and dele-
tions. Finally, if the computed similarities are matched with queries representing
refactoring patterns, it detects the target source code as a refactoring instance.

Prete et al. developed anEclipse plug-in calledRef-Finder that detects refac-
toring instances of 63 refactoring patterns between two program versions based
on the predefined rules [54, 75].Ref-Finder extracts the code elements (e.g.,
packages, classes, and interfaces), structural dependencies (e.g., containment and
overriding relationships), and the contents of the code elements (e.g., if-then-else
control structures) as facts from two input program versions. It then computes the
differences in facts between the two program versions. Finally, it determines the
refactoring instances based on the predefined rules of the refactoring patterns [74].
Ref-Finder detects both atomic refactoring and complex refactoring using other
atomic refactoring as a pre-requisite. Furthermore, it can detect more instances
of refactoring patterns using code information such as a conditional branch and
exception handling.

A technique proposed by Fujiwara et al. detects refactoring instances from
multiple revisions [29]. This technique speeds up the refactoring detection by ex-
tracting code elements from each revision and matching them using Historage [40].

Rule-based techniques are also used to detect refactoring instances from the
changes in histories of the components. In general, it is difficult to detect refac-
toring instances from changes in histories of the components because of backward
compatibility (i.e., obsolete source codes coexist with their newer counterparts un-
til they are no longer supported). To address this problem, Dig et al. and Taneja
et al. presented techniques for detecting refactoring instances between two ver-
sions of components based on predefined rules [20][92]. Dig et al. developed an
Eclipse plug-in calledRefactoringCrawler [20], which identifies similar pairs of
entities (e.g., methods and classes) in two versions of components usingShingles
[17] to find refactoring candidates, and then analyzes references among the source
code entities in each of the two versions of the components to detect real refac-
toring instances. Taneja et al. developed a tool calledRefac Lib, which extracts
similar entities from the source code from two versions of an Application Program-
ming Interface (API) and then reports the refactoring instances based on a syntactic
analysis, the similarities and size of the entities, and information regarding obsolete
entities.

Next, several studies that have analyzed refactoring instances during the soft-
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ware evolution for several different purposes are described. Note that only studies
using automation techniques for detecting refactoring instances are introduced.

Several studies have aimed at finding the relationship between defects and
refactoring [9, 36, 53]. G̈org and Weißgerber investigatedjEdit and Tomcatto
find refactoring instances containing bugs [36]. After preprocessing the extracted
data from CVS repositories, they identified refactoring instances ofADD/Remove
Parameter andRename Method patterns based on changes in the methods and
classes between two versions [35]. They then checked whether these refactoring
patterns were consistently applied to all related methods to identify incomplete
refactoring instances. As a result, they found five candidate buggy methods.

Kim et al. investigated the development histories of three OSS systems, aiming
at determining the relationships between API-level refactorings (i.e.,Renameand
Move Package/Class/Method, andMethod Signature Change) and bug fixes [53].
They analyzed revisions containing API-level refactoring, revisions containing bug
fixes, and bug-introduction changes inEclipse JDT, jEdit, andColumba. They
concluded that the number of bug fixes increases after refactoring, whereas the
time taken to fix the bugs decreases after refactoring. Meanwhile, Bavota et al.
reported that refactoring induces a small number of defects [9]. They analyzed
the refactoring instances detected byRef-Finder from three Java OSS systems
to investigate to what extent refactoring induces bugs. As a result, they found that
only 15% of the refactoring instances induced bug fixes and that several refactoring
patterns including thePull Up MethodandExtract Subclassinduce more bug fixes
than others.

Some studies have investigated the actual practice of refactoring to better un-
derstand the process [87, 99]. Xing and Stroulia analyzed three pairs of released
versions ofEclipse JDT using theUMLDiff algorithm to investigate the actual
refactoring practice and suggested a direction for improving refactoring support
tools [99]. In their study, they found that 70% of the structural changes were the
result of refactoring, and that existing integrated development environments lack
support for complex refactoring such as refactoring of the containment-hierarchy.
Soares et al. analyzed the frequency of refactoring, program structures affected by
refactoring, and the scope of refactoring from almost 41,000 software versions of
five OSS systems [87]. From the identified refactoring based on behavior preser-
vation between pairs of versions, they found that 27% of the changes during the
software evolution were from refactoring. They also identified that most refactor-
ings is low-level refactorings (i.e., only changing blocks of code within methods)
or local refactorings (i.e., performed within a package).

Rachatasumrit and Kim investigated 14 pairs of versions of three Java OSS
systems (Apache JMeter, XML Security Library, andApache ant), aiming at deter-
mining the relationship between refactoring and regression testing [76]. This in-
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vestigation was conducted based on refactoring instances detected byRef-Finder
and affected tests (i.e., a set of regression tests in the old version that are relevant to
atomic changes) identified byFAULTTRACER [104], an automated change impact
analysis tool. The results of this investigation revealed that 22% of the refactored
methods and fields are covered by existing regression tests and that 38% of the
affected tests involve refactoring. Furthermore, it was also found that 50% of the
failed affected tests involve refactoring.

Finally, Tsantalis et al. studied Git repositories of three OSS systems, namely
JUnit, HTTPCore, andHTTPClient[94]. They analyzed the refactoring histories,
using refactoring detection rules suggested by Biegel et al. [15]. As a result, they
observed that most types of the refactoring applied are conducted by specific de-
velopers, who usually have a key role in the management of the project. Moreover,
they found a wide variety of reasons motivating the application of refactoring; for
instance, the decomposition of methods was the most dominant motivation for ap-
plying Extract Methodrefactoring to deal with code smell.
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Chapter 3

Proposing and Evaluating Clone
Detection Approaches

3.1 Motivation

Electronics companies are currently releasing new models of their products in reg-
ular and rushed intervals [16, 25, 83]. To release a new model within a short time-
frame, a number of companies simply reuse existing files with or without modifi-
cations. This saves time and cost, and avoids the high risk entailed in creating new
code logic. However, it generates many identical or similar files between different
versions and models, making software systems difficult to maintain.

It is important to detect code clones from different released versions and mod-
els. For example, when a defect is contained in a code clone in one version/model,
all of its cloned code fragments in the other versions/models should be inspected
for the same bug. This takes a significant amount of time and effort, particularly
in large-scale software systems. To date, researchers have proposed code clone
detection approaches using various granularities such as lines, tokens and abstract
syntax trees and have evaluated them to find the most effective approach [12, 82].

Different degrees of normalizations (i.e., the transformation of program ele-
ments) for detecting code clones have also been proposed. Each type of normaliza-
tion makes subtly different but similar source code to be detected as code clones.
For instance, a code clone detection tool calledDup normalizes the input source
files by tokenizing each file into a single token sequence [4]. This normalization
leads to the detection of source code with different white spaces, layout, and com-
ments as code clones. A token-based code clone detection tool calledCCFinder
normalizes the input source files by replacing identifiers related to the types, vari-
ables, and constants using a special token, and then concatenating all tokens in the
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same file into a single token sequence [49]. This normalization leads to the detec-
tion of source code with different identifiers, white spaces, layout, and comments
as code clones. Different degrees of normalization cause different granularities of
source code to be detected as code clones, but only little is known about how such
normalization impacts the code clone detection [23].

To investigate how normalization impacts the code clone detection, this study
proposes and evaluates six approaches for detecting code clones with preprocess-
ing using different degrees of normalization. More precisely, each type of nor-
malization is applied to the input source files, and equivalence class partitioning is
then conducted on the files based on theMD5 hash function during the preprocess-
ing. The goal of this preprocessing is to avoid an irrelevant code clone detection
caused by identical files. Identical files increase the computational complexity of
the code clone detection because code clones are repeatedly detected within them.
The proposed approaches can be categorized into two types, an approach with non-
normalization and approaches with normalization. The former category is the de-
tection of code clones based on identical files without normalization, whereas the
latter category is the detection of clones based on different degrees of normaliza-
tion, such as removing macros from the input source files. After preprocessing,
code clones are detected only in acorpus (i.e., a set of files each of which is a rep-
resentative of each equivalence class) byCCFinder. As a case study, the proposed
approaches and an approach that uses onlyCCFinder are applied to different ver-
sions of three OSS systems. The contributions of this study can be summarized as
follows:

• Both of the proposed approaches with a preprocessing of the input source
files are faster than the approach using onlyCCFinder.

