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Abstract

In recent years, the adoption of open source software and its inclusion into
closed source projects greatly increased. This does not only include open source
libraries, but also code snippets copied and pasted from Stack Overflow. Aside
from the potential license violation, this code has been proven often outdated
or containing vulnerabilities that have long been patched in the original code.

While most clone detection tools are focused on detecting copied code in
source code, little work exists that can be applied to binary code or lower-than-
source code. This may be a problem in case the original source code is not
available or in case of huge codebases to analyze. In fact, existing binary clone
detectors are usually limited to pairwise analysis.

In this dissertation, we discuss the detection of cloned snippets in low-level
code. The dissertation is divided into two main parts: a first part highlighting
techniques to improve clone detection in source code by transforming code into
its low-level counterpart, and a second part focusing on scalable binary clone
detection.

The first part provides two di↵erent approaches to improve clone detection
by means of low-level code. In the first approach we take programs written in
the Rust language, a particular language with a compilation pipeline composed
by multiple steps, and we apply regular clone detection after performing some
compilation transformations. While this approach is specific to a particular
language, the second one is more generic and consist of implementing transfor-
mations similar to the one of a compiler in order o provide code normalization
and improve clone detection.

The second part of this dissertation is instead based exclusively on binary
code detection and is subdivided into two sub-parts. First, we discuss a novel
approach for detecting clones in a binary file in a scalable way. This novel
approach uses methods commonly found in decompilation and builds a repre-
sentation of functions that can be compared in linear time. We show, however,
that this method is highly sensitive of optimization options and, for this reason,
we close this second part of the dissertation with a study on optimization flags
detection using learning approaches.

Ultimately, we provide di↵erent methods for detecting clones in low-level
languages using scalable approaches: in particular, in binary code clone detec-
tion we show that it is possible to reach the same precision of existing learning
approaches while keeping the speed of a traditional one that is an order of
magnitude faster.
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Chapter 1

Introduction

1.1 Clone Detection

In recent years, copying and reusing portions of code has become a common
practice. This is often done by taking an existing snippet of code, and by
integrating it into an existing codebase while performing the necessary modifi-
cations [65]. However, aside from the potential license violation, this procedure
introduces Code Clones. Code Clones, as the name implies, are portions of
codes that exhibit some kind of similarities between them [82]. However, while
the introduction of code clones may or may not be intentional [54], it has been
proved that the presence of clones may introduce an additional maintenance
burden [50]. The main problem of clones is related to the correctness of soft-
ware, in a problem usually called inconsistent bug fix : if a fault is found in a
cloned portion of code and not fixed in all the cloned instances, the program
will still exhibit the incorrect behaviour [50, 80].

However, not every clone is equal. In fact, code clones can be classified
into four categories, showing the degree of similarity between the represented
code [82]. The first category, type-1, includes code that is identical, except for
white spaces and comments. The second category, type-2, contains clones that
are syntactically identical, except for variations in identifiers, literals, types,
whitespace, layout and comments. The third category, type-3 comprises clones
with further modifications such as changed, added or removed statements, in
addition to every change that can fit into the type-2 categorization. Finally,
type-4 clones, contains two fragments that performs the same operation but
with a completely di↵erent syntax.

1.2 Scalable Clone Detection in Source Code

Over the course of the years, several techniques for detecting the various type
of clones have been developed. These include mainly text-based [48,81], token-
based [51,91,94] and tree-based [8,47] approaches. In this dissertation, however,
we focus mainly on token-based approach, given their higher precision compared
to other type of approaches [91].

Token-based clone detectors work on the premise of transforming the input
source code into a sequence of tokens and then detecting the various clones over

1



2 CHAPTER 1. INTRODUCTION

this sequence rather than the original text. While this was originally done to
properly account for identifier renaming typical of type-2 clones [51], it has been
proved to scale reliably also for type-3 clones [91, 112].

The main problem of token-based approaches, however, is the scalability of
the approach for complex (type-3 and type-4) clone types. In fact, a traditional
token-based clone detection has to compare pairs of code snippets representing
potential clones. This has the downside of being an operation with complexity
of O(n2) as opposed to the O(n) that can be achieved using hashing techniques.
In this case, n represents the potential clone snippet, and could be either a code
block, a function or an entire file. While some scalable token-based techniques
exist, for example by using token-based hashing, these usually do not support
type-3 clones [43, 45]. Despite this problem being not particularly relevant in
small projects, while analyzing big codebases or determining the evolution of
clones, it may hamper the actual analysis. For this reason, Sajnani et al. de-
veloped SourcererCC [91], with a specific focus on scalability and the ability to
analyze type-3 clones using a token-based approach while being able to tackle
even huge codebases.

SourcererCC works by early rejecting potential clone pairs by using some
heuristics: in particular, using clone size and analyzing the amount of overlap-
ping code in a smaller portion of the potential clones, it is capable of greatly
filtering the amount of comparisons to be performed. While this approach is
still O(n2), the filtering performed reduces the problem size to allow tractability
even in huge codebases.

1.3 Code Normalization and Low-Level Code

While SourcererCC proved a high accuracy in detecting source code clones of
type-3, the detection of type-4 is still on its early stages, with most tools relying
on graph property matching [57] or machine learning [96]. To increase the
detection of not only type-4, but any kind of clone with substantially di↵erent
syntax, Ragkhitwetsagul et al. [76] noticed how, using a compiler increased the
detection rate and quality. This is due to the amount of transformations done
by the compiler over the original source code. In addition, further studies were
conducted by Caldeira et al. on Intermediate Representation (IR) [11], a type
of representation language-agnostic used internally by a compiler.

In this dissertation, and in particular in Part I, we investigate this normal-
ization and its e↵ects on improving code clone results. We use two studies,
reported in Chapter 2 and Chapter 3. Both these studies uses existing code
clone detector tools and retain their original scalability, providing scalable com-
piler transformations on top of that.

1.3.1 Code Normalization in existing compiler pipelines

The first study, reported in Chapter 2, investigates the code transformations
provided by an existing compiler pipeline, in particular the one of the Rust
language. The Rust language was chosen because its compilation pipeline is
composed of multiple compilation steps applied in succession. These steps are
used to check the language complex features with di↵erent code representations,
and progressively refines and normalize the code: these representations include
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normal source code, source code with expanded macros, High-level Intermediate
Representation (HIR), Typed High-level Intermediate Representation (THIR),
Mid-level Intermediate Representation (MIR), LLVM IR and, finally, binary
code. Having di↵erent representations readily available from the compiler, com-
ing from the same source, allows us to check for a possible increase in clone
quality due to code normalization without implementing the code normalization
by ourselves. Implementing these normalizations, instead, will be the subject of
Chapter 3.

In the study, we force the Rust compiler to emit IR, in particular HIR, and
then apply an existing Code Clone detection tool, namely CCFinderSW [94] on
the generated code. We analyze the reported clone in the IR version and the
original version, and conclude that, despite the increase in reported clones, this
type of detection su↵ers from some impracticalities. In particular, it is notably
hard to map the compiler IR back to the original source code.

1.3.2 Manually Implementing Code Normalization

Given the harder task of mapping the compiler IR back to the original source
code, due to the fact that compilation is a process that is not under our control,
we investigated the possibility of manually implementing these transformations
manually.

Chapter 3 presents our study and analysis of this idea. We implemented sev-
eral text transformations to e↵ectively reduce the syntactic sugar for the C and
Java language. Although not language agnostic, most of these transformations
are quite simple and can be easily ported to other languages. Moreover, the
transformations are applied only once to each source file, retaining the original
scalability of the Code Clone detector.

After applying the transformation, we run clone detection limiting to type-
2 clones. Our objective is to detect some type-3 and type-4 clones that were
converted to type-2 using our text normalization. The main di↵erence with
respect to using an existing type-3 or type-4 detector lies in the fact that type-2
clones are easier to refactor, sometimes an “extract-method” action is su�cient,
and with this analysis we can detect clones that are type-3 and type-4 before
our normalization, but can be easily converted into type-2 and refactored.

The results we obtained shows that it is actually possible to increase the
amount of detected clones by implementing the same transformation of a com-
piler, however, additional studies are needed to verify if the e↵ort required to
implement these transformations is worth the time necessary to implement and
maintain them.

1.4 Scalable Clone Detection in Binary Code

While in Part I we investigated how it is actually possible to increase the ac-
curacy and the amount of reported clones by transforming the source code into
low-level code, in Part II we analyze a scalable way of detecting code clones
directly in binary code.

Detecting clones in binary code would be of particular use in case of vul-
nerability detection and propagation: in particular, detecting the presence of
a vulnerable library inside an already compiled, and possibly already-shipped,
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executable. Not only this would help in cases where the source code is not avail-
able, but also when it is di�cult to detect which version of the source code was
associated with a particular binary. In these cases, binary clone detection could
be used to detect the presence of vulnerable snippets and their propagation (e.g.
through library linking) across a codebase.

However, despite the similarities between source and binary clone detection,
several technical problems arise when dealing with binary code, and these prob-
lems usually hampers the scalability of the solution. In particular, the compiler
transformation from source code into binary code, progressively removes infor-
mation not needed at runtime, and transforms a code easier to read for humans
into a type of code easier to execute for a machine. This involves the removal
of any sort of structure from the code, and the usage of jumps in the code, that
have been long associated with unmaintainable code and are no longer used in
humanly-written source code [19].

In addition to technical problems [4], detecting clones in binary files also
su↵ers from a taxonomy problem: unlike source code, binary code is not man-
ually written1 but only generated by a compiler. For this reason, there is no
real distinction between type-1 and type-2 clones, given the lack of identifier
naming, and using a similar taxonomy for register allocation would be useless
for all practical purposes. Moreover, even the type-1 is not clearly defined: two
portions from two di↵erent binary files may use the exact same instructions,
but have di↵erent jump o↵sets due to their positioning in the binary file. In
this case, it is not clear if the two code portions should be treated as identical
or not, and it may depend on the use case.

A starting point for a binary code clone detector is the transformation of the
binary code into a text form, usually using architecture-dependent instructions.
After that, while it may be tempting to use existing source-based approaches,
our study shows that these are suboptimal, and better results can be achieved
using ad-hoc methods.

The problem with ad-hoc methods, however, resides in their scalability:
while accurate tools exist [20, 21], these usually work only on pairs of executa-
bles and scale poorly. This problem may be particularly important in the use
case of vulnerability propagation in large-scale codebases, for example an entire
Windows system or the LLVM toolchain.

In this second Part of the dissertation, we present two studies for detecting
clones directly on binary code. The first study is reported in Chapter 4 and
presents the actual clone detector, while the second study, reported in Chapter 5
investigates if it is possible to detect the compiler and optimization levels used
in a given binary file.

1.4.1 Clone Detector

Despite several clone detector tools focused on binary code exist [20,21,68,89],
no tool can actually perform a scalable analysis on multiple binaries together.
Existing tools are either focused on interactive analysis [27], require long trainig
time [21] or have to deal with complex Control Flow Graph (CFG) analysis [24,
71]. In fact, in traditional approaches, analyzing a binary involves dealing with
complex graph matching, that requires exponential time algorithms [102].

1Although assembly code can be written by a human, the final result is usually assembled
by a compiler
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In Chapter 4, we present our solution to solve this problem with a novel
approach at a binary clone detector. In particular, instead of performing the
analysis on the CFG of each function directly, we detect the various high-level
structures and simplify CFG nodes, e↵ectively transforming it into a rooted
tree (an example of this transformation can be seen in Chapter 4 on Figure 4.1).
Then, a Locality-Sensitive Hashing (LSH) function is used on the resulting trees
and subtrees, reporting potential clones in linear time on the number of total
subtrees in the analyzed executables. To reduce the number of false positives
due to functions with similar structure but di↵erent semantics, we also use cosine
similarity and rejects functions that have similar structure but with opcodes too
dissimilar.