• Any normalization also takes a great deal of time during the preprocessing
and post-processing, and is unable to reduce the total detection time in many
cases.

• We have proposed and implemented code clone detection approaches using
the preprocessing of the input source files.

The remainder of this study is organized into the following sections. Section
3.2 details the proposed code clone detection approaches. Section 3.3 describes a
case study on different versions of three OSS systems, and Section 3.4 details the
results. Next, Section 3.5 discusses the results of the case study, Section 3.6 then
describes threats to the validity of the proposed approaches, and finally, Section
3.7 concludes this chapter.
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/* say “Hello World” */
#include <stdio.h>

int main() {
printf("Hello World¥n“); 
return 0;

}

a

Original Source Code

intmain(){printf("HelloWorld¥n");return0;}f

ISC Approach

$main(){printf("HelloWorld¥n");return0;}g

INSC Approach

c #include <stdio.h>

int main() {
printf("Hello World¥n"); 
return 0;

}

IEC Approach

/* say “Hello World” */

int main() {
printf("Hello World¥n"); 
return 0;

}

d

IEM Approach

/* say “Hello World” */
#include <stdio.h>

int main() {
printf("Hello World¥n"); 
return 0;

}

b

Approach with Non-normalization

int main() {
printf("Hello World¥n“);
return 0;

}

e

IEMC Approach

Figure 3.1: An example of the result of each normalization

3.2 Proposed Approaches

This study proposes and evaluates approaches for detecting code clones with a
different type of preprocessing. The proposed approaches can be categorized into
two categories: an approach with non-normalization (see Subsection 3.2.1) and
approaches with normalization (see Subsection 3.2.2). The former is the detection
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Figure 3.2: Overview of an approach with non-normalization

of code clones based on identical files without normalization, whereas the latter
is the detection of code clones based on identical files with different degrees of
normalization. Both approache types share the following pipeline phases:

i. Preprocessing:This is used to conduct equivalence class (i.e., a set of files
that are identical to each other based on the hash values) partitioning and
generate a corpus based onMD5 hash values of the input source files. For
this study, theMD5 hash function was adopted because its probability of an
accidental collision is extremely small.

ii. Clone detection:This is used to detect code clones in a corpus usingCCFinder.
In this phase, code clones are detected only on a corpus because identical
files are detected as equivalence class in the preprocessing phase. As a re-
sult, time complexity from the repeatedly detection of code clones within
the identical files can be reduced. To detect code clones, this study uses
CCFinder because of its high accuracy in code clone detection.

iii. Post-processing:This is used to generate all clone sets by mapping the out-
put ofCCFinder, the equivalence classes and other information if necessary.
The all cone sets exclude clone sets existing only within each equivalence
class because they are already detected as equivalence classes.

The detailes of the approach with non-normalization and approaches with nor-
malization are explained in Subsection 3.2.1 and 3.2.2 respectively.

3.2.1 Approach with Non-normalization

This type of approach identifies identical files without normalization. For example,
Figures 3.1(a) and 3.1(b) show identical non-normalized files used in this type of
approach. Code clones are then detected based on these identical files. Figure 3.2
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Figure 3.4: An overview of the approaches with normalization

illustrates an overview of the three phases of this approach type. The details of
each phase are as follows:

a. Preprocessing:For each input source file, theMD5 hash value of the file
is calculated. Equivalence class partitioning is then conducted based on the
hash values. Namely, all files that have the sameMD5 hash values are par-
titioned into the same equivalence class. Figure 3.3 shows an example of a
partition. In this figure, characters written on the files represent the hash val-
ues, and a blue rectangle represents each equivalence class. Taking a closer
look at the figure, filesa1, a2, anda3, which have the same hash value ’Occ’,
are partitioned into the same equivalence class. Filesb1 andb2, which have
the same hash value ’be05’, are also partitioned into an equivalence class. In
addition, filesc1 andd1 are partitioned into their own singleton equivalence
class. After the partitioning, a file is selected from each equivalence class as
a representative and then added to the corpus. Figure 3.3 shows an example
of such a selection. In this figure, an asterisk indicates files contained in the
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corpus. That is, filesa1, b1, c1, andd1 are selected and then contained in the
corpus.

b. Clone Detection:Code clones are detected in a corpus usingCCFinder.

c. Post-processing:It is easy to assume that if a code clone exists in one file
within an equivalence class, code clones also exist in the same place in other
files of the same equivalence class. Thus, during this phase, all clone sets are
generated based on this assumption. That is, if a code clone is detected in a
representative of an equivalence class during the clone detection phase, then
a code fragment in the same place in the other files of the same equivalence
class are also added to the same clone set as code clones.

3.2.2 Approaches with Normalization

This category contains approaches with different degrees of normalization, as fol-
lows:

• Identical Except for Comments (IEC) approach

• Identical Except for Macros (IEM) approach

• Identical Except for Macros and Comments (IEMC) approach

• Identical Source Code (ISC) approach

• Identical Normalized Source Code (INSC) approach

These approaches require additional processes compared to the approach with non-
normalization described in Section 3.2.1. That is, they parse the input source files
into tokens and then save the token information during the preprocessing phase.
Figure 3.4 provides an overview of three common phases of the above approaches.
In the figure, additional processes are shown in red. The details of each phase are
as follows:

1. Preprocessing:The input source files are parsed into tokens and the follow-
ing information is then extracted from each file:

• Token list: a list of tuples (the token number, the start column number,
the end column number and the line number) of each token, with the
following attributes.

– Token number: the number assigned to each token.

– Start column number: the column number where the token starts.
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– End column number: the column number where the token ends.

– Line number: the line number where the token exists.

One of the following normalizations is then applied to each input source
file. Note that targets for normalizations are selected from the same program
elements asCCFinder.

• For the IEC approach: All lines containing only comments, and com-
ments or white spaces before and after the comments are removed from
each input source file. This normalization transforms Figure 3.1(a) into
Figure 3.1(c).

• For the IEM approach: All lines containing only macros are removed
from each input source file. This normalization transforms Figure 3.1(a)
into Figure 3.1(d).

• For the IEMC approach: All lines containing only macros or com-
ments, and comments or white spaces before and after the comments
are removed from each input source file. This normalization transforms
Figure 3.1(a) into Figure 3.1(e).

• For the ISC approach: Tokens in the same file are concatenated into
a single token sequence. This normalization transforms Figure 3.1(a)
into Figure 3.1(f).

• For the INSC approach: Tokens of identifiers, literals, and types are
replaced by a special token, and tokens in the same file are then con-
catenated into a single token sequence. This normalization transforms
Figure 3.1(a) into Figure 3.1(g). In this figure, an identifier ‘int’ is
replaced by $.

The rests of this phase are is same as the preprocessing used in the approach
with non-normalization, as explained in Section 3.2.1-a. All files that have
the same hash value are partitioned into the same equivalence class. After
the partition, a file is selected from each equivalence class as a representative
and then added to the corpus.

2. Clone Detection:Code clones are detected in the corpus usingCCFinder.

3. Post-processing:As a result of normalization during the preprocessing phase,
code clones may exist in different places between the files within the same
equivalence class. Therefore, if a code clone is detected in a representative
of an equivalence class, mapping is conducted as follows:
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(a) The start token number (i.e., the first token number of the code clone)
and the end token number (i.e., the last token number of the code clone)
in the representative are identified.

(b) The start column number and the line number of the corresponding start
token number in other files in the same equivalence class are identified
based on the token list saved during the preprocessing.

(c) The end column number and the line number of the corresponding end
token number in other files in the same equivalence class are also iden-
tified based on the token list.

(d) The code fragments ranging from the identified start column number in
the line number to the identified end column number in the line number
in other files of the same equivalence class are added into the same
clone set as code clones

3.3 Case Study

In the case study, the proposed approaches and the approach that uses onlyCCFinder
are applied to different versions of three OSS systems. Note that the proposed
approaches detect code clones by excluding identical files within the same equiva-
lence class, and therefore for the case study, different versions of the same software
system were selected as subject systems because they contain many identical files.
In particular, the case study was designed to address the following two RQs:

• RQ1. Can the proposed approaches detect code clones faster than an ap-
proach that uses onlyCCFinder?

• RQ2. Which approach is the fastest among the proposed approaches?

In the case study, 30 tokens (the default setting) were used as the minimum
length of the token sequence of a code clone forCCFinder. During the case study,
each approach was executed three times to obtain reliable results. This case study

Table 3.1: Statistics of subject systems
Name #Versions #Files Line of code #Tokens
Apache Ant 29 18,708 4,862,102 8,404,790
Linux kernel 12 7,839 5,690,967 12,537,555
Samsung Galaxy 2 29,573 19,920,387 43,924,235
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was conducted on a 64-bit Windows 7 Professional workstation equipped with two
processors, (i.e., 2.27GHz and 2.26GHz CPUs) and 24 GB of main memory.

As the subject systems, three OSS systems of different sizes and application
domains were selected:Apache Ant1, Linux kernel2, andSamsung Galaxy3. An
overview of these systems is shown in Table 3.1.

Apache Antis a Java library and command-line tool for building systems writ-
ten in Java. From this system, Java files under a directory calledmainwere selected
from 29 consecutive released versions (released versions 1.1 through 1.9.4).Linux
kernelis a clone of the UNIX operating system written in C. From this system, C
files having the file extensions .c, .cc, .cpp, and .cxx under a directory calledfswere
selected from 12 consecutive released versions (released versions 2.6.0 through
2.6.10). Samsung Galaxyis a Samsung mobile phone called Samsung Galaxy Y
Pro, which is written in C. Two released versions of this model for different geo-
graphical areas, Latin America and China, were selected. From this system, C files
having the file extensions .c, .cc, .cpp, and .cxx under a directory calledcommon
were selected from each version. Note that files that are lexically incomplete were
excluded.

3.4 Results

This section describes the results of the case study used to answer the above RQs.

3.4.1 Comparison with the Approach that uses OnlyCCFinder

To answer RQ1, this study compared the proposed approaches with the approach
that uses onlyCCFinder with respect to the detection time. Tables 3.2, 3.3, and
3.4 list the detection times of the proposed approaches compared to the approach
that uses onlyCCFinder for Apache Ant, Linux kernel, andSamsung Galaxy, re-
spectively. Note that the “IEM Approach” and “IEMC Approach” are conducted
based on the macros in C program, and thus these approaches were only applied
to Linux kernelandSamsung Galaxy. In these tables, the columnTotal detection
time represents the detection time needed to complete each approach. The columns
Preprocessing, Clone detection, andPost-processing show the detection time
of each phase. In these columns, the numbers in the parentheses represent their
proportion of the total detection time. Note that these tables show the average
detection time of the three executions.

1http://ant.apache.org/
2http://www.kernel.org/
3http://opensource.samsung.com/index.jsp
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As these tables indicate, the proposed approaches reduce the code clone detec-
tion time compared with the “Approach that uses onlyCCFinder” for all subject
systems. In particular, the detection times of the proposed approaches are at least
two-times shorter than that of the “Approach that uses onlyCCFinder”. Therefore,
it can be concluded that the proposed approaches are able to detect code clones
faster than the “Approach that uses onlyCCFinder”.� �

The proposed approaches are able to detect code clones faster than the “Ap-
proach that uses onlyCCFinder”.� �

3.4.2 Comparison of Proposed Approaches

To answer RQ2, this study compared the detection times between the proposed
approaches, and then examines the results, including the number of equivalence
classes and code clones. In terms of the detection time, the approach with non-
normalization is relatively faster than the other proposed approaches, as indicated
in Tables 3.2, 3.3, and 3.4.

Table 3.5, 3.6, and 3.7 show the number of instances fromApache Ant, Linux
kernel, andSamsung Galaxy, respectively. In these tables, the number of equiva-
lence classes is shown in the column#Equivalence classes. The column#Files
in equivalence classes represents the number of files that are contained in the
non-singleton equivalence classes. Meanwhile, the column#Files in singleton
equivalence classes represents the number of files contained in the singleton
equivalence classes. The columns#Clone sets and#Code clones represent the
number of detected clone sets and code clones, respectively. Note that from the
“Approach with non-normalization” to “INSC Approach”, the number of clone
sets and code clones that exist within each equivalence class are excluded because
they are already detected as equivalence classes. For the “Approach with non-
normalization”, these columns show the numbers of detected clone sets and code
clones byCCFinder. Meanwhile, other approaches describe the numbers of clone
sets and code clones except for clone sets and code clones within the identical files
in the same equivalence class.

Similar tendencies can be seen in these tables. ForApache Ant, the least num-
bers of equivalence classes, files in singleton equivalence classes, and code clones
are detected by the “INSC Approach”, as shown in Table 3.5. Similarly, forLinux
kernelandSamsung Galaxy, the least numbers of equivalence classes, files in sin-
gleton equivalence classes, and code clones are detected by the “ISC Approach”
and “INSC Approach”, as shown in Tables 3.6, and 3.7.
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� �
The “Approach with non-normalization” is the fastest forLinux kerneland
Samsung Galaxy, whereas forApache Ant, the “ISC Approach” and “INSC
Approach” are faster than the other approaches.� �

3.5 Discussion

This section discusses the results of the case study described in Sections 3.4.1
and 3.4.2. As mentioned in Section 3.4.1, the proposed approaches detect code
clones faster than the “Approach that uses onlyCCFinder”. This was caused by
the large decrease in the number of files in singleton equivalence classes. The
numbers of files in singleton equivalence classes were decreased by 5.13-21.45%,
9.87-10.77%, and 0.19- 0.22% forApache Ant, Linux kernel, andSamsung Galaxy,
respectively.

Among the proposed approaches, the “Approach with non-normalization” is
the fastest forLinux kernelandSamsung Galaxy, whereas forApache Ant, the “ISC
Approach” and “INSC Approach” are faster than the other proposed approaches.
However, the time difference between the “Approach with non-normalization” is
still very small (39 seconds at maximum). This is because, in the case ofLinux
kernelandSamsung Galaxy, the number of files in singleton equivalence classes
is almost the same between the different approaches. This leads to the “Approach
with non-normalization”, which requires the least number of preprocess and post-
process compared with the other approaches, being the fastest. ForApache Ant, the
“ISC Approach” and “INSC Approach” output the least number of files in singleton
equivalence classes, leading these approaches to detect code clones faster than the
other proposed approaches.

Therefore, it is expected that if the files contain many unique files (i.e., single-
ton equivalence classes), the “ISC Approach” and “INSC Approach” will be the
fastest; however, for the other cases, the “Approach with non-normalization” is the
fastest among all of the approaches.

3.6 Threats to Validity

The following threats to the validity of this study were identified. The proposed
approaches rely on the quality of the underlying clone detection tool and the hash
function to detect code clones. This threat is countered by a careful selection of
the clone detection tool and hash function, i.e.,CCFinder, which is a widely-used
clone detection tool with high accuracy for detecting code clones, and theMD5
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hash function, which is very unlikely to cause collisions.
As a case study, three different sized OSS systems were chosen from diverse

domains to achieve a generality of the results. However, the results of this case
study may differ for other software systems. To alleviate this limitation, the pro-
posed approaches will be applied to additional software systems in the future.

3.7 Summary

In this chapter, code clone detection approaches with a preprocessing of the input
source files using different degrees of normalization were proposed to investigate
how normalization impacts the code clone detection. The proposed approaches
conduct equivalence class partitioning of the input source files based on theMD5
hash values during the preprocessing. After the preprocessing, code clones are only
detected from a set of files each of which is selected from each equivalence class.
To detect code clones, this study usedCCFinder, which is a token-based code
clone detection tool. The proposed approaches can be categorized into two types,
an approach with non-normalization and approaches with normalization. The for-
mer is the detection of code clones based on identical files without normalization,
wherease the latter is the detection of code clones based on identical files with dif-
ferent degrees of normalization, such as the removal of all lines only containing
macros.

In this case study, the proposed approaches, as well as an approach that uses
only CCFinder, were applied to different versions of three OSS systems and eval-
uated with respect to the code clone detection time. It was determined that the pro-
posed approaches detect code clones faster than an approach using onlyCCFinder.
It was also discovered the approach with non-normalization is the fastest among the
proposed approaches for many of applied cases.