We show that this approach has not only the same accuracy of existing
learning approaches, but it is three orders of magnitude faster, and can work
with cross-architectural binaries.

1.4.2 Compiler and Optimizations Detection

While the binary clone detector presented in Chapter 4 has an accuracy compa-
rable with state-of-the-art approaches, it still su↵ers from some problem origi-
nally highlighted by Sæbjørnsen et al.: if the compiler or the optimization flags
used in the analyzed binaries are di↵erent, results are unreliable [89]. This is
not a problem of the approach per se, but it stems from the fact that di↵erent
compilers translate di↵erent source patterns in di↵erent ways. While the results
in comparing binaries from di↵erent optimization levels and compilers are not
dramatically inaccurate, there is a noticeable drop in accuracy.

For this reason, in Chapter 5, we present a study aimed at detecting the
compiler and the optimization level of a given executable. The resulting ap-
proach is supposed to be used in the input files for any binary clone detector:
if the binaries do not agree, it is likely that results may be inaccurate.

The optimization detector itself uses a machine learning approach: manually
studying and learning the di↵erent optimization patterns for each compiler and
each optimization level would be a task on the limit of feasibility. In particular,
we trained two models, a faster and less accurate CNN and a slower and mode
accurate LSTM. Both models have an accuracy between than 92% and 98%,
and are in line with the time complexity of the clone detector presented in
Chapter 4, thus retaining its scalability.

1.5 Outline

The rest of the dissertation is outlined as follows: in Part I we present approaches
for increasing source code clone detection rates by means of using low-level code.
We present Chapter 2 showing the results when applying existing compilation
pipelines and performing clone detection with a state-of-the-art detector on IR.
We then improve the technique in Chapter 3, by providing manual normaliza-
tions instead of using existing IR. In Part II instead, we focus solely on scalable
binary clone detection: we present a detector in Chapter 4 and shows that not
only has an accuracy compared to existing state-of-the-art, but it is also order
of magnitudes faster. We then present some techniques to detect the compiler
and optimization level in Chapter 5, that can be used to ensures the binary
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analysis is consistent between multiple executables. Finally, in Chapter 6 we
summarize the dissertation and describe some future works.



Part I

Improving Clone Detection
with Low-Level Code
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Chapter 2

Clone Detection in IR

2.1 Introduction

The practice of copying and pasting source code is frequently done by pro-
grammers, as this allows them to reuse the same source code multiple times.
This leads to the creation of Code Clones: identical fragments of code scattered
amongst a codebase. As harmless as these clones may seem, they instead present
a burden for code maintainability and may become a huge technical debt. In
fact, if a bug is found in a cloned fragment, it must be fixed in every instance
of the clone, but this requires first the identification of every potential clone.

To alleviate this problem, during the years several code clone detection tools
have been presented. These tools employ a variegate set of detection techniques:
from token-based approaches of the CCFinder family [51] and NiCad [81], to the
tree-based approach of Deckard [47], passing from graph based approaches [38]
to the recent techniques employing deep learning [90]. As the detection per-
formance in type-1 clones (i.e. identical except for white spaces and layout)
and type-2 clones (i.e. identical except for identifiers, literals and white spaces)
reached almost perfection, in recent years e↵orts shifted toward the detection
of harder clones: type-3 clones (i.e. identical up to a certain percentage) and
type-4 clones (i.e. di↵erent code but with the same functionality).

In order to better detect this type of clones, sometimes also the binary
code has been analyzed, in particular by Ragkhitwetsagul et al. that applied a
compilation and decompilation step to normalize di↵erences between pieces of
code with similar functionality [76]. Similar studies analyzed the possibility of
applying normalization techniques directly to source code [72] and using LLVM
Intermediate Representation to detect clones [11].

However, all these tools targets the same two languages: C/C++ and Java.
Although some detectors provide a limited amount of additional languages, the
study and the major focus is usually the Java language. This is done mainly
due to the presence of a standardized clone benchmark, BigCloneBench [100]
that contains clones in Java language only.

In this chapter, we evaluate the detection of clones in a modern and new
language: Rust. We want to evaluate how the detection of clones is impacted
upon transforming the original source code into a lower lever IR by means of
a compiler. This particular choice of language is motivated by two main rea-

9
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sons. Unlike other programming languages, Rust guarantees the memory-safety,
thread-safety and null-safety of its programs at the price of increased compilers
checks and language restrictions. In order to validate statically these safety
guarantees, several transformations are done during compilation. In this study,
we evaluate the refactorability of each clone with respect to the additional lan-
guage restrictions. The second reason involves the Rust’s compilation pipeline:
we compare the clones detected both at source code level and at a lower interme-
diate representation, and checks whether the detected clones’ quality increases
or not.

The rest of the chapter is structured as follows: Section 2.2 opens the chapter
by introducing related projects in the field of code clone detection. Section 2.3
explain some details about the Rust programming language in order to ease the
understanding of this chapter. After that, Section 2.4 explains our approach
in performing the current study and Section 2.5 shows our research questions
and the relative experimental results. Section 2.6 discuss the limitations of our
approach. Finally, Section 2.7 closes the chapter.

2.2 Related Work

Several code clone detectors have been developed by the research community
in the recent years. These spans di↵erent types of approaches. Some detectors
converts the source code into a stream of tokens and perform analysis on these
tokens. These detectors comprises NiCad [81], CCFinder [51], CP-Miner [61],
iClones [32], and many others [82]. More recently, additional tools have been
developed to include more variety of languages, these includes SourcererCC [91],
CCFinderSW [94] and MSCCD [112]. Several recent techniques also involves
clone detector that does not operate on tokens or the Abstract Syntax Tree
(AST): for example Amme et al. presented a clone detector for the Java language
analysing the code dominator trees [3], while Saini et al. improved SourcererCC
with deep learning capabilities in their Oreo clone detector [90].

Although a small amount of studies targeted specifically intermediate code
generated by compilers [11] [72] [76], most studies targeting low level code focus
on Java Bytecode. Recent works were performed by Yu et al. [109] that analysed
fragments extracted from the bytecode and by Keivanloo et al. that used code
fingerprint on the Java Bytecode [53].

Going even lower, some researcher even tried to find code clones directly
on the binary layer. The most famous work is surely the one of Sæbjørnsen et
al. [89] that analysed the similarity in assembly instructions. However, analy-
sis at binary level is usually performed in order to retrieve information about
software license violation, like in the work of Hemel et al. [37].

2.3 Background

Before describing the approach we adopted to run our experiments, in this
section we are going to explain the unique characteristics of the Rust language.
The Rust language is designed around safety, in fact it is guaranteed by the
compiler the prevention of data races, memory safety and type safety [86].

In order to satisfy these guarantees, the compiler relies on the ownership
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system [88]. This, in turn, contribute to two major di↵erences from other lan-
guages:

Lifetimes
When a reference to an owned variable is passed around the code, the
compiler must ensure that the owned variable remains valid for the entire
life the reference. This allows the compiler to safely drop a variable im-
mediately as it goes out of scope without needing a garbage collector or a
reference counter. Lifetimes must be explicitly assigned by the program-
mer if the compiler can not infer them.

Mutability
Data races occurs when at least a pointer writes the data while another
one can read the data, without any synchronization feature. In order to
avoid this problem, Rust forbids the same reference to be hold mutably
more than once, or to be hold mutably and immutably at the same time.
The mutability for each variable must be declared by the programmer,
otherwise the variable is considered immutable after the first assignment.

These two contraints may require additional keywords (e.g. mut, ’static, ...)
that might prevent the refactorability of otherwise identical snippets of code.

Moreover, in order to enforce these two constraints, the compiler employs a
series of di↵erent IRs before emitting the final binary code. In order to under-
stand this chapter we are interested in particular in two types of IR: expanded
code and HIR.

2.3.1 Macro expansion

The Rust programming language, unlike C or C++ does not have a preprocessor.
However, the compiler still provides a macro engine in order to ensure better
maintainability. In particular, several “common” implementation of methods
(e.g. clone, cmp, default) can be created with builtin macros. These macros
are then expanded into their respective code during the first phase of compila-
tion [84].

Consider as an example the code in Figure 2.1. We can see that, despite
the struct A and B having two completely di↵erent types, the implementation
of the clone method performed by the macro #[derive(Clone)] is absolutely
identical. In order to perform code clone detection in Intermediate Code is thus
important to account for duplicated code generated by these kind of macros.

2.3.2 HIR and THIR

After creating the AST, the Rust compiler, converts this tree into a desugared
version called High-level Intermediate Representation (HIR) [83]. The HIR
di↵ers from the normal AST for the following reasons:

• parenthesis are removed, as they are not necessary anymore with the AST
structure.

• The if let syntax is normalized into the match syntax.

• The for loop syntax is normalized into the loop syntax.
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• The while loop syntax is normalized into the loop syntax.

• Additional constraints are relaxed and converted into generics.

After these changes we expect the HIR to contains di↵erent clones than the
original source due to normalizations performed by the compiler. It is the
scope of this chapter to understand the evolution of original clones after the
transformations in the HIR.

The HIR is then used to infer data types by the compiler, and transformed
into THIR [87]. However, THIR does not add useful information for clone
detection and as such we limit our study at the HIR level.

2.3.3 MIR and IR

Although not used in our study, the step after THIR is the MIR [85]. The MIR
code is more similar to a CFG rather than the original source code and is used
mainly to checks the constraints of the ownership system [88]. If the ownership
constraints are satisfied, the code can be lowered once again into a Codegen IR
and the binary code finally generated. We plan to investigate the e↵ects of MIR
in code evolution as future works, as explained in Section 2.6.

2.4 Approach

An overview of the study is shown in Figure 2.2.
Firstly, for each case study, we gather each clone pair with the use of a Code

Clone detector. Then, the original code is run through the Rust compiler and
instructed to emit the HIR. At this point, we run the same code clone detector
and collect the clone pairs for the HIR code. We then manually analyze each
clone pair for every project in both the original code and HIR code, and report
if the clone pair is really a clone or a false positive and compare it with the
same clone in the HIR code. Note that we limit the analysis to type-1 and
type-2 clones, given that most type-3 and type-4 detectors target the C and
Java language only.

2.4.1 Case Studies

We select 15 popular (more than 2M downloads) and decently sized (more than
2K Line of Code) Rust projects as our case study. These projects are listed in
Table 2.1 along with the amount of Line of Code and their popularity. All these
projects are publicly available in the Rust Package Registry1. The amount of
Line of Code are determined by the tool cloc2 and excludes comments and
blank lines.

The scope of these project is greatly diverse: it ranges from byte manipu-
lation (bytemuck and bytes), to data structures (generic-array, smallvec, hash-
brown), including async computation (crossbeam-channel3 and dashmap).

1https://crates.io
2https://github.com/AlDanial/cloc
3crossbeam-channel is part of the crossbeam package

https://crates.io
https://github.com/AlDanial/cloc
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Table 2.1: Case studies evaluated, with version, number of lines of code exclud-
ing comments and blanks, and number of downloads.

Software Version SLOC # of Downl. (106)

slab 0.4.6 1311 54
smallvec 1.8.0 2204 78
generic-array 0.14.5 2595 65
num-rational 0.4.1 3064 25
dashmap 5.3.4 2866 10
bytemuck 1.9.1 3026 8
bytes 1.1.0 4601 69
cgmath 0.18.0 8878 2
bstr 0.2.17 6227 26
hashbrown 0.12.1 10104 56
crossbeam-channel 0.8.1 15652 13
petgraph 0.6.2 20308 23
bitvec 1.0.0 26996 13
ndarray 0.15.4 29281 3

2.4.2 Compiler and Code Clone Detector

In our study we used an existing compiler to generate the HIR code and an exist-
ing Code Clone Detector to find the clone pairs. The compiler used to generate
the HIR code is rustc, the compiler provided by the Rust project itself. This
compiler enables emitting all the intermediate code such as HIR and MIR using
the -Z unpretty flag. In particular, we used the option -Z unpretty=expanded

to check the macro-expansion result, and -Z unpretty=hir to emit the HIR
code. The compiler version we used is the 1.60.