30



Table 3.2: Detection time in seconds (Apache Ant)
Approach Names Total detec-

tion
Preprocessing Clone detection Post-processing

Approach that uses
only CCFinder

716 - - -

Approach with non-
normalization

253 3 (1.19%) 248 (97.89%) 2 (0.79%)

IEC Approach 232 17 (7.34%) 103 (44.60%) 111 (48.06%)
ISC Approach 214 13 (6.07%) 100 (46.73%) 101 (47.20%)
INSC Approach 214 14 (6.54%) 100 (46.57%) 100 (46.88%)

Table 3.3: Detection time in seconds (Linux Kernel)
Approach Names Total detec-

tion
Preprocessing Clone detection Post-processing

Approach that uses
only CCFinder

1,058 - - -

Approach with non-
normalization

175 2 (1.14%) 172 (98.29%) 1 (0.57%)

IEC Approach 336 23 (6.74%) 172 (51.14%) 142 (42.12%)
IEM Approach 344 26 (7.56%) 176 (51.11%) 142 (41.34%)
IEMC Approach 333 22 (6.71%) 172 (51.70%) 138 (41.58%)
ISC Approach 328 18 (5.49%) 168 (51.37%) 141 (43.13%)
NSC Approach 335 21 (6.26%) 172 (51.39%) 142 (42.35%)

Table 3.4: Detection time in seconds (Samsung Galaxy)
Approach Names Total detec-

tion
Preprocessing Clone detection Post-processing

Approach that uses
only CCFinder

19,622 - - -

Approach with non-
normalization

4,326 7 (0.16%) 4,307 (99.56%) 12 (0.28%)

IEC Approach 8,803 204 (2.31%) 4,686 (53.23%) 3,913 (44.46%)
IEM Approach 9,240 271 (2.93%) 4,601 (49.79%) 4,368 (47.28%)
IEMC Approach 8,711 227 (2.60%) 4,530 (52.01%) 3,954 (45.39%)
ISC Approach 8,513 242 (2.84%) 4,398 (51.67%) 3,873 (45.49%)
INSC Approach 8,894 234 (2.63%) 4,552 (51.18%) 4,108 (46.19%)
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Table 3.5: Results of Apache Ant
Approach names #Equivalence

classes
#Files in equiva-
lence classes

#Files in
singleton
equivalence
classes

#Clone
sets

#Code
clones

Approach that uses
only CCFinder

- - - 15,626 246,245

Approach with non-
normalization

4,174 14,696 (78.55%) 4,012
(21.45%)

14,778 243,211

IEC Approach 3,119 17,652 (94.36%) 1,056
(5.64%)

13,127 234,006

ISC Approach 2,993 17,739 (94.82%) 969 (5.18%)13,003 233,011
INSC Approach 2,973 17,749 (94.87%) 959 (5.13%)12,976 232,812

Table 3.6: Results of Linux Kernel
Approach names #Equivalence

classes
#Files in equiva-
lence classes

#Files in
singleton
equivalence
classes

#Clone
sets

#Code
clones

Approach that uses
only CCFinder

- - - 23,031 306,592

Approach with non-
normalization

1,516 6,995 (89.23%) 844
(10.77%)

20,356 293,076

IEC Approach 1,513 7,002 (89.32%) 837
(10.68%)

20,346 293,013

IEM Approach 1,517 7,046 (89.88%) 793
(10.12%)

20,248 292,198

IEMC Approach 1,512 7,056 (90.01%) 783 (9.99%)20,228 292,026
ISC Approach 1,494 7,065 (90.13%) 774 (9.87%)20,196 291,766
INSC Approach 1,494 7,065 (90.13%) 774 (9.87%)20,196 291,766

Table 3.7: Results of Samsung Galaxy
Approach names #Equivalence

classes
#Files in equiva-
lence classes

#Files in
singleton
equivalence
classes

#Clone
sets

#Code
clones

Approach that uses
only CCFinder

- - - 274,186 2,529,843

Approach with non-
normalization

14,737 29,508 (99.78%) 65 (0.22%) 113,929 2,208,830

IEC Approach 14,735 29,518 (99.81%) 55 (0.19%) 113,876 2,208,713
IEM Approach 14,640 29,516 (99.81%) 57 (0.19%) 113,853 2,208,619
IEMC Approach 14,611 29,518 (99.81%) 55 (0.19%) 113,897 2,208,701
ISC Approach 14,576 29,518 (99.81%) 55 (0.19%) 113,797 2,208,363
INSC Approach 14,576 29,518 (99.81%) 55 (0.19%) 113,797 2,208,363
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Chapter 4

Investigating Merged Code
Clones during Software Evolution

4.1 Motivation

In recent decades, many tools have been developed to detect code clones [49, 48,
62]. Lately, the code clone research community has gradually shifted its focus
from detection to management [34, 102]. Clone refactoring is one of the most vital
features of code clones management. It merges a set of code clones into a single
function or method. Several tools for clone refactoring have been developed, for
example, the Eclipse plug-in, which supports automatic clone refactoring based
on the modified Eclipse refactoring engine [91], and a tool that provides metrics
indicating how code clones can be merged [43]. However, such tools are not com-
monly used compared to refactoring tools (e.g., Eclipse’s refactoring features) not
intended for supporting clone refactoring.

Murphy-Hill et al. investigated instances of refactoring in the development of
OSS systems [71]. Their study provided valuable insight that could be applied to
develop more widely used refactoring tools. However, such insights has proven to
be insufficient for developing tools for clone refactoring, in particular because the
merging of code clones is considerably more complicated than other patterns of
refactoring (e.g., simple code extraction and method renaming/moving) [28].

In this study, instances of clone refactoring in OSS systems were investigated
to uncover clues that could contribute to the development of more widely used tools
for clone refactoring. The study began by detecting instances of refactoring from
consecutive program versions of OSS systems using a refactoring detection tool
calledRef-Finder [75]. From the detected instances of refactoring, instances of
seven refactoring patterns (e.g.,Extract MethodandReplace Method with Method
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Object) suggested by Fowler [28], which can be used to merge sets of code clones
into the same method, were further selected. Next, to mitigate the false-positive
problem, the outputs of theRef-Finder were manually analyzed. The similarity
of the token sequences in the identified instances of refactoring was then measured
to identify instances of clone refactoring. Finally, the statistics of the instances
of clone refactoring from 63 releases of three OSS systems were analyzed. The
contributions of this study can be summarized as follows:

• Presenting an approach to investigate how clone refactoring was con-
ducted To investigate instances of clone refactoring in three OSS systems,
this study presents an approach using a code clone identification technique
called undirected similarity (usim) and a refactoring detection tool called
Ref-Finder.

• Discovering the most widely used refactoring patterns in clone refactor-
ing and the characteristics of merged clones.This study discovered that
theExtract Method (EM)andReplace Method with Method Object (RMMO)
patterns are the most widely used when developers conduct clone refactor-
ing. Moreover, it was found that large token differences existed between
merged code clones in cases where theRMMO andEM patterns were ap-
plied.

• Suggestions for clone refactoring tools.This study provides several sug-
gestions for developing tools to support code refactoring based on the results
of this investigation.

The remainder of this chapter is organized into the following sections. Section
4.2 describes the research questions of this study. Next, Section 4.3 details the steps
for investigating the characteristics of merged code clones. Section 4.4 analyzes the
results of this investigation for three OSS systems, Section 4.5 provides suggestions
for tools to support clone refactoring based on the results, and Section 4.6 describes
threats to the validity of this study. Finally, Section 4.7 summarizes this research.

4.2 Research Questions

The RQs in this study were devised to identify important clues regarding the devel-
opment of more widely used tools for clone refactoring. The RQs are as follows:

Which refactoring patterns are the most frequently used in clone refactor-
ing? (RQ1)Among the refactoring patterns that can be used for clone refactoring,
tools for clone refactoring should preferentially support the most frequently used
refactoring patterns. Therefore, RQ1 aims to identify the most commonly used
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Figure 4.1: Overview of the investigation

refactoring patterns. By answering this RQ, it is believed that the information
could help develop clone refactoring tools that support frequently used refactoring
patterns.

How similar are the token sequences between pairs of merged code clones?
(RQ2) . In addition,how different are the lengths of token sequences between
pairs of merged code clones? (RQ3)Whether code clones are merged into the
same method depends highly on their similarities. Code clones that are very sim-
ilar to each other are more easily merged into the same method. However, even
if they share few similarities, developers are often able to merge them with a cer-
tain amount of effort based on the refactoring patterns. For instance, after identical
code fragments are merged into the same method, different parts are extracted as an
each method using theForm Template Methodpattern. These RQs aim to uncover
how merged code clones differ with respect to the token content (RQ2), and token
lengths (RQ3) based on their refactoring pattern. It is believed that the answers to
these RQs could help with the development of clone refactoring tools to better de-
tect candidates for pairs of code clones based on their similarities and differences.

How far apart are pairs of code clones located before clone refactoring?
(RQ4) Tools for clone refactoring should be capable of suggesting candidates for
clone refactoring. However, it is difficult to select the appropriate candidates be-
cause code clones are spread out over various locations (e.g., the same class, differ-
ent packages). Therefore, RQ4 aims to determine how far apart code clones were
located before they were refactored. It is believed that this would further improve
a clone refactoring tool’s ability to locate pairs of code clone candidates.

4.3 Steps of this Investigation

To the best of our knowledge, no techniques or tools for detecting instances of
clone refactoring have been proposed. Therefore, a refactoring detection tool first
detects instances of refactoring, and then identify instances of clone refactoring

35



from the results using a code clone identification technique was used. Figure 4.1
provides an overview of the investigation into the characteristics of merged code
clones, which is composed of the following three steps:

Step 1. Detect instances of refactoring between two consecutive program ver-
sions.

Step 2. Identify instances of code refactoring from a set of instances of the de-
tected refactoring .

Step 3. Measure the characteristics of the merged code fragments in an old ver-
sion of the software and categorize the data based on the refactoring pattern.

The following sections describe the detailes of each step.

4.3.1 Step 1 : Detecting Instances of Refactoring

In this step, instances of refactoring in OSS systems were detected. To accomplish
this, the source code of each system was extracted from its respective software
repository. Next,Ref-Finder [75] was applied to two consecutive program ver-
sions (e.g., versions k and k+1) to detect instances of refactoring.Ref-Finder takes
two consecutive program versions as input data and reports instances of refactor-
ing. It can detect 65 of Fowler’s refactoring patterns.

Seven refactoring patterns that could be used specifically for clone refactoring
were then selected. They areExtract Method(EM), Extract Class (EC), Parameter-
ize Method (PM), Pull Up Method (PUM), Extract Superclass (ES), Form Template
Method (FTM), andReplace Method with Method Object (RMMO).

Extract Method (EM) : Originally, EM can be applied to source code that is too
complicated or long to understand its purpose. It can also be applied to
remove source code that has the same expression in two methods of the same
class. Figure 4.2 illustrates an example of clone refactoring usingEM, which
can be used to merge code clones with similar expressions in the same class
based on Fowler’s refactoring book [28]. In this figure, version k includes
two duplicated statements (shown in bold) existing in two separate methods
(printOwing andprintAssets). After conducting clone refactoring based on
theEM pattern (version k+1), these code clones are extracted from the two
methods to create a new method (printDetails), and the old statements are
replaced by caller statements to the new method.

Extract Class (EC) : Originally, EC can be applied when a class is too big or
complicated to easily understand. It is also applied to similar methods or
fields existing in the same class or unrelated classes.
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Extract Superclass (ES) : EScan be applied when two or more classes have sim-
ilar features but do not have a common parent class.

Form Template Method (FTM) : If a developer would like to merge two similar
methods that conduct similar steps in the same order, yet the steps are dif-
ferent from subclasses into a superclass,FTM can be used. In this case, a
developer can move the similar methods to the superclass and allow poly-
morphism to play its role in ensuring that the different steps conduct things
differently. This kind of method is called a templated method .

Pull Up Method (PUM) : PUM can be applied to methods that have the same
body in the subclasses.

Parameterize Method (PM) : If several methods do similar things but with dif-
ferent values contained in the method body, these separate methods are re-
placed with a single method that handles variations by different parameters,
so-calledparameterize method, which is an effective refactoring pattern.
Such a change removes duplicated code and increases the flexibility because
programmers can deal with other variations by adding other parameters.

Replace Method with Method Object (RMMO) : Originally,RMMOcan be ap-
plied to a long method that uses local variables in such a way that the devel-
oper cannot apply theEM. TheRMMOcan also be used to merge code clones
that use local variables by extracting code clones into a new method that is its
own object, where all of the local variables become fields of that object. Fig-
ure 4.3 illustrates an example of clone refactoring using theRMMOpattern.
Before clone refactoring (version k), two cloned methods (normalPrice and
salePrice), shown in bold, use local variables. After clone refactoring (ver-
sion k+1), these code clones are extracted to a new method of a new class
(PriceCalculator), and all the local variables are moved into fields of the
PriceCalculator class.

Finally, the outputs ofRef-Finder were manually validated because they con-
tained many false positives [88]. To accurately validate the outputs, existing vali-
dated output data ofRef-Finder that was used in a previous study by Bavota et al.
[9] was referenced. In the study, two master course students at the University of
Salerno conducted the manual validation.

For the purposes of this investigation, the same released versions used for the
previously validated data were selected, including 63 released versions of three
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void printOwing(double amount){
printBanner();
System.out.println(“name:”+ _name);
System.out.println(“amount”+ amount) ;

}

void printAssets(double amount){
printResult();
System.out.println(“name:”+ _name);
System.out.println(“amount”+ amount);

}

void printOwing(double amount){
printBanner();
printDetails(amount);

}

void printAssets(double amount){
printResult();
printDetails(amount);

} 

void printDetails(double amount){
System.out.println(“name:”+ _name);
System.out.println(“amount”+ amount);

}

version k       

version k+1

Figure 4.2: An example of clone refactoring using theEM pattern

Java OSS systems:Apache Ant1, ArgoUML 2, andXerces-J3. Table 4.1 provides
statistical data on each of these software systems.

1http://ant.apache.org/
2http://argouml.tigris.org/
3http://xerces.apache.org/xerces-j/

Table 4.1: Statistics of subject systems
Software Versions #Versions Period

Apache Ant 1.2-1.8.2 17 Jan 2000-Dec 2010
ArgoUML 0.12-0.34 13 Oct 2002-Dec 2011
Xerces-J 1.0.4-2.9.1 33 Nov 1999-Nov 2010
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class Order... 
double normalPrice() { 

double primaryBasePrice; 
double secondaryBasePrice;
double tertiaryBasePrice; 
// long computation; ... 

}

double salePrice() {
double primaryBasePrice; 
double secondaryBasePrice;
double tertiaryBasePrice;

// // long computation; ... 
}

version k

PriceCalculator

primaryBasePrice
secondaryBasePrice
tertiaryBasePrice

compute

Order

normalPrice()
salePrice()

return new PriceCalculator(this).compute()

version k+1

Figure 4.3: An example of clone refactoring using theRMMOpattern]

4.3.2 Step 2 : Identifying Instances of Clone Refactoring

In this step,undirected similarity (usim)[67] was used to identify instances of clone
refactoring from the instances of refactoring detected in Step 1. To elaborate, each
refactored pair was defined as an instance of clone refactoring, only if it satisfied
the following three conditions:

Condition 1 : Each pair of code fragments was refactored into the same
new method in the new software version.This means that each pair of code
fragments in the old version was merged into the same new method in the new
version.

Condition 2 : The computed usim value of each pair of code fragments
in the old version was more than 65%.Many token-based clone detection tools
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have been proposed [49, 62] because such tools detect code clones with high ac-
curacy [12]. However, existing tools fail to identify many code clones when they
contain large dissimilarities, which are often found in Type-3 and Type-4 code
clones. For example,CCFinder can only detect Type-1 and Type-2 code clones
[49]. Consequently, existing token-based clone detection tools are incapable of ac-
curately detecting certain instances of clone refactoring because developers some-
times conduct Type-3 and Type-4 clone refactoring.

To identify all code clone types, this study used theusim to identify code
clones. Originally used to identify code clones to find candidates for clone refactor-
ing in the software evolution,usimuses theLevenshtein distance, which measures
the minimum amount of changes necessary to transform one sequence of items into
a second sequence of items [61]. For instance, theLevenshtein distancebetween
surveyandsurgeryis 2, and that betweencolor andcolour is 1 [3].