Concerning the Code Clone detector, our options are pretty limited. Famous
detectors like CCFinderX [51] and NiCad [81] do not support Rust. The modern
SourcererCC tool [91], although not o�cially supporting Rust, can be easily
extended, while an even newer tool called MSCCD [112] has builtin support.
These two tools can support up to type-3 clones. However they greatly lack
in the clone reporting capabilities. For this reason, in this analysis we used
the CCFinderSW tool [94] that, despite supporting only up to type-2 clones,
provides a more e�cient reporting tool, allowing us to manually investigate
all the clones in the 15 projects. The tool was run with a parameter t, the
minimum number of tokens requires to signal a clone, equal to 65. This value
is more conservative than the default one of the clone detector (90) and was
chosen in order to detect even small functions composed by a couple of lines.

Note that it is not the scope of this chapter to compare the di↵erence be-
tween the various tools, rather than to analyze the code evolution in the Rust
Intermediate Representation.

2.4.3 Filtering

As explained in Section 2.3.1, before generating the HIR, the compiler expands
macros. These macros are designed to avoid clones in source code for repetitive
tasks (i.e. implementing the clone method on a struct). However, given that
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the expansion is performed before the HIR generation, these macros will result
in a lot of false positives: the macro implementation can be found multiple times
in the HIR but only once in the original source. In Figure 2.2 we can note a
step called “Filtering” that refers exactly to this step: cleaning up the HIR code
from obvious macro expansion.

The filtering step is actually performed in two di↵erent ways depending on
the type of macro targeted. In case of #[derive(...)] macros, the one ex-
plained in Section 2.3.1, the expanded method will have the statement
#[automatically derived] prepended to it. This can be seen also in Fig-
ure 2.1 in the expanded code. The result of these macros can be easily removed
by checking the AST, emitted by rustc, and by stripping away the entire block
of code following the #[automatically derived] keyword.

The second type of macros are the one defined by the macro rules! syntax.
The expansion of these macros is usually simpler than the one performed with
the #[derive(...)] attribute, as they have a fixed set of parameters. We
implemented a filter for the most common ones provided by the Rust language
(e.g. vec!, write!, println!...) by using only regular expressions.

In both cases, however, our filter does not cover custom macros defined
per-crate.

2.5 Evaluation

In order to determine the clone evolution in the Rust Intermediate Representa-
tion, we want to answer the following three Research Questions:

• RQ1: type. What type of clones can be usually found in a Rust project?
Can the clones be easily refactored?
RQtype is a study on the type of clones that can be found in the Rust
ecosystem. Rust is fundamentally di↵erent from other languages, as ex-
plained in Section 2.3, given its stricter compiler and limited usage of
variables. In this research question we want to investigate if these di↵er-
ences implies additional clones that can not be refactored as one would do
in a canonical language, without violating Rust’s constraints of mutability
and lifetimes.

• RQ2: agreement. How di↵erent are the clones between original code and
HIR? What type of clones are detected only by one method?
RQagreement is meant to investigate the usefulness of the HIR representa-
tion in detecting clones. To answer this question we match all the clones
reported in the original source code and all the clones reported in the HIR
code and check for di↵erences. We then report the principal causes of
divergences between clones in the original code and clones in HIR code.

• RQ3: accuracy. How accurate is the clones detection in both original code
and HIR? How many false positives are generated by the code? RQaccuracy

is meant to investigate the accuracy of the clone detection in both original
code and HIR code. This means reporting the amount of actual code
clones and false positive code clones for each of the two code categories.

We ran this analysis on a Mac mini with M1 processor and 16GB of RAM,
running macOS 12.3.1 and manually analyzed every single clone reported using
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the Gemini tool provided with CCFinderSW.

2.5.1 RQ1: type

To answer RQ1 we run the Code Clone detector on every project listed in
Table 2.1 and obtain the results shown in Table 2.2.

Table 2.2: Number of clones detected for each project in the original source
code.

Software #Clones

slab 11
smallvec 16
generic-array N.A.
num-rational 14
dashmap 18
bytemuck 14
bytes 43
cgmath 328
bstr 179
hashbrown 159
crossbeam-channel 807
petgraph N.A.
bitvec 561
ndarray 396

We then manually check these 3033 clone and categorize them. Among
them, not a single clone is due to a limitation of Rust (e.g. the necessity of
putting a variable mut instead of immutable). This is not surprising, given that
declaring di↵erent lifetimes or di↵erent mutability requires additional keywords,
that go beyond the type-2 clones category. Note that the projects generic-array
and petgraph do not report the number of clones: in fact for these projects
CCFinderSW failed to generate a report, despite running for more than 24
hours. Moreover, these two projects are considerably smaller than others in our
case study, and we can only assume the parser failed to correctly tokenize the
codebase.

The highest amount of clones involves the manual implementation of “com-
mon” method such as len or fmt (debug print) that are copy pasted for each
structure. This category is so ubiquitous that every project contains at least
a clone of this type. In some cases, the definition varies only in the type of
generics targeted, with the implementation copy-pasted several time. All these
clones can be easily replaced by a macro, increasing the maintainability of the
code.

Another common category, present in at least half the projects, is the vari-
ation of a method’s parameters. Most methods can require a di↵erent number
of parameters and most projects just copy-paste the method implementation.
This problem is again, easily refactorable by having a generic method accepting
all the possible parameters and specialized methods that calls the former after
setting default values for the parameters.
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Finally, a surprisingly high amount of clones can be found marked as tests
or benchmarks. Rust allows mixing test code with implementation code by
prepending the test function with a #[test] statement, and in our evaluation
these tests mixed with implementation code have not been filtered out. A
notable example of this is the crossbeam-channel, where a greater majority of
clones were reported amongst these tests mixed with the implementation code.

We can conclude RQ1 with the following statement:

No Rust-specific features can be found in the original type-2 clones detected.
Most clones involve manual implementation of common methods and traits or
implementation of the same methods with variations in the number of param-
eters.

2.5.2 RQ2: agreement

After determining the type of clones that can be found in the original Rust
projects, we perform the same clone analysis on the HIR code. Table 2.3 reports
the variation in SLOC for each project after running the macro expansion step
and the HIR generation step. We can note how, in every project, the number

Table 2.3: Lines of code in the original source (SLOCorig), after macro expansion
(SLOCexp), and after HIR generation (SLOCHIR).

Software SLOCorig SLOCexp SLOCHIR

slab 1311 671 838
smallvec 2204 1253 1783
generic-array 2595 2261 2970
num-rational 3064 2690 3680
dashmap 2866 1752 2189
bytemuck 3026 1206 1482
bytes 4601 3069 3837
cgmath 8878 17727 23843
bstr 6227 4453 5826
hashbrown 10104 4032 5043
crossbeam-channel 15652 4699 5480
petgraph 20308 15371 19348
bitvec 26996 15233 18772
ndarray 29281 19947 25886

of e↵ective lines of code is decreased compared to the original project. This is
due to the fact that, in order to obtain the macro expanded version or the HIR
version, the compiler needs to be invoked. After invocation, all the boilerplate
code is removed, the imports resolved and the eventual conditional compilations
(e.g. tests) removed. This e↵ectively reduces the amount of non-interesting
benchmarks and tests clones reported in Table 2.2 and cited in Section 2.5.1.

After running the clone detection and collecting the results we obtain the
number of clones show in Table 2.4, along with the results of the original code
detection results.
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Table 2.4: Number of clones detected for each project in the original and HIR
code.

Software #Clones (original) #Clones (HIR)

slab 12 53
smallvec 14 24
generic-array N.A. 18
num-rational 16 215
dashmap 14 35
bytemuck 18 55
bytes 37 287
cgmath 328 165834
bstr 179 311
hashbrown 159 151
crossbeam-channel 807 351
petgraph N.A. 2991
bitvec 561 3909
ndarray 396 30669

The most impactful result we can notice is the immense increase in the
number of clones for certain projects, in particular cgmath and ndarray. The
gargantuan amount of clones is manually intractable, but we ensured to analyse
at least a clone for each clone class reported by the detector. The reason of this
immense increase in clones is the high amount of procedural code involved in
these two projects. cgmath, a linear algebra library, requires the implementation
of basic mathematical operations for di↵erent vectors of di↵erent size. This is
done in the project by using macros that were not intercepted by our filtering
process. This is evident also by the distribution of clones, as shown in Figure 2.3
and Figure 2.4.

We can see how most of the clones are clustered in big areas. Figure 2.3 shows
clearly repeated structures in the clones. Upon further inspection those cluster
of clones are the implementations of identical mathematical operations for dif-
ferent dimensionality of linear algebra tools (e.g. Vector2, Vector3, Matrix3,
Matrix4, ...), accepting di↵erent generic arguments. A similar reason can be
given to the ndarray project, represented in Figure 2.4. Also in this case, we
can note a big concentration of clones clustered together, due to the usage of
procedural macros.

On the other side of the spectrum, instead, we can see how the clones for
crossbeam-channel have been decimated, going from 807 to a meager 351. This
result, however, is uninteresting, as we already discussed in Section 2.5.1 how
these clones were mainly due to test code mixed with implementation code.
After generating the HIR code, these tests are evicted by the compiler, and
thus all the relative clones are not reported.

Smaller projects, on the other hand, turned out to be more interesting: on
the smallvec project, for example, every additional clone is due to normalization
into the match statement. However, these clones detected only in the HIR are
usually present in a small amount.

We can summarize RQ2 as follow:
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For big projects, highly dependent on procedural macro, analysing the HIR
is detrimental as most of the clones are the result of macro invocation. In
projects with less macro usage, however, HIR clones can highlights interesting
similarities between methods due to code normalization.

2.5.3 RQ3: accuracy

In the last question, we want to investigate the accuracy of the clone detection
system and the usefulness of the HIR code for clone detection. After thoroughly
analysing all the original source code clones and most of the HIR clones, we
can assess that the type-2 clones reported by CCFinderSW were all genuine.
However, this does not mean they are useful.

In fact, unlike the original clones, the HIR ones require a more careful de-
tection threshold in order to provide useful insights. Consider for example the
statement shown in Figure 2.5. The original code, line 905 in the file src/lib.rs
from smallvec, is a one line invocation of a single function. However, when ex-
panded, its length increases considerably, surpassing the threshold and being
detected as a clone. We determined that, despite all clones being true positives,
most of the HIR clones fall in this class: true positive but useless for refactoring
purposes. Furthermore, only a handful of clones, usually a single digit number,
can be e�ciently refactored after being detected only in HIR code. In order to
solve this problem, a di↵erent threshold must be used for HIR clones, given that
most of the changed code in HIR increases considerably in size. This happens
despite the HIR code having an overall less amount of line of code, as shown in
Table 2.3.

We can thus conclude RQ3 as follow:

Despite the accuracy of the clone detection being 100%, most of the HIR
clones are unusable due to the fact that the original code was already simple
enough. Additional care must be taken in order to set a higher threshold for
HIR clones.

2.6 Threats to validity and Future Works

In this study we used 15 projects of diverse size and scope but this is only
a small fraction of the ecosystem and may diverge substantially from the real
distribution of clones in the Rust language. We assumed the correctness of the
rustc compiler in emitting the HIR code and the correctness of the CCFinderSW
code clone detector in detecting the clones for the Rust language, however, if
one or both these fact do not hold, the entire analysis may not be valid.

Moreover, we focused and drew conclusion based only on type-2 clones, where
most of the Rust-specific features will likely require clones with minor di↵erence
in the used reserved words (i.e. type-3 clones). For this reason we plan to
conduct further studies on the ecosystem focusing on type-3 clones and the
transformations introduced by further lowering the code. This additional low-
ering targets the MIR that is more similar to a PDG style analysis [38] rather
than a token based clone detector.
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Finally, we did not have a comprehensive database of clones like in the
BigCloneBench project [100], for this reason we can’t now the real number of
true positive and false negative clones present in our case studies. We can only
count the number of false positives based on the performed manual evaluation.