The definition ofusimis given in Equation (4.1) [67]. Each instance of refactor-
ing in its original version is represented as a normalized sequencesfx = norm(fx),
where the normalization functionnorm removes comments, line breaks, and in-
significant white spaces. The resulting distance∆fx,y = LD(sfx, sfy) then de-
scribes the number of tokens that must be changed to turn the code fragmentfx
into fy. TheLevenshtein distancecan be normalized to a relative value using the
length of the token sequencelx = len(sfx) :

usim(fx, fy) =
max (lx, ly)−∆fx,y

max (lx, ly)
× 100 (%) (4.1)

To confirm this condition, the old version of each instance of refactoring is
first concatenated into a single token sequence. During this process, comments
and white spaces are removed from the token sequences. Then, the concatenated
token sequences are normalized by replacing variables and identifiers with a special
token. Finally, theusimvalues of each pair of token sequences that were merged
into the same new method in a later version of the software are computed. Pairs
are defined as code clones if theusimvalues between their token sequences are
greater than 65%. This threshold was used based on Mende’s study [67] because
the authors discovered that the best compromise between recall and precision can
be obtained at ausimvalue of 65%.

Condition 3 : The token length of each refactored pair was greater than
10 in the old version.In Mende’s study [67], the best compromise between recall
and precision was obtained at usim value of 65% with a minimum token length pa-
rameter of ten tokens. Therefore, instances of refactoring where the code fragment
in the old version had a token length of fewer than ten tokens were also excluded.
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4.3.3 Step 3 : Measuring the Characteristics of Merged Code Clones

After identifying instances of clone refactoring, the next step was to measure their
characteristics in order to answer the RQs introduced in Section 4.2.

To answerRQ1, the number of sets of merged code clones between refactor-
ing patterns was analyzed. In this analysis, pairs of code clones were categorized
based on whether they were merged into the same newly-created method using the
refactoring patterns.

To addressRQ2, the token similarities between pairs of merged code clones
were measured usingusim, which was also used to identify code clones in Section
4.3.2. Among a set of merged code clones, theusimvalues can sometimes differ
from each other because pairs of code clones are categorized into the same set
based on the merged method in the new version. To analyze the distribution of the
usimvalues accurately,Umi (a set containing the minimum usim values of merged
code clones),Uav (a set containing the average usim values of merged code clones),
andUmx (a set containing the maximum usim values of merged code clones) were
measured between the refactoring patterns.

Suppose thatS1, S2, · · · , Si, · · · , Sn (where1 ≤ i ≤ n) represent sets of
merged code clones refactored using the same refactoring pattern,umii represents
the minimumusimvalue ofSi, uavi represents the averageusimvalue ofSi, and
umxi represents the maximumusimvalue ofSi, thenUmi = {umi1 , umi2 , · · · , umin},
Uav = {uav1 , uav2 , · · · , uavn}, andUmx = {umx1 , umx2 , · · · , umxn}.

To answerRQ3, how the length of the token sequences differs between pairs of
merged code clones was investigated. First, the length of the differences in token
sequences between a pair of merged code clonesc1 andc2 asLD = |lt1 − lt2|
was defined, wherelt1 represents the length of the token sequences ofc1, and
lt2 represents the length of the token sequences ofc2. Secondly, because the LD
values among a set of merged code clones occasionally vary,Lmi (a set containing
the minimum LD values of merged code clones),Lav (a set containing the average
LD values of merged code clones), andLmx (a set containing the maximum LD
values of merged code clones) were measured between refactoring patterns.

Suppose thatS1, S2, · · · , Si, · · · , Sn (where1 ≤ i ≤ n) represent sets of
merged code clones refactored by the same refactoring pattern,lmii represents
the minimum LD value ofSi, lavi represents the average LD value ofSi, and
lmxi represents the maximum LD value ofSi, thenLmi = {lmi1 , lmi2 , · · · , lmin},
Lav = {lav1 , lav2 , · · · , lavn}, andLmx = {lmx1 , lmx2 , · · · , lmxn}.

In response toRQ4, the termclass distancewas defined as an indicator of
the location between pairs of merged code clones in the old version of the code.
Locations can be categorized into one of the following categories: Same Class,
Same Package, and Different Packages.
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Only theclass distancesfor code clones refactored by theRMMOpattern were
investigated because the other six refactoring patterns already contained constraints
regarding the location of pairs of the code clones. For example, thePUM pattern
can only be used for pairs of code clones in subclasses that have a common super-
class. To answer RQ4, theclass distancesbetween pairs of merged code clones
refactored by theRMMOpattern were analyzed.

4.4 Results of the Investigation

This section details the investigation results and provides answers to the RQs based
on these results4.

Which refactoring patterns are the most frequently used in clone refactor-
ing? (RQ1)

To answerRQ1, Table 4.2 shows the number of sets of merged code clones, as
well as the numbers of pairs of merged code clones (in the parentheses) organized
by each refactoring pattern.

The table reveals that a total of 35 sets of merged code clones were identified
from the three software systems investigated. Surprisingly, only four types of clone
refactoring (theEM, ES, FTM, andRMMOpatterns) were found, while there were
no detected instances of theEC, PM, andPUM patterns.

Figures 4.4 and 4.5 show examples of found pairs of merged code clones in
the subject systems. Note that the layouts of these examples were changed to save
space. Figure 4.4 shows an example of clone refactoring using theEM pattern in
Apache Antbetween releases 1.6.2 and 1.6.3. In this figure, releases 1.6.2 includes
pairs of code clones (shown in bold) existing in two separate methods (setIncludes
andsetExcludes) in a class calledorg.apache.tools.ant.DirectoryScanner. In
release 1.6.3, these code clones are extracted from the two methods to create a new
method callednormalizePattern, which is shown in red, and the old statements
are replaced by caller statements in the new method. Figure 4.5 shows an example
of clone refactoring using theRMMO pattern inXerces-Jbetween releases 1.0.4
and 1.2.0. In release 1.0.4, the two cloned methods (getContentSpecHandle and
getContentSpecType), shown in bold, use local variables. In release 1.0.6, these
code clones are extracted as a new method calledgetElementDecl, shown in red,
of a new class (org.apache.xerces.validators.common.Grammar), and all local
variables are also moved into fields of theGrammar class.

Taking a closer look at the table, 11 sets, and 12 pairs of merged code clones
across eight releases from three software systems were identified as having been

4Our analyzed data is available athttp://sel.ist.osaka-u.ac.jp/ ˜ ejchoi/
refactoredclones
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refactored by theEM pattern. In most cases, it was found that theEM pattern was
only used to merge one pair of code clones, meaning that it was frequently used to
merge small sets of code clones.

In examining the instances of theESandFTM patterns, it was determined that
they were only found in one release ofArgoUML for each pattern. TheESand
FTM patterns were used to merge 15 and 6 pairs of code clones, respectively. To
summarize, theESandFTM patterns were rarely used for clone refactoring, but
were used to merge a large number of code clones.

In contrast, 22 sets, and 455 pairs of merged code clones were refactored us-
ing theRMMOpattern across ten releases in two software systems,ArgoUML, and
Xerces-J. In particular, theRMMO pattern was most commonly used in release
0.26 ofArgoUML. In it, 34 pairs of coded methods calledinitWizard, which were
distributed across 11 classes, were merged into a singlegetToDoItem method in
theorg.argouml.cognitive.critics.Wizard class. Furthermore, 142 pairs of coded
methods calleddoIt, getChoices, andgetSelected located in 17 classes were
also merged into a singlegetTarget method in a class called
org.argouml.uml.ui.AbstractActionAddModelElement2. An additional 245 pairs
of coded methods in 23 classes calledstillValid were merged into a method called
isActive in theorg.argouml.cognitive.Critic class. It was observed that theRMMO
pattern was used to merge sets of code clones of various sizes.� �

TheRMMOpattern was the most frequently used refactoring pattern observed,
followed by theEM pattern. Conversely, theESandFTM patterns were used
the least.� �

How similar are the token sequences between pairs of merged code clones?
(RQ2)

The results ofRQ2 can be seen in the box-plots of Figure 4.6. It was ob-
served thatUav had the same distribution asUmi, andUmx for the EM, ES, and
FTM patterns. This was caused by the fact that sets of merged code clones were
mainly comprised of a pair of code clones (particularly with theEM pattern), or
because only one set of merged code clones was identified (shown with theESand
FTM patterns). Figure 3(a) shows the distribution ofUav for the EM, ES, FTM,
andRMMOpatterns. The distributions ofUmi, Uav, andUmx are different for the

Table 4.2: The number of sets of merged code clones, and the number of pairs of
merged code clones in parentheses from overall subject systems

Refactoring pattern EM ES FTM RMMO

# Instances 11 (12) 1 (15) 1 (6) 22 (455)
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RMMOpattern, as shown in Figure 3(b). In these figures, the vertical axis repre-
sents theusimvalue, which starts from 65%, because this is the minimum value
used herein to define a pair of merged code clones (see Section 4.3.2).