2.7 Conclusion

In this chapter we investigated the code clone detection in a language di↵erent
from the commonly targeted C or Java. We analyzed 15 projects and all their
reported type-2 clones manually and determined the common causes of clones
in the Rust language. We then compiled these clones, emitted their High-level
Intermediate Representation (HIR), and ran again the code clone detection over
this representation. Finally, we compared the original code and the Intermediate
Representation (IR).

We determined that, although the code clone detector being capable of rec-
ognizing genuine clones in both the original code and the HIR code, only a small
amount of code from the HIR code can actually be used. Most of them in fact
are simple enough even in the original code and most of the complexity is added
by the HIR generation step. For this reason the HIR code should be used as an
extension of the original code, rather than completely replacing it.
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#[derive(Clone)]
struct A {

inner_string: String

}

#[derive(Clone)]
struct B {

inner_number: u32

}

(a) Original Rust code

struct A {

inner_string: String,

}

#[automatically_derived]
#[allow(unused_qualifications)]
impl ::core::clone::Clone for A {

#[inline]
fn clone(&self) -> A {

match *self {

Self { inner_string: ref __self_0_0 } => A {

inner_string:::core::clone::Clone::clone(&(*__self_0_0)),

},

}}}

struct B {

inner_number: u32,

}

#[automatically_derived]
#[allow(unused_qualifications)]
impl ::core::clone::Clone for B {

#[inline]
fn clone(&self) -> B {

match *self {

Self { inner_number: ref __self_0_0 } => B {

inner_number:::core::clone::Clone::clone(&(*__self_0_0)),

},

}}}

(b) Rust code after macro expan-

sion

Figure 2.1: Automatic implementation of the clone method by the compiler,
via a procedural macro.
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Figure 2.2: Overview of the study.

Figure 2.3: Clone scatterplot for cgmath HIR code.
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Figure 2.4: Clone scatterplot for ndarray HIR code.

let layout = layout_array::<A::Item>(new_cap)?;

(a) Original Rust code

let layout =

match #[lang = "branch"] (layout_array::<A::Item>(new_cap))
{

#[lang = "Break"] { 0: residual } =>

#[allow(unreachable_code)]
return #[lang = "from_residual"] (residual),

#[lang = "Continue"] { 0: val } =>

#[allow(unreachable_code)]
val,

};

(b) Rust code after macro expansion

Figure 2.5: Expansion of a simple statement into a more complex one triggering
unrefactorable clones. This example is taken from the smallvec project, file
src/lib.rs.



Chapter 3

Transforming Source Code

3.1 Introduction

Refactoring is the process of changing the code structure without changing its
behavior. One of the most widely performed refactoring activity is the Extract
Method, that simplifies methods by moving existing portions of code into a new
method that can be reused [29]. This allows a developer to resolve a detected
code clone by extracting it into a method and reusing it di↵erent times. For this
reason, code clone detectors invest an important role in this scenario, given their
ability to quickly identify a code portion that may be a refactoring candidate.

However, not always the output of a code clone detector can be used. In
fact, a code clone detector usually categorize clones into four categories: type-
1 which are portions of code completely identical, type-2 which are portions
identical except for the variable naming, type-3 almost identical except for a
few statements and type-4 which are di↵erent portions of code but with the
same behavior [82]. Considering these categories, only the type-1 and type-2
can be easily and, almost automatically, refactored. Instead, type-3 clones need
to be manually checked and require an e↵ort by the programmer that needs to
check if the extra statements can be safely removed or not. This is true also
for type-4 clones that require even more work by the programmer, in addition
to being extremely di�cult to detect [82]. Our tool aims at normalizing some
features provided by the programming language without changing the semantic,
so a clone that would normally be categorized as a type-3 or type-4 can be
categorized as type-2 and thus easily refactored. As an example, Figure 3.1
shows a snippet taken from the class XYBlockRenderer.java

1 of JFreeChart:
we can note the missing else keyword on the transformed version, that has
been removed for consistency while retaining the same semantic.

This study follows the work of Ragkhitwetsagul and Krinke that showed
how compiling and decompiling a source file can greatly increase the amount
of detected clones, given that the compilation acts as a sort of “normalization
step” [76]. However, the compilation/decompilation routine is not always appli-
cable and can introduce errors in languages like C or could lead to false positives
also in the Java language, as the aforementioned authors already discovered (i.e.
by replicating some methods of the parent class of an inner class). To solve the

1org/jfree/chart/renderer/xy/XYBlockRenderer.java

23
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(a) Original Code

(b) Transformed Code

Figure 3.1: Example of transformation taken from JFreeChart.

problem we propose Blanker, that aims at replacing this compilation/decompi-
lation routine with a plain code transformation. We replicated the setup and
analyzed the various discoveries of Ragkhitwetsagul et al., then we manually
implemented the transformations performed by the compilation step. Despite
working with Java, in order to replicate the original study, we also ensured that
our tool can perform the transformation on C source files.

Throughout the chapter we will refer to easy-to-refactor clones. With this
name we intend type-2 clones that can be solved by a simple Extract Method
process, instead of requiring an in-depth analysis of the extra statements like
the type-3 clones.

To evaluate Blanker we replicated their exact same scenario by using the
same three open source projects, namely JUnit, JFreeChart and Apache Tomcat,
and NiCad [81] as code clone detector. We demonstrated that despite our tool
missing a small amount of clones, compared to the compilation/decompilation
approach, it has virtually no false positives and provides the added flexibility
of being applicable to languages where the decompilation step may introduce
errors.

In the rest of the chapter, Section 3.2 presents related state-of-the-art works.
Section 3.3 shows our approach at implementing Blanker along with the engi-
neering aspects, and Section 3.4 describes the evaluation of the tool. Section 3.5
closes the chapter.

3.2 Related Works

Clone detection is an active area in Software Engineering and several approaches
have been proposed, ranging from token-based techniques such as NiCad [81],
SourcererCC [91] and CCFinder [51] to structure analysis tools such as Deckard [47].

Multiple studies have been conducted on the compiled version of a software:
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Selim et al. worked with an Intermediate Representation of Java (Jimple) by
adapting a token based clone detector [93], Kononenko et al. used another adap-
tation to work at bytecode level [56], Davis and Godfrey analized the compiled
assembly of a program using string matching [17].

Finally, Ragkhitwetsagul and Krinke used the compilation to achieve nor-
malization and decompilation to avoid adapting existing clone detectors to work
at a lower level [76].

3.3 Approach

Blanker NiCad

Blanker

Original
Source

parse

remap

categorize rewrite Transformed
Source detect

Clone
Report

Figure 3.2: Overall structure of Blanker.

Blanker follows a linear workflow depicted in Figure 3.2 and composed by
the following phases:

Parse: The original source file is parsed and the position of every semantic
structure is recorded.

Categorize: The parsing result is analyzed in order to find possible refactoring
candidates.

Rewrite The possible normalizations highlighted in the previous step are ap-
plied to a new file.

Detect: The code clone detector is applied to the rewritten file.

Remap: Possible discrepancies between the transformed file and the original
file are addressed in this step.

The following subsections explains every component in detail. However, in order
to better understand the following phases, it is worth precising that we built
Blanker upon the results of Ragkhitwetsagul et al. [76]. In their previous results
they showed that most of the normalizations performed by the compilation/de-
compilation process are applied to if-else statements, so, naturally, throughout
our entire analysis, we focused greatly on those structures.

3.3.1 Parse

In order to transform a source code file, the first step requires identifying the
semantic structures composing it. We built our tool aiming at negligible speed,
so a single-pass token parser using flex 2 as lexer and bison3 as parser was built.

2https://github.com/westes/flex
3https://www.gnu.org/software/bison/
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The great challenge imposed by this phase was the creation of a grammar ex-
pressive enough to recognize the required structures, namely if and else blocks,
without having to implement the entire java grammar. In order to solve this
problem we chose each semicolon as a statement representation and recorded
the position of if, else and return keywords only. Additionally we used curly
braces to represent list of statements and let the lexer consume the condition
following every if keyword. This grammar assumes the input file being a valid
java file, a reasonable assumption for our tool, and works fine without modifi-
cations also for the C language, while avoiding having to deal with things such
as parentheses, assignments and operators.

3.3.2 Categorize

This phase is used to analyze the parsed data and discover actual structures
that could be refactored. After analyzing the results of Ragkhitwetsagul et
al. and replicating their experiments we determined that the most prominent
normalizations performed by the compiler/decompiler combo were:

1. removal of else keyword after an if block terminating with a return. An
example of this can be seen in Figure 3.3 where the else keyword can be
omitted and the same logic is kept. It is worth noting that this particular
check is also part of LLVM’s coding standard recommendations under the
name of readability-else-after-return

i f ( r == nu l l ) {

r e turn nu l l ;
} e l s e {

r e turn new Range ( . . . ) ;
}

Figure 3.3: Categorization 1). In this case the else keyword is redundant.

2. Returning an equality or inequality between two variables is transformed
into an if block with the equality as the condition and return true or return
false as body

3. Returning a conjunctive boolean formula is splitted into an “explicit short
circuit evaluation”. In order words, every variable is checked by itself in
an if block and if the variable does not hold, false is returned. An example
of the transformed code for return a && b; is shown in Figure 3.4.

4. final keywords lacking consistency. Sometimes a variable could be final
but this keyword is not present, but it is present in a cloned snippet
somewhere else.

Another common normalization that, however, we did not address was declara-
tion and assignment of a variable in a single line or in di↵erent lines, possibly
interleaved by other statements.
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i f ( ! a ) {

r e turn f a l s e ;
i f ( ! b ) {

r e turn f a l s e ;
}

r e turn true ;

Figure 3.4: Categorization 3). This could be written as return a && b;.

3.3.3 Rewrite

This phase is the actual transformation of the structure described in Section 3.3.2.
A key requirement of this phase was keeping as much as possible the file similar
to the original one, the reason being explained in Section 3.3.4. In order to
accomplish this, we exploited several facts: firstly the whitespaces and newlines
being meaningless in both C and Java. Moreover, these are ignored also by
the code clone detector of our choice. Given this we could easily transform
categories 1) and 4) described in Section 3.3.2 just by patching the redundant
parts with whitespaces. Additionally we exploited the fact that also newlines
are meaningless in both C and Java, allowing us to write multiple statements
in one line. Categories 2) and 3) in Section 3.3.2 requires replacing a single
statement with multiple ones, and this language feature allows us to maintain a
one to one mapping between the original cloned lines and the transformed ones.

3.3.4 Detect and Remap

At this point, the Detect phase applies the code clone detector to our trans-
formed files. In our implementation, however, the normalized files are not over-
written, so the report generated by the code clone detector will present wrong
paths. This is a major problem nonetheless, given that the entire normalization
process should be invisible to the user, and thus the remap phase is used to
map every reference of the normalized files in the code clone detector report
back to the original files. This also gives an indication why in Section 3.3.3 was
important to keep the file as similar as possible to the original one: replacing
a statement with one spanning more lines or less lines means having to remap
also every line reported by the code clone detector.

3.4 Evaluation

Being this study based on the results of the paper of Ragkhitwetsagul et al.,
we replicated their evaluation setup [76]. The same three open source project
were considered for this evaluation, namely JUnit v4.13, JFreeChart v1.5.0 and
Apache Tomcat v9.0. These projects are listed ordered by size, spanning from
9.7k LoC of JUnit to 241.9k LoC of Tomcat.

The code clone detector used for this evaluation was NiCad v5.2. Our tool
can be used with any code clone detector, but we decided to use NiCad in order
to compare with the previous study. Studying the e↵ect on other code clone
detectors, especially the ones not using a token-based approach, will be consid-
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ered as future work. Unlike the previous study, however, we did not analyze
type-3 clones: our goal is providing an easy-to-refactor clone, thus limiting the
evaluation to type-1 and type-2. The type-3 clones with the noise generated by
the additional statements are considered as out-of-scope for our purpose. The
configurations used are thus the default of NiCad named type1 and type2c, the
latter being type 2 clones with consistent naming.

The Research Questions we wanted to answer are the following, similar to
the ones of the original study:

• RQ1agreement: How many clone pairs are reported by both approaches?
How many are exclusive to the plain file and to the normalized file?

• RQ2accuracy: How is the detection performance of our tool compared to
the compilation/decompilation approach presented in the study of Ragkhitwet-
sagul et al.?

Despite not conducting a real performance study, we also want to highlight
that the processing time impact our tool is negligible: in the three project we
measured this time to be, on average, half a millisecond per file, with every file
being independent of the others thus enabling multithread processing. Also for
big projects this translates in a normalization step order of magnitude faster
than the clone detection process which usually requires several seconds.

3.4.1 Agreement

In order to answer RQ1 we ran NiCad with both type1 and type2c configu-
rations on the testing repositories, firstly without any normalization and then
with normalizations applied. Table 3.1 depicts the results for type2c, despite,

Table 3.1: Comparison of the amount of detected clones by NiCad without and
with our normalization applied.

Project Original clones Normalized clones Variation

JUnit 6 6 +0.0%
JFreeChart 373 397 +6.43%
Apache Tomcat 242 275 +13.64%

by nature, these vary greatly depending on the considered project and the cod-
ing style. type1 clones are not reported given that the results are absolutely
identical. This is expected, given that is really unlikely that an user writes
some code semantically di↵erent and keeps the same variable naming. By an-
alyzing the type2c results instead, we can notice that the normalized version
reports more clones. We manually analyzed the normalized clones reported and
confirmed that they are a superset of the non-normalized version. Every clone
pair reported is actually refactorable, however, despite this, we have to precise
that the category 4) explained in Section 3.3.2 could in practice produce un-
refactorable results, given that we simply removed every final keyword instead
of performing a full constness propagation analysis to ensure semantic preser-
vation. However, this problem was not highlighted in the three projects and
requires further analyses. We can thus answer RQ1 as follows:
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Processing the files with Blanker helps the code clone detector to find up
to 10% more clones. In the case studies no false positives and no false
negatives were detected compared to the original source detection.

3.4.2 Accuracy

In order to answer RQ2 we also ran the compilation/decompilation method
and compared the original and normalized clones against that. Our normalized
method provides no false positives, but, although not providing false negatives
compared to the original source code, the compilation/decompilation provided
some clone reports that both the original and our normalized version failed to
detect. In the case of JFreeChart these comprise assignment and declaration
of variables interleaved by a di↵erent amounts of statements, swapped if-else
branches and a loop converted from while to for (done by the decompiler nor-
malization step). Although each of these appearing only once, they are a clear
sign that in order to discover even more clones a flow analysis may be required.
On the other hand, the compilation/decompilation su↵ers from false positives,
in particular related to the duplication of inner class methods that happens dur-
ing compile time and not in the code written by the user. We can thus answer
RQ2 as follows:

Our tool provides virtually no false positives at the cost of missing some
clones. The compilation/decompilation approach su↵ers both false posi-
tives and negatives but provides a better spectrum of results if compared
in conjunction with the original source code

3.5 Conclusion

In this chapter we presented Blanker, a code normalization tool useful to change
some structures in order to detect more easy-to-refactor clones. We implemented
some compiler normalizations, similar to the one we detected in Chapter 2,
and implemented them manually, so they can be run on a di↵erent language,
detached from their original compiler.

Our tool, provides an increased number of clones with no drawbacks, false
positives or false negatives compared to running a code clone detector on the
original files. If a low false negative ratio is required, the compilation/decompi-
lation approach could provide more results due to the flow analysis performed by
the compiler, even though a much higher e↵ort is required to actually intersect
and analyze the results.

As future work we plan to conduct an extensive analysis on the various cat-
egorization performed, and implement extra ones in addition to flow analysis.
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Part II

Clone Detection in Binary
Code
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Chapter 4

Function Detection in
Binary Code

4.1 Introduction

Free software has grown in popularity in recent years, and with that also the
adoption of this kind of software by companies and its integration inside closed
source projects. This popularity is mainly driven by the ease of customiza-
tion and flexibility rather than economic reasons [65]: code is usually modified,
adapted or simply reused and then re-released with a compatible license. With
a higher availability of code, another common practice has become copy-pasting
and reusing source code in form of small code snippets from online discussion
platforms such as Stack Overflow. Aside from the potential license violation,
reused code snippets have been proven to be usually harmful [26] or with secu-
rity flaws that in the original repository have long been patched [77]. Although
code cloning has been successful at determining copied function reuse both for
legal implications [31] and plagiarism detection [75], its main scope is usually
code evolution and vulnerability propagation [44,108,111].

Nonetheless, in recent years, several clone detection tools targeting lower-
than-source-code have been developed. These are mainly driven by a normal-
ization step performed by the compiler, rather than the lack of availability of
the source code. These works have been targeting Java Bytecode [53, 109] or
LLVM IR [11].

Di↵erent motivations can be found when working exclusively with binary
code: we already cited the license violation in closed source software [46, 110].
Additional scenarios may involve detecting the presence of a vulnerable function
in proprietary software [24,71], analyzing the evolution of closed source software
or the evolution of compiler transformations, and even aiding the disassembly
when a known function snippet is detected.

While existing works in the field are mainly focused on malware detection,
the main motivation for our work is software evolution and propagation in bi-
nary files, even in case of security-related issues (e.g. bug propagation in release
of proprietary software). For this reason, the focus points of our research are the
ability to analyze multiple executables at the same time and detect the propaga-
tion of a given function, the ability to perform such analysis in a reasonable time

33
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for any amount of given executables, and the ability to work amongst di↵erent
architectures, even lesser known.

In order to address these problems, our approach is based on the idea of
generating a common structure between the compiled code in di↵erent architec-
tures in order to leverage compilation di↵erences, similar to how decompilation
helps normalize source code di↵erences [76]. In particular, starting from a CFG,
we generate a higher level structure using structural analysis. This structure
allows e�cient comparison in linear time, as opposed to the exponential time
required by a subgraph comparison. This structure has the additional property
of normalizing the various architectural di↵erences, allowing cross-architectural
comparison. Thanks to its linear time scalability, our approach can be used
to e�ciently analyze multiple binaries altogether, outlining the evolution and
propagation of code among huge codebases such as the LLVM project or the
GNU toolchain, while existing works are usually limited to a pairwise compari-
son [27,68].

The main novelty of our work is the following:

• A novel structural analysis designed specifically for clone detection.

Unlike previous work in decompilation (e.g. [95]), our analysis can not
emit gotos and thus must sacrifice some correctness. For this reason, we
had to develop a novel analysis with di↵erent detection rules for converting
a CFG. This new analysis is described in detail in Section 4.3.4.

• A novel comparison method to e�ciently detect structural clones among
multiple binaries.

Comparing two CFGs requires an exponential algorithm [102] and even
the average function length of 40 nodes is intractable. While previous
works have based their comparisons on statistical properties [24] or dom-
inator trees [3] we based our comparison on tree hashing, allowed by our
structural analysis.

• An evaluation of clone detection across di↵erent CPU architectures.

Previous work using structural or semantic analysis always targeted trivial
binaries such as Java Bytecode [3, 76] or has been limited to the same
architecture [89]. Whereas cross-architecture clones have been researched
with deep learning methods, we propose a structural analysis algorithm
that works in binary code and does not require a training step.

The chapter is structured as follows: Section 4.2 presents the State of the
Art in code cloning for binaries and binary analysis. Section 4.3 explains in
detail how the entire analysis is done, including the structural analysis algorithm
and the final comparison. Section 4.4 evaluates our approach across varying
architectures. Section 4.5 describes some limitations and threats to the validity
of our work, and finally Section 4.6 closes the chapter.

4.2 Related Works

Given the intrinsic di�culty at analyzing binary files and the high amount of
information lost during the compilation process, the literature in clone detection
dealing with compiled executables is more scarce compared to the one dealing
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with plain source code. The most complete and, to our knowledge, only ex-
isting analysis aimed at finding clones in binary files is the one performed by
Sæbjørnsen et al. which uses a semantic approach based on vectors containing
the instruction sequences [89]. This analysis is itself an extension of the one
developed by A. Schulman [92].

In the matter of license violation, on the other hand, Hemel et al. performed
three di↵erent types of analyses based on string, data compression and binary
deltas analysis [37]. Both these approaches have been tested only on executables
or libraries within the same architecture, although the string analysis of Hemel
et al. could technically be applied also to di↵erent architectures.

The structural reconstruction, instead, has been studied in-depth by Engel
et al. [23] and later refined by Brumley et al. [10] and Yakdan et al. [107].
The latter two, however, studied an approach more akin to decompilation and
semantic preservation while we care more about having the same reconstruction
in di↵erent binaries or architectures rather than a correct reconstruction.

In the software security field, several tools are available to check for similar-
ities between binaries. In particular, BinDi↵ [27] and DarunGrim [68] present
a structural analysis that use CFG isomorphism and basic block matching.
BinSlayer [9] and discovRE [24] improve the existing work by providing faster
CFG matching. However, these studies are aimed at finding bugs by analyzing
CFG properties, while we refined even further the analysis in order to transform
the CFG into a tree and have linear time comparison. This allows us to process
thousands of functions in seconds. In contrast to structural analysis, some tools
present a detection based on semantic properties. It is the case of BinHunt [30]
using symbolic execution and BinJuice [59] that extracts the semantic represen-
tation of basic blocks. While all these works are essentially single-architecture,
Pewny at al. provided a cross-architectural one by using a semantic represen-
tation of basic blocks [71], while, in contrast, our tool uses structural similarity.
In addition to these tools, BinSim [64] can support obfuscated binaries.

In recent years, with the prevalence of IoT devices, cross-architectural anal-
ysis of binary files has been the scope of work such as BinGo [12] and CACom-
pare [41] that use the signature of a function to perform comparisons. Hu et al.,
in particular, investigates also the impact of di↵erent compilers and optimization
levels [42].

Recent works have also started introducing Deep Learning approaches in
order to detect similarities between binaries [62,106]. While some of these were
focused just on graph properties [25], recent approaches are more similar to
Natural Language Processing [20,21,105,113].

The main di↵erence between our approach and Machine Learning-based ones
is the lack of requirement of a training step: building and retrieving a training
dataset is already challenging for some dominant CPU architectures [105, 113],
and it may be almost impossible in case of obscure or proprietary architectures.
Our approach implementation, instead, currently supports 20 architectures, and
additional ones can be added by writing a few lines of code, provided a disas-
sembler is available. An additional downside of the learning based approaches
is the runtime: several works such as InnerEye [113] and DeepBinDi↵ [21] can
reach high precision, but require an enourmous amount of time to run, that usu-
ally hampers scalability. In our approach, instead, the runtime is completely
dominated by the disassembly time and is orders of magnitude faster than the
aforementioned approaches.
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4.3 Approach

This section presents our approach for detecting function clones in a binary
file. Our idea consists of generating a tree-like representation of each function,
starting from a CFG, that may represent the original source code structure.
Then, e�ciently checking for clones in the subtrees of these representations.
This come from the idea that, even for di↵erent architectures, the duplicated
code once compiled should retain the same structure in both architectures.

However, directly comparing a graph as the CFG is not trivial, as it is known
to be a NP-complete problem [102]. Comparing two CFGs with an exponential
algorithm, for every pair of function we want to process, is thus unfeasible.

For this reason we use a structural analysis step, to reduce a CFG into a
tree, more suitable for analysis. This step is akin to a decompilation, but it
di↵ers from it in the sense that semantic correctness is secondary as opposed to
reconstruction completeness, allowing us to remove CFG edges.