Figure 3(a) shows that the token similarities of pairs of merged code clones
refactored by theEM andRMMOpatterns were relatively low compared to those
of the ESandFTM patterns. This was believed to be caused by the fact that the
ESandFTM patterns merge pairs of code clones from subclasses into the same
superclass. On the other hand, theEM andRMMO patterns merge pairs of code
clones into the same new method within the same class or different classes.

It was discovered that theEM andRMMOpatterns were used to merge pairs of
code clones of various token similarities. However, these two patterns were mainly
used to merge pairs of relatively dissimilar code clones. TheEM pattern (median
of 73%) was used to merge pairs of code clones that were less similar than the pairs
refactored by theRMMOpattern (median of 88%). This implies that theEM pattern
was used to merge pairs of code clones with fewer similarities. Largely dissimilar
pairs of code clones refactored by theEM pattern were consistently observed across
all three software systems. Compared to theEM pattern, pairs of code clones
merged using theRMMO pattern shared more similarities with one another. (the
median ofUmi, Uav, andUmx was approximately 88%). Similar results were also
obtained inArgoUML andXerces-J.� �

TheEM andRMMOpatterns were mainly used to merge pairs of code clones
of various token similarities. Conversely, theESandFTM patterns were used
mainly to merge highly similar pairs of code clones.� �

How different are the lengths of token sequences between pairs of merged
code clones? (RQ3)

The results ofRQ3 were also analyzed via box-plots. It was observed that the
distribution ofLav was the same as inLmi, andLmx for the EM, ES, andFTM
patterns. As mentioned above, this was largely due to the fact that sets of merged
code clones primarily comprised a pair of code clones (EM pattern), or because
only one set of merged code clones was identified (ESandFTM patterns). Figure
4(a) shows the distribution ofLav for the EM, ES, FTM, andRMMO patterns.
Further, the distributions ofLmi, Lav, andLmx for theRMMOpattern, which can
be seen in Figure 4(b), also differed. In the figures, the vertical axis represents the
differences in the token lengths between pairs of merged code clones.

It was discovered that differences in the token lengths between pairs of merged
code clones varied more for theEM andRMMOpatterns than for theESandFTM
patterns. Even though the differences in token lengths between the merged code
clones refactored by theEM pattern varied, this pattern was mainly used to merge
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pairs with relatively small differences in token lengths (median of 15). Only small
differences in token lengths between pairs of merged code clones were found in
Apache AntandArgoUML. Conversely, the differences in token lengths varied rel-
atively widely inXerces-J. TheRMMOpattern was also mainly used to merge pairs
of code clones with similar differences in token lengths (median of 16). Similar
results were obtained fromArgoUML andXerces-J.� �

The RMMO andEM patterns were used to merge pairs of code clones with
tokens of varying lengths. In contrast, there was no difference in length in
the token sequences of pairs of code clones refactored by theES andFTM
patterns.� �

How far apart are pairs of code clones located before clone refactoring?
(RQ4)

In response toRQ4, Table 4.3 shows the three different class distance cate-
gories identified in instances of theRMMOpattern, along with the number of pairs
of code clones (in the# of pairs of code clonescolumn) and the percentage value
(in the Percentagecolumn) of that category. Table 4.3 shows that pairs of code
clones within the same Java package were the most prevalent, followed by pairs of
code clones in different packages and in the same class.� �

Pairs of code clones in the same Java package were the most prevalent, fol-
lowed by pairs in different packages and in the same class.� �

4.5 Suggestions for Clone Refactoring Tools

This section details the suggestions for developing clone refactoring tools based on
the answers to the RQs above. These suggestions are as follows:

• It is vital for tools to support theRMMOandEM patterns, as evidenced by
the answer to RQ1.

Table 4.3: The number of pairs of code clones and percentage share categorized by
class distance

Class distance # of pairs of code clones Percentage (%)

Same Class 13 3
Same Package 324 71
Different Packages 118 28
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• To support theRMMOpattern, the tools should suggest the following code
clones as candidates for clone refactoring.

– Pairs of code clones of various token similarities, as shown in the re-
sponse to RQ2,

– Pairs of code clones with various differences in token size, as shown in
the response to RQ3,

– Pairs of code clones that are distributed in the same Java package, as
shown in the response to RQ4.

• To support theEM pattern, the tools should suggest pairs of code clones with
various token similarities as candidates for clone refactoring, as shown in
the response to RQ2. Moreover, code clone candidates with different token
lengths should also be suggested on the basis of the results of RQ3.

These findings provide evidence of how (RQ1) and which code clones (RQ2,
RQ3, and RQ4) were refactored. These findings can be utilized when tools are
used to suggest candidates for clone refactoring for theRMMO or EM patterns.
Figure 4.8 shows an overview of a tool suggested for supporting theEM pattern
based the findings described herein. As shown in this figure, when a developer
extracts a code clone as a new method, this tool detects the developer’s action in
conducting clone refactoring in the background, and then suggests candidates for
clone refactoring to the developer. For this suggestion, the tool suggests candidates
according to the results of RQ2 and RQ3, code clones with various tokens and/or
different token lengths. On the other hand, to support theRMMOpattern, when a
developer extracts a code clone as a new method in a newly created class, the tool
detects the developer’s action in conducting clone refactoring in the background,
and then suggests candidates for clone refactoring. For this suggestion, the tool
suggests code clones with various token similarities and/or different token lengths
in the same Java package according to the results of RQ2, RQ3, and RQ4.

As a future challenge, a system for ranking code clones is needed for the ef-
ficient candidate suggestion. Further investigation into the OSS version archives
should be conducted with a high priority to discover the characteristics of code
clones. In addition, a study should be conducted onhow the suggested tool actively
detects developer’s action in conducting clone refactoring. This type of study is
necessary because the tool suggested in the previous paragraph needs to detect
the developer’s action in conducting clone refactoring. In the case of non-clone
refactoring, an active detection of the refactoring was already realized by Foster
et al [27]. Their tool, calledWitchDoctor, observes the developer’s programming
activities conducted in the background process to detect the beginning of the refac-
toring process on the fly. Once the beginning of the refactoring process is detected,

46



WitchDoctor suggests code transformations to complete the process. By extend-
ing WitchDoctor, the next step is to realize the active detection of clone refactor-
ing and thereby develop the tool suggested above. Moreover, after developing the
suggested tool, validation on whether the suggested tool accurately detects clone
refactoring should be conducted.

4.6 Threats to Validity

There are three limitations to the curren investigation.
The first limitation is that the investigation results might have been too depen-

dent on the output ofRef-Finder andusimbecause this investigation was based
significantly on the data from these two process. However, the outputs of both pro-
cesses were validated in the [75] and [67], respectively. Moreover, the results of
Ref-Finder were manually validated based on Bavota’s study [9] to improve the
accuracy of the investigation on clone refactoring. Therefore, the results of this
investigation are deemed reliable.

As the second limitation, because ten tokens were used as the minimal token
length parameter, and a 65%usimvalue was used to identify instances of clone
refactoring, real instances of clone refactoring might have been missed. However,
the results of this investigation are deemed reliable because these parameters were
validated in Mende’s study with the best compromise between the recall and pre-
cision [67]. Moreover, any small-scale instances that may have been missed are
thought te be trivial to software maintenances.

As the final limitation, because the case study described herein was conducted
on three particular OSS systems, an investigation into different systems could have
led to different results. However, the investigation results are deemed generalizable
and applicable to other OSS systems because they spanned 63 released versions
from the three separate systems.