4.3.1 Overview

Structural Analysis

Structural Analysis

Structural Analysis

Comparison SemanticAnalysis

Output

Binary 1 Disasm

Binary 2 Disasm

Binary 3 Disasm CFG

CFG

CFG Reconstruction

Reconstruction

Reconstruction

Figure 4.1: Overview of the binary analysis.

The overview of our approach can be seen in Figure 4.1. In this figure, several
binaries labeled as Binary 1, Binary 2 and Binary 3 are analyzed in order to find
cloned functions between them. We can see from the figure that our approach
requires one or more binary files as input, and produces a single output: this
output contains clone classes (clone sets) [82] which indicate cloned functions.
Each clone class represents functions implementing the same behavior: two
or more functions are reported as belonging to a clone class along with their
name, original binary name and cloned basic blocks. Our approach compares
all functions of all binaries together and is based on three main steps namely
Structural Analysis, Comparison and Semantic Analysis.

Structural Analysis is used to retrieve a structural representation of every
binary function. With those representations, the Comparison step generates the
clone classes, and the Semantic Analysis further filters those clone classes from
false positives. A detailed description of the various steps in Figure 2.2 is the
following:

Disasm
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In this step, the original binary code is disassembled and, for every func-
tion, a list of tuples <offset, mnemonic, arguments> is obtained. This
step is performed once for every binary.

CFG
In this step, the CFG of each function is retrieved, starting from the list
of statements. Additionally, these CFGs are refined and slightly modified
as explained in Section 4.3.3. This step is performed for every function
retrieved during disassembly.

Reconstruction
This step is the core of our approach: here each CFG is transformed into
a representation of the original function using nested high-level structures
(e.g. If, While, Do-While). These nested structures can represent the
function in the form of a tree thus allowing constant time comparison,
unlike a CFG. Our analysis, however, does not completely preserve the
program structure. In fact, our approach modifies the CFG in case the
analyzed function does not have structured control flow (e.g. loops with
break and continue statements). For this reason, the algorithm is ex-
plained in detail in Section 4.3.4 along with reconstruction rules for each
CFG pattern.

Comparison
The results of the reconstruction are compared altogether and if any du-
plication or match is found it is reported as output. Comparison is done
using a hash-based approach, by searching for hash collisions while lin-
early processing all functions. Further details on this step are explained
in Section 4.3.5.

Semantic Analysis
Finally, in this step potential clones reported by the comparison step are
checked for semantic consistency. A di↵erent approach is used based on
whether the potential clones belong to the same architecture or not. This
step is described in detail in Section 4.3.6.

4.3.2 Disassembly

The first step of the entire analysis is the disassembly, requiring as input the orig-
inal binary file, either as executable, library, or object code. Given that a binary
file is just a collection of bytes interpretable as machine code, data, or comments,
the purpose of this step is taking as input the aforementioned binary file and
providing as output assembly instructions required by the subsequent steps. An
assembly instruction is a pair <mnemonic, arguments> where mnemonic rep-
resents a particular instruction to be executed by a CPU, taken from a set of
instructions composing the CPU Instruction Set Architecture (ISA), and argu-
ments is a sequence of elements passed as arguments to the mnemonic. Addi-
tionally, ensuing steps of our analysis require assigning a unique o↵set to each
instruction. This o↵set is generally calculated as the number of bytes from the
beginning of the file until the instruction, and must be coherent with the jump
targets: if an instruction performs a jump to another one, the argument of the
jump must be the o↵set of the target instruction.
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We can thus say that, for the purpose of our analysis, an assembly instruction
is a tuple <offset, mnemonic, arguments>, and an example of this can be seen
in the following code:

0x601 cmp dword [ var 4h ] , 0
0x605 j e 0x60E
0x607 mov eax , 0
0x60C jmp 0x613
0x60E mov eax , 1
0x613 pop rbp
0x614 r e t

In this code, each line represents an instruction. The first number of each line
is the o↵set, followed by a space and the mnemonic. Everything else on each
line are the mnemonic arguments.

The expected output from this step is a list of function names, and for
each function a list of assembly instructions. In our implementation we relied
on external tools in order to perform the disassembly, as such, in order to
keep generality, subsequent steps in our analysis assumes this list of assembly
statements as plain strings in Intel syntax, as presented in the previous example.

4.3.3 Control Flow Graph

The purpose of this step is the transformation of the list of instructions obtained
in the Disasm step into a suitable representation in form of a CFG, required for
the structural analysis. This step is performed for every function obtained in
the disassembly step. A CFG is a directed graph G = (V,E) where every node
vk 2 V represents a basic block and every edge ei,j = (vi, vj) 2 E ^ vi, vj 2 V

2

represents a possible movement from the basic block vi to the basic block vj .
This kind of graph is e↵ective at presenting the flow of the program and is the
starting point for our structural analysis.

Given the relatively easy task of transforming a list of statements into a CFG,
we are not going to present its implementation here. The only requirement is
to have the list of conditional and unconditional mnemonics for each ISA.

Additionally, after retrieving the CFG, a refinement step is performed, con-
sisting of the following actions:

Single exit
If multiple exits for the analyzed function are found, a new single exit is
created. This step is required to preserve consistency with some patterns
defined later in Section 4.3.4.

Dead nodes removal
Dead basic blocks, unreachable from the root, are removed from the result-
ing CFG. These basic blocks are resulting from indirect jumps, i.e. jumps
to a dynamically known address which are unsolvable at static time and
thus ignored during the CFG reconstruction [66] [33].

4.3.4 Reconstruction

The refined CFG with a single entry and a single exit obtained in the previous
step is refined in this step. In particular, we aim at iteratively reducing CFG
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portions into high-level structures until a single node is left. This node will
represent the entire function, and recursively contains the various structures
composing it. This representation two major advantages over a plain CFG:

• Loops are removed, and the resulting output is a rooted tree. The result-
ing tree nodes are labeled by type, allowing faster comparison through
hashing. Comparing a CFG instead requires exponential time [102].

• Minor di↵erences between the x86 64 and aarch64 CFGs are leveraged.

If-else

0

1 2

3

!

Sequence

If-else

3

! Sequence

Figure 4.2: Example of the Reconstruction step. The nodes 0, 1 and 2 of the
CFG are removed and replaced with a node labeled as If-else structure. The
new If-else structure and node 3 can then be replaced with a Sequence structure.
When only one node is left the algorithm terminates.

Sequence

If-else Basic

Basic Basic Basic

Figure 4.3: The CFG of Figure 4.2 represented as tree after reconstruction.

An example of the reconstruction can be seen in Figure 4.2, with its interpreta-
tion in tree form on Figure 4.3. On the left of the Figure, the basic blocks 0, 1
and 2 forming an If-else structure have been reduced. Then, in the center, the
newly created If-else structure and basic block 3 are reduced into a Sequence,
thus terminating the algorithm, as shown on the right. This analysis reduces
CFG portions to the following structural types: Sequence, Self-loop, If-then,
If-else, While, Do-While, Switch, Optimized If.

Algorithm 1 presents the reconstruction procedure. In the Reconstruction
function, the first three lines are used to modify Natural Loops, loops with
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Algorithm 1: Reconstruction main loop

inputs : A CFG G = (V,E)
output: A single node representing the nested structures. Nil if the

procedure failed
Function Reconstruction(G):

sccs FindStronglyConnectedComponent(G);
foreach scc 2 sccs do

TransformNaturalLoop(G, scc);

while |G| > 1 do
list postorderDFS(G);
while list 6= ? do

node pop(list);
R reduce(node);
if |R| > 0 then

Let r be a single node containing R G  (G \ R) [ r;
foreach (vi, vj) 2 E ^ vi /2 R do

if vj 2 R then
vj  r;

break;

if not modified G then
return nil ;

return G;

more than one exit, and are explained in Section 4.3.4. In the remaining part,
we can see that the outer while is the iterative step, running until the graph is
composed solely by one node. For each iterative step, a post-order depth-first
visit is performed. The reason for the post-order visit lies in the fact that while
processing a node, every possible descendant of it has already been given the
possibility to be reduced beforehand. Then, the inner while attempts to reduce
each node of the post-order visit to a known structure by calling the reduce
function on each node.

The reduce function takes a node as input and returns a set, called R,
containing the original nodes composing a particular structure. Reductions are
tried in the following order: Self loop, While and Do-while altogether, If-then, If-
else, Sequence, Switch and Optimized If. If the reduction succeeds, firstly every
node composing the region is removed from the CFG and a new structural node
named r is added. Then, for each edge ei,j = (vi, vj) where vi does not belong
to the reduced region, the target vj mapping to a component of the region itself
is remapped to r. The edge becomes e = (vi, r), e↵ectively replacing a region
with a single node.

Lastly, the inner loop is terminated, given that the post-order visit is now
invalidated having the CFG been modified. The outer while generates a new
post order visit and the process is repeated until a single node is left. If, instead,
the list is processed in its entirety without any modification to the CFG the
procedure terminates with a failure state. We now explain how every region has
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been reduced, excluding self-loops which are trivial.

If-then resolution

0

1

2

(a) If-then

0

1

2

3

(b) Short circuit

If-then

Figure 4.4: If-then and Short circuit If-then. A sequence of nodes composed of
conditional jumps with the target being fixed (2) can be considered as If-then
structure.

We can see in Figure 4.4, on the left, the representation of a minimal If-then
structure as it would appear on a CFG. Solid lines represent the nodes that will
be reduced. Note that in case an If-then structure has more complex logic in
the then node, this has already been reduced in previous iterations. In order to
reduce a node as an If-then region, the following conditions must hold:

1. The current node has two children, the then node and the next node.

2. The then node is a node with a single predecessor and a single successor.

3. The successor of the then node is the next node.

If all these conditions are satisfied, the current node and the then node are
transformed into an If-then region, with the next node as its successor. In
Figure 4.4, on the right, we can instead see the CFG for an If-then with a
short-circuit evaluation. Recall that short-circuit evaluation is the semantic of
a boolean expression where some arguments are not evaluated if the truth value
of the expression has already been established, represented in this example by
the edge e0,3. This kind of If-then is automatically resolved iteratively using
the previously defined rules, generating a nested If-then region where the then
node is another If-then region. In our implementation we flattened these nested
nodes into a single If-then keeping the first n�1 nodes as the various conditions
and the last node as the actual then. Moreover, the number of conditions are not
considered in the comparison phase, so a short circuit If-then is reconstructed
identical to a normal one.
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0
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(a) If-else
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(b) Short circuit If-

else

Figure 4.5: If-else and Short circuit If-else. Two di↵erent paths sharing a node
(0) and a sink (3) can be reduced as an If-else structure. In principle, the two
paths must be disjoint, except in the case where every node of a path connects
to the same node of the other, indicating a short circuit If-else.

If-else resolution

In Figure 4.5 on the left, the minimal structure of an If-else is presented. Ex-
actly like the If-then resolution, the following set of conditions must be verified
in order to reduce a node as an If-else node:

1. The current node has two children, the then node and the else node.

2. The then node has a single predecessor and a single successor.

3. The else node has a single predecessor and a single successor.

4. The successor of the then node is the same of the else node.

If all these conditions are satisfied, the current node, then, and the else node
are merged into an If-else region with the successor of then as successor. It
is important to note that deciding which node is then and which node is else
is not trivial and has some consequences, however, this will be discussed in
Section 4.3.5 when dealing with the comparison. Additionally, unlike the If-
then structure, the short-circuit version of the If-else presented on the right in
Figure 4.5 is not resolved automatically using the previous rules, given that the
rule number 3 is violated by the short-circuit. It is thus required to implement a
routine that tries to descend into the then subtree, asserting that every successor
is either another then node or the else node. The new rule 3 instead will ensure
that every predecessor of the else node is either the current node or one of the
then nodes. Also in this case, short-circuit version and normal one are treated
equally in the comparison phase.