4.7 Summary

In this chapter, an investigation into instances of clone refactoring identified in
three OSS systems was presented to provide insights into the development of clone
refactoring tools that could be more widely used in the industry. In this investiga-
tion, instances of refactoring were detected from consecutive program versions of
software systems usingRef-Finder. Next, instances of clone refactoring using an
undirected similarity were identified. To improve the accuracy of this investigation,
the instances of clone refactoring and the statistics of pairs of merged code clones
to answer the RQs above were manually validated.
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The investigation results show that it is vital for clone refactoring tools to sup-
port theRMMO andEM patterns. Such tools should also suggest pairs of code
clones with varying tokens in the same Java package as candidates for theRMMO
pattern. In addition, the suggested pairs of code clone candidates should have
different in token lengths. To support theEM pattern, pairs of code clones with
varying levels of similarities should be suggested as candidates for clone refactor-
ing.
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public final class XMLValidator ..... 
private static final int CHUNK_SHIFT = 8; // 2^8 = 256
private static final int CHUNK_SIZE = (1 << CHUNK_SHIFT);
private static final int CHUNK_MASK = CHUNK_SIZE - 1;
.....

public int getContentSpecHandle(int elementIndex) {
if (elementIndex < 0 || elementIndex >= fElementCount)

return -1;
int chunk = elementIndex >> CHUNK_SHIFT;
int index = elementIndex & CHUNK_MASK;
return fContentSpec[chunk][index];

}
.....
public int getContentSpecType(int elementIndex) {

if (elementIndex < 0 || elementIndex >= fElementCount)
return -1;

int chunk = elementIndex >> CHUNK_SHIFT;
int index = elementIndex & CHUNK_MASK;
return fContentSpecType[chunk][index];

}
.....

release 1.0.4

public final class XMLValidator .....
public int getContentSpecType(int elementIndex) {

int contentSpecType = -1;
if ( elementIndex > -1) {
if ( fGrammar.getElementDecl(elementIndex,fTempElementDecl) ) {

contentSpecType = fTempElementDecl.type;
}

}
return contentSpecType;

}
.....
public int getContentSpecHandle(int elementIndex) {

int contentSpecHandle = -1;
if ( elementIndex > -1) {
if ( fGrammar.getElementDecl(elementIndex,fTempElementDecl) ) {

contentSpecHandle = fTempElementDecl.contentSpecIndex;
}

}
return contentSpecHandle;

}
.....

public class Grammar .....
private static final int CHUNK_SHIFT = 8; // 2^8 = 256
private static final int CHUNK_SIZE = (1 << CHUNK_SHIFT);
private static final int CHUNK_MASK = CHUNK_SIZE - 1;  
.....
public boolean getElementDecl(int elementDeclIndex, XMLElementDecl elementDecl) {

if (elementDeclIndex < 0 || elementDeclIndex >= fElementDeclCount) {
return false;

}

int chunk = elementDeclIndex >> CHUNK_SHIFT;
int index = elementDeclIndex &  CHUNK_MASK;

.....

release  1.2.0

Figure 4.4: An example of clone refactoring using theEM pattern inApache Ant
between releases 1.6.2 and 1.6.3.
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public class DirectoryScanner ..... 
public void setIncludes(String[] includes) {
if (includes == null) {
this.includes = null;

} else {
this.includes = new String[includes.length];
for (int i = 0; i < includes.length; i++) {

String pattern;
pattern = includes[i].replace('/', File.separatorCha r).replace(

'¥¥', File.separatorChar);
if (pattern.endsWith(File.separator)) {

pattern += "**";
}
this.includes[i] = pattern;

}
}

}
.....
public void setExcludes(String[] excludes) {
if (excludes == null) {
this.excludes = null;

} else {
this.excludes = new String[excludes.length];
for (int i = 0; i < excludes.length; i++) {

String pattern;
pattern = excludes[i].replace('/', File.separatorCha r).replace(

'¥¥', File.separatorChar);
if (pattern.endsWith(File.separator)) {

pattern += "**";
}

this.excludes[i] = pattern;
}

}
.....

release 1.6.2

public class DirectoryScanner ..... 
public synchronized void setIncludes(String[] includes) {

if (includes == null) {
this.includes = null;

} else {
this.includes = new String[includes.length];
for (int i = 0; i < includes.length; i++) {
this.includes[i] = normalizePattern(includes[i]);

}
}

}
.....
public synchronized void setExcludes(String[] excludes) {

if (excludes == null) {
this.excludes = null;

} else {
this.excludes = new String[excludes.length];
for (int i = 0; i < excludes.length; i++) {
this.excludes[i] = normalizePattern(excludes[i]);

}
}

}
.....
private static String normalizePattern(String p) {

String pattern = p.replace('/', File.separatorChar)
.replace('¥¥', File.separatorChar);

if (pattern.endsWith(File.separator)) {
pattern += "**";

}
return pattern;

}
.....

release 1.6.3

Figure 4.5: An example of clone refactoring using theRMMOpattern inXerces-J
between releases 1.0.4 and 1.2.0
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Figure 4.6: Box plots ofUav for the EM, ES, FTM, and RMMO patterns (a), and
of Umi, Uav, andUmx for RMMO pattern (b)
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Figure 4.7: Bot plots ofLav for the EM, ES, FTM, and RMMO patterns (a), and
Lmi, Lav, andLmx for RMMO pattern (b)
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Figure 4.8: Overview of a tool that we suggest for supporting EM pattern based
the findings
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Chapter 5

Conclusion and Future Work

In this section, Section 5.1 first provides some concluding remarks regarding the
studies in this thesis and Section 5.2 then discusses possible areas of future work.

5.1 Conclusion

In this paper, two types of approaches were proposed to answer two research ques-
tions (i.e. RQ1: which type of normalization dose make code clones to detected
with high speed from large-scale software systems? and RQ2: which supports are
necessary for more widely used tools that support clone refactoring?), as intro-
duced in Section 1.1.

First, to answer RQ1, code clone detection approaches with a preprocessing of
the input source files using different degrees of normalizations were proposed and
presented. These approaches can be categorized into two types, an approach with
non-normalization and approaches with normalization. The former is the detection
of code clones based on identical files without normalization, whereas the latter
category is the detection of code clones based on identical files with different de-
grees of normalization, such as the removal of all lines containing only macros. All
of the proposed approaches are composed of the three following pipeline phases:

Preprosessing: During the preprocessing, equivalence class partitioning of the
input source files is conducted based on theMD5 hash values.

Clone Detection : Code clones are only detected from a set of files that are se-
lected from each equivalence class usingCCFinder, which is a token-based
code clone detection tool.

Post-processing: Here, all clone sets are generated by mapping the output of
CCFinder, the equivalence classes, and other information if necessary.
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In the case study, the proposed approaches and an approach that uses only
CCFinder were applied to three OSS systems. As a result, it was found that the
proposed approaches detect code clones faster compared to the approach that uses
only CCFinder. It was also discovered that the approach with non-normalization
is the fastest among the proposed approaches in many cases.

Second, to answer RQ2, instances of clone refactoring during the development
process of three OSS systems were investigated. Instances of refactoring were de-
tected from consecutive versions of the software systems usingRef-Finder, and
instances of clone refactoring using an undirected similarity was identified. Fur-
thermore, the instances of clone refactoring and the statistics of pairs of merged
code clones were manually validated to improve the accuracy of the investigation.
This investigation revealed that theRMMO pattern was the most frequently used
refactoring pattern observed, followed by theEM pattern. Therefore, it would be
vital for clone refactoring tools to support theRMMOandEM patterns. Such tools
should also suggest pairs of code clones with varying tokens in the same Java pack-
age as candidates for theRMMOpattern. In addition, the suggested pairs of code
clone candidates should have differences in token lengths. To support theEM pat-
tern, pairs of code clones with varying levels of similarities should be suggested as
candidates for clone refactoring.

5.2 Future Work

Based on the studies described in this thesis, there are several issues that require
further investigation.

Higher speed : For the approach presented in Chapter 3, this study will be ex-
tended to aim at achieving high-speed execution time. For this, a distributed
approach such asD-CCFinder is being considered. Moreover, the adapta-
tion of other code clone detection tools such asNiCad [80, 79] andDeckard
[47], as well as different hash functions such asCRC, may improve the
speed.

Tool development : For the investigation presented in Chapter 4, a tool that sup-
ports clone refactoring in accordance with results of the investigation will be
developed. This developed tool might be widely used for clone refactoring
because it is developed based on developers’ actual uses of clone refactoring.

Generality : For the both studies, additional OSS systems and industrial software
systems belonging to different domains and develop using different program-
ming languages will be investigated to achieve a generality for these studies.
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