An interesting case can be seen in Figure 4.6. The figure represents a particu-
lar If-else where the then branch can arbitrarily jump to the else one. Although
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Figure 4.6: Optimized If structure. This structure is similar to an If-else, but
the two paths are not disjoint.

impossible to realize in code without gotos, this construct is often emitted by
the compiler to handle exit conditions and failures. Unfortunately, a compiler
can generate arbitrarily long then and else branches, resulting in endless di↵er-
ent between-branch jump possibilities. This means that either we ignore some
of these structures, increasing the failure rate for the structural analysis, or we
use the same label for structures that are not the same, sacrificing comparison
correctness. In our study, we chose the first approach, as we further discuss in
Section 4.4.1. In particular, we detected only the most basic compiler-generated
patterns like the one in Figure 4.6 and labeled them as Optimized If.

Switch resolution

A more complex variant of the If-else is the Switch. These structures, af-
ter compilation, are usually implemented with a jump table and thus require
particular care to be detected statically. Fortunately, several algorithms for re-
covering statically these tables exist in literature, and the task is thus delegated
to the disassembler [15].

In the CFG, switch thus appear as in Figure 4.7 and can be easily detected
as its root node has a number of edges higher than 2. If all these nodes point to
the same successor, they are reduced as Switch, otherwise the successors should
be refined first.

Sequence resolution

Sequences do not present particular cases, so it is su�cient that the current
node and its successor satisfy these conditions to merge them into a 2-nodes
sequence:

1. current node has a single exit

2. successor has a single entry and a single exit
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0

1 2 3 n

4

Figure 4.7: Switch structure. Any sequence of disjoint paths from a node (0) to
a sink (4) with more than two paths can be reduced to a Switch structure.

Additionally, if the current node or the successor is already a sequence, the
newly created one is not nested but appended to the existing ones.

While and Do-While resolution

0 1

2 3

(a) While

0 1

2 3

(b) Do-While

Figure 4.8: While and Do-While loops structures. A path of length 2 starting
from and ending in the same node can be considered a loop. If the loop entry
and exit are from the same node, this loop can be reduced as a While structure,
otherwise as a Do-While structure.

While and Do-While loops are conceptually similar, as can be seen in Fig-
ure 4.8 with the former on the left and the latter on the right, the only di↵erence
being the exit node. While these loops can be found quite easily using the Tar-
jan’s Strongly Connected Component (SCC) algorithm, particular care must be
taken when dealing with nested loops, where the head of a loop is also the tail of
the other one, as shown in Figure 4.9 on the left. Specifically, the SCC cannot
be blindly used to determine the exit of a loop, given that in case of nested
loops both the inner and outer loop have the same SCC. Additionally, unlike
While loops, Do-While constructs can have a minimal form composed of three
nodes that can not be reduced to two nodes using Sequence rules, and requires
an ad-hoc reduction. This form is shown in Figure 4.9 on the right.

Transform Natural loop
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(a) Nested Do-While
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(b) Do-While with 3 nodes

Figure 4.9: Nested Do-While and minimal 3-nodes Do-While. These are two
particular cases of Do-While structure that require additional care: (a) for the
correct identification of loop entry and exit and (b) because the combination of
Sequence and Do-While detection rules can not detect this particular case.

In case the original source code had a loop with break or return statements,
in the CFG this loop could potentially have multiple exits. In order to e↵ectively
reduce a loop to a minimal 2-nodes variant, a single exit is required and the first
three lines in Algorithm 1 are used to detect and remove these edges from the
CFG. In fact, our analysis aims at reconstructing only the original structure and
thus these loop-breaking statements are redundant. Given a CFG G = (V,E)
and a particular set of exit edges EX(k) from a SCC k as

EX(k) = {8ei,j 2 E | vi 2 V ^

vj 2 V ^

SCC(vi) = k^

SCC(vj) 6= k}

where SCC(k) is the SCC index, the natural loop resolution is run for the SCC
if |EX(k)| > 1, meaning that more than one exit edge exists for that SCC.
From here on, given ei,j = (vi, vj) such that vi 2 EX(k) is an exit edge, we call
exit node the node vi and target the node vj . Asserted that the number of exit
nodes is always greater than one, two possible types of natural loop exist:

Single Target
This type of natural loop is generated by break statements without any
kind of cleanup, like if(condition)break;. If an exit node has a higher
number of predecessors than the others it is kept as the real exit, with
the assumption that this loop would be a While loop. Otherwise, the first
exit node encountered in a Depth-First Search (DFS) is kept. Although
this could be the wrong one, recall that we are focusing on consistency
between di↵erent programs rather than decompilation correctness. Every
edge not belonging to this exit is removed from the CFG.

Multiple Targets
In addition to the single target, if constructs with additional logic before
the break keyword generate a di↵erent exit target. Moreover, also return
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statements generate an additional target. While the latter can be eas-
ily spotted by searching a jump directly to the function exit, we decided
to keep only the target having the longest path d(vj , vk) where vj is the
target, vk the function return node and d(vj , vk) the minimum distance be-
tween the two nodes. Every edge pointing to the wrong target is removed,
then the natural loop is resolved in the same way as the Single Target one.
Note that unlike the Single Target, this approach could generate orphan
nodes.

After the removal of these edges from the CFG, the loop can be reduced to
the minimal form of the While or the Do-While presented in Section 4.3.4 with
the iterative step of Algorithm 1.

4.3.5 Comparison

After completing the reconstruction step, the output graph can be represented
as a tree of structures, similar to the example shown in Figure 4.10. In order to

Sequence

If-else Basic

Basic Sequence Sequence

While If-then Basic Do-While Basic

Basic BasicBasic Basic Basic Basic

Figure 4.10: Tree resulting from the reconstruction.

e�ciently compare all the possible subtrees generated by the reconstruction of
every function, we use LSH. Specifically, we choose a hash function such that
the collisions between trees with the same structure are maximized. It is of vital
importance to carefully design this function: we want to ensure a hash collision
for structures that are similar, not identical. In fact, the functionality and high
level structure of two functions may be the same, but they may use basic blocks
or jumps with di↵erent o↵sets. For this reason we hash only the node type,
avoiding the basic block o↵sets, recursively.

In our implementation we used as hashing function fh the public domain
FNV-1a [28] and implemented the function h(t), in order to hash a subtree,
shown in Equation 4.1.

h(t) =fh(type(t)) � h(c0) � h(c1) · · · � h(cn)

8ci 2 Ct

where Ct is the set containing the children of t

(4.1)
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We can see that the hash of a node t is calculated by composing the hash
of the current node type with the hash of all its children. The node type is a
unique value assigned to each structure type. If two nodes t1 and t2 are both
the same structure (e.g. Sequence, If-Else, etc.) type(t1) and type(t2) have the
same value.

We apply this function to every reconstructed function of each binary. If the
tree depth of the current node is higher than a threshold ✓, it is written into a
hash table data structure, with h(t) as key and t as value. Upon iterating all
the keys of this hash table, if a key contains more than one value, the key itself
represents a clone class and all its values represent the various clone snippets
belonging to this class.

Considering that fh is a constant time operation, the complexity of h(root),
where root is the root of each reconstructed tree, is linear in the number of tree
nodes. According to our reconstruction rules, a reconstructed tree can not have
more nodes than basic blocks, implying that our approach has a comparison
step with linear complexity in the total number of basic blocks retrieved from
all functions.

We can see that hashing is not based on the statements contained inside
a specific structure, but only on the structural shape itself. This enables the
comparison between di↵erent architectures at the cost of increased false positives
ratio, in case two pieces of code are structurally similar but perform di↵erent
actions. Being thus the hashing distance based solely on the structural shape,
we use the threshold ✓ as variable to control the ratio between false positives
and negatives: a lower ✓ will match structures with few nested nodes that may
be shared by code performing di↵erent operations, while a higher ✓ will require
a more unique structure but may miss some matches.

We do, however, account for children’s order when calculating the hash; it
is thus easy to see why in Section 4.3.4 it was important to clearly determine
the then node and else node deterministically.

4.3.6 Semantic Analysis

The comparison presented in Section 4.3.5 is su�cient for finding clones, how-
ever, its calculations are entirely based on the structure of binary code. This can
present a situation where two binary functions are reported as clones because
they share the same structure, albeit having di↵erent opcodes thus resulting in
di↵erent functionality. For this reason, in this section we present an additional
refinement step to our approach, that should run on the comparison results, in
order to filter some false positives that happen to have the same structure, but
di↵erent opcodes.

This refinement is based on the idea that to every instruction we can assign
a number, representing the amount of times that particular opcode appears in
the function over the total number of opcodes in the function, thus creating
a frequency vector. Then, a function to measure the similarity between two
vectors, can be used to measure the degree of similarity between two frequency
vectors. If this value is greater than a threshold, the two basic blocks can be
considered the same. We run this comparison on the (unordered) list of opcodes
composing the basic blocks of two matching reconstructed tree, similar to the
one in Figure 4.10. Moreover we do not consider the opcode parameters: doing
so would overspecialize our comparison and match only identical functions. In
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our implementation we used cosine similarity as similarity function: given two
frequency vectors A and B, their similarity is given by SAB = A·B

kAkkBk
Naturally, if the architecture between the potential clones is di↵erent, their

opcodes would not match and their similarity will always be zero. For this
reason, in case of di↵erent architectures, instead of using the opcodes directly
we assign them to a “family of operation” and determine the frequency of each
opcode family instead of the opcode itself. For example, the jmp opcode for
x86 64 and b opcode for aarch64 are both assigned to the JUMP family, and
the similarity calculated on the frequency of the JUMP family, instead of the
frequency of jmp or b. In total we divided opcodes into 30 di↵erent families.
For space reason, we do not report them here, but the full list can be found in
the repository referenced in Section 4.7.

Note that, unlike the comparison approach presented in Section 4.3.5, the
semantic analysis presented in this section is performed by comparing two poten-
tial clones at a time. This means that, to compare n functions, O(n2) operations
have to be performed, compared to the O(n) required by the structural analy-
sis. This explains why, in our approach, the semantic analysis is used only after
gathering a list of potential clones from the structural one, and its higher run
time is confirmed by the experimental results we provide in Section 4.4.

4.4 Evaluation

We implemented our analysis in Rust under Linux, however, we are able to an-
alyze the binaries for multiple operating systems and 20 di↵erent architectures.
The implementation of our approach is named BinCC, and is openly available
on GitHub 1. In this evaluation, we target mainly the x86 64 and aarch64 ar-
chitectures, being the dominant architecture for the Desktop and Mobile market
respectively.

As mentioned in Section 4.3.2 we depend on an external disassembler to re-
trieve the list of functions and statements. In our implementation we used the
open source tool radare2 2, version 5.7.4, whereas every other step is indepen-
dent of external tools. Despite using radare2, we do not depend exclusively on
it: in fact any disassembler could be used, provided that a list of statements
like the one in Section 4.3.2 is returned as a string.

In order to evaluate the e↵ectiveness of our approach, we want to address
the following research questions:

• RQ1completeness: How many functions are successfully converted to a sin-
gle node representation?

• RQ2correctness: How precise is our tool at detecting function clones across
di↵erent architectures?

• RQ3use-case: Is our tool able to find function reuse from libraries in a
real-case application?

• RQ4performance: How performant is our tool, varying the input executable
size?

1http://github.com/davidepi/bincc
2https://rada.re/r/

http://github.com/davidepi/bincc
https://rada.re/r/
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The first research question, RQ1, is meant to determine the amount of
functions that can actually be reconstructed, across di↵erent architectures and
optimization levels. This can be seen as a measure of the goodness of our struc-
tural analysis algorithm, given that functions that are not reconstructed can
not be compared with hashing. The second research question, RQ2, is meant
to measure the precision of our detection when checking for clones in bina-
ries within the same architecture or di↵erent architectures. Additionally, the
threshold parameter ✓ for the LSH function defined in Section 4.3.5 is evaluated
here and our approach is compared against existing state-of-the-art works. The
third research question, RQ3, is meant to be a use-case evaluation, measuring
the precision at detecting function reuse with binaries and libraries resembling
more a real-case scenario. Finally, the last research question, RQ4, is used to
measure the time required by the analysis and the scalability of our approach.

In order to ensure an evaluation as close as possible to the final use-case,
while still guaranteeing a correct evaluation, in this study a di↵erent dataset
was used for each research question. A summary of the various datasets can be
found in Table 4.1, while details on their creation are listed in the respective
Research Questions.

RQ Binaries Functions Stripped Optimization

RQ1 11211 23953469 yes O0, O2, Os
RQ2 216 40907 no O2
RQ3 800 276485 Unknown Unknown
RQ4 1934 1434790 yes O2

Table 4.1: Statistics and features of the dataset used for each Research Question.
Because RQ3 uses publicly available real-case binaries, the optimization level
and strip status are not known.

4.4.1 RQ1: Completeness

In order to answer RQ1 we used as dataset a collection of binaries publicly avail-
able on Zenodo [74]. These binaries come from multiple open source projects
of di↵erent scopes and are compiled using di↵erent optimization levels. As re-
ported in Table 4.1, these binaries are stripped. We used binaries compiled
using GCC for the x86 64 and aarch64 architectures, divided into O0, O2, Os
optimization levels.

For the evaluation, we ran the reconstruction on every function and checked
if the output was e↵ectively a single node. Input functions already composed of
a single node are not considered in this evaluation.

Figure 4.11 shows the percentage of correctly reconstructed functions over
the total, for a given CFG input size. The immediate result we can note is that
the higher the optimization level, the lower the chance our algorithm is able
to correctly perform the reconstruction. This is somewhat expected, as higher
optimization levels introduce additional compilation patterns that are more dif-
ficult to map to the structures we defined in Section 4.3.4. In particular, we
analyzed the failed reconstructions and determined that most failures are due
to variations of the Optimized If defined in Section 4.3.4. With high optimiza-
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Figure 4.11: Perfectly reconstructed functions on stripped binaries, excluding
trivial ones.

tion levels, the compiler enables jumps between the various if-else branches,
generating complex branching structures that cannot be easily categorized.

Di↵erences between the two architectures instead are minor: the reconstruc-
tion in aarch64 is slightly less precise compared to x86 64 in both O0 and Os,
but not in O2. We could not determine the reason of this di↵erence by looking
at the functions, and we can only assume it is due to the disassembler being
more proficient with x86 64.

Figure 4.12 and Figure 4.13 show the reduction percentage in all functions
and the reduction percentage in failed reconstructions only. These are meant
to represent how much smaller a reduced function is, compared to the original
counterpart, considering the number of nodes before and after a reduction. This
is very important, as in case of failed reductions the comparison may still be
possible if the number of nodes is su�ciently small.

In fact, the maximum amount of nodes we found is 4202 for the aarch64

architecture and 9424 for x86 64 with an average of 40 nodes per function.
In these cases, the CFG analysis without our reconstruction is absolutely in-
tractable with an O(2n) algorithm. However, as we can see from Figure 4.13
even in case of failed reconstructions our analysis reduces the number of nodes
by 30-40% in any optimization level, and may allow tractability in the average
case, going from 240 comparisons to less than 230.

Given the results, we can answer RQ1 as follows:
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Figure 4.12: Amount of reduced nodes based on the original CFG length.

The average percentage of correctly reconstructed functions is around
90% for the O0 optimization level, 70% for Os and 45% for O2. Even
in the case of failed reconstructions, the number of nodes is reduced by
35-45%, and enables tractability in the average case.

4.4.2 RQ2: Correctness

For the second research question, we want to analyze how accurate is the detec-
tion rate of cloned functions in our approach, while also estimating the change
in accuracy varying the approach parameters. Specifically, we first analyze the
clone detection using structural analysis only, then semantic analysis only and,
finally, a combination of the two. We close this analysis by comparing our tool
with two existing state-of-the-art products: BinDi↵ [27] and DeepBinDi↵ [21].
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Figure 4.13: Amount of reduced nodes, considering only failed reconstructions.
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Table 4.2: True positives, False Positives, False Negatives, Precision and Recall in clone detection using structural analysis alone, varying
the minimum tree depth threshold ✓. Results obtained comparing all the coreutils binaries together.

Same architecture (x86 64) Cross architecture (x86 64, aarch64)
✓ TP FP FN Precision Recall TP FP FN Precision Recall

2 3337 3774 48 0.4693 0.9858 4826 8966 2406 0.3499 0.6673
3 2150 581 309 0.7873 0.8743 3733 2313 2101 0.6174 0.6399
4 1540 291 162 0.8411 0.9048 2888 1213 1452 0.7042 0.6654
5 687 68 129 0.9099 0.8419 1167 579 833 0.6684 0.5835
6 375 34 91 0.9169 0.8047 663 293 576 0.6935 0.5351
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Table 4.3: True positives, False Positives, False Negatives, Precision and Recall in clone detection using semantic analysis alone, varying
the minimum cosine similarity threshold. Results obtained comparing all the coreutils binaries together.

Same architecture (x86 64) Cross architecture (x86 64, aarch64)
Min.Cosine Sim. TP FP FN Precision Recall TP FP FN Precision Recall

0.95 93287 252978 7360 0.2694 0.9269 218512 867087 209742 0.2013 0.5102
0.98 12256 14320 2090 0.4612 0.8543 39171 41092 41092 0.3710 0.4880
0.99 7928 2648 307 0.7496 0.9627 16626 11555 17958 0.5900 0.4807
0.999 8922 1163 3724 0.8847 0.7055 17406 3701 28343 0.8247 0.3805
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For this Research Question we compiled GNU coreutils 3 tagged v.9.31 on
Linux for the x86 64 and aarch64 architectures with optimization level O2. We
chose coreutils for the reason that, being composed by several programs in a
single codebase, we expect to find more clones than by choosing two completely
random binaries.

In the “same architecture” analysis we ran our tool comparing all functions
belonging to the 108 coreutils binaries built for x86 64, reporting both intra-
project and inter-project clones. Similarly for the “cross architecture” analysis
we added also the functions belonging to the same binaries built for aarch64.
As highlighted in Table 4.1, this time we did not strip the binaries: in fact,
using non-stripped binaries allows us to investigate false negatives by matching
the various function names. Note that our approach supports also sub-function
granularity, as presented in Section 4.3.5, however, to reduce the amount of
manual analysis to be done, we limit the study to function granularity.

Unlike most tools in literature [27, 64, 68], ours compares not only pairs,
but entire sets of similar functions. For this reason, the metrics were defined
as follows: for each reported clone class A, the most similar clone class B

was retrieved from the ground truth using Jaccard Similarity. With these two
sets, True Positives (TP) are defined as #(A \ B), False Positives (FP) as
#(A \B) and False Negatives (FN) as #(B \A). Additionally, we added to the
False Negatives count the elements of each unmatched clone class in the ground
truth. The ground truth set was built with a combination of similar function
name matching, existing state-of-the-art tools and manual analysis.

Table 4.2 shows the results using Structural Analysis only. When operating
within the same architecture, for su�ciently complex functions (higher ✓), this
approach is capable of reaching a precision up to 91%. In this type of analy-
sis, the False Positives are exclusively determined by functions with the same
structure but di↵erent opcodes. For example, in the binary pr, the functions
hold file and tzfree are reported as clones despite being composed of com-
pletely di↵erent opcodes. This happens because their structure is essentially the
same. Naturally, with a low threshold these false positives increase in number,
but even with a low value as ✓ = 3 we are capable of reaching a fairly high
precision of almost 80%.

The same cannot be said for the cross architectural Structural Analysis. In
this case the precision never goes above 70%. The main problem we identified by
analyzing the results is the fact that our approach can correctly report big clone
classes in their respective architectures but these classes have slightly di↵erent
structures, mostly sequences with a di↵erent number of basic blocks, that result
in di↵erent structural hashes. For this reason these clone classes are not merged
into a single cross-architectural clone class. Naturally, we report these clones
as False Positives/Negatives: despite being correctly identified as clones we are
interested in cross-architectural clones only.

Table 4.3, instead, shows the results using Semantic Analysis only. Unlike
similar approaches in source code clone detection [91], the minimum similarity
threshold for our frequency vector is much higher. Even in CISC architectures
such as x86 64 that potentially can use thousands of opcodes, in practice most
functions use a small subset of common opcodes. This problem is exacerbated
in the cross architectural detection by our “opcode family” described in Sec-

3https://www.gnu.org/software/coreutils/

https://www.gnu.org/software/coreutils/
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tion 4.3.6 that further reduces variance between functions, resulting in 80%
precision with functions that have a similarity higher than 0.999. In addition
to this problem, the semantic analysis has complexity O(n2) in the number of
functions, compared to the O(n) of the structural analysis, limiting its scalabil-
ity.

Table 4.4: Precision and Recall in clone detection within the same architecture,
using structural analysis and semantic analysis combined, varying their input
thresholds.

Same architecture (x86 64)
Min. Cosine Sim.

✓ 0.98 0.99 0.999

2 0.8494 / 0.9746 0.8702 / 0.9708 0.8752 / 0.7690
3 0.9148 / 0.9114 0.9280 / 0.9084 0.9306 / 0.9235
4 0.9178 / 0.9143 0.9345 / 0.9145 0.9363 / 0.9039
5 0.9627 / 0.8593 0.9876 / 0.8646 0.9901 / 0.7964
6 0.9658 / 0.8905 0.9888 / 0.7599 0.9907 / 0.8004

While discussing Table 4.2 we explained how most of the False Positives in
the structural analysis are determined by clones with the same structure but
di↵erent opcodes. For this reason, by using the results of the structural analysis
and applying semantic analysis on them, we overcome this problem and obtain
the results shown in Table 4.4. The Table reports only precision and recall,
but we can clearly see how dramatic the improvement in precision is: even for
simpler functions composed of three nested structures both precision and recall
are now above 91%. For complex functions the precision can reach up to 99%
with our best result being 474 True Positives and only 4 False Positives in one
configuration. The remaining false positives are due to the granularity of our
approach returning block-level clones but being treated as function-level clones
by our experimental settings, in particular for ✓ = 2.

Table 4.5: Precision and Recall in clone detection across di↵erent architectures,
using structural analysis and semantic analysis combined, varying their input
thresholds.

Cross architecture (x86 64, aarch64)
Min. Cosine Sim.

✓ 0.98 0.99 0.999

2 0.7311 / 0.5071 0.7334 / 0.5087 0.7516 / 0.4645
3 0.7241 / 0.5402 0.7368 / 0.5476 0.7449 / 0.5250
4 0.7691 / 0.5504 0.7679 / 0.5647 0.7720 / 0.5402
5 0.7204 / 0.5398 0.7240 / 0.5145 0.7320 / 0.5263
6 0.7410 / 0.4922 0.7430 / 0.4908 0.7500 / 0.4888

This solution, however, does not work for cross architectural clones, as can
be seen in Table 4.5. Here the main problem lies in the structural analysis not
correctly mixing the various clone classes and this problem can not be fixed by
the semantic analysis.
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Table 4.6: Time required to perform the structural analysis, semantic analysis
and combined analysis in both same architecture and cross architecture using
✓ = 3 and min similarity of 0.99. Results obtained analyzing all coreutils binaries
together.

Analysis Time same arch.(µs) Time cross arch.(µs)

Structural only 5066 8922
Semantic only 16111921 46399417
Combined 543672 497643

Finally, Table 4.6 shows the time required for each approach. We can clearly
see how the semantic analysis is 1000 times slower than the structural one, while
the combination of the two still manages to reach an acceptable time, due to
the initial filtering performed by the structural analysis.

Table 4.7: Precision and number of detected clones in pairwise function de-
tection of several state-of-the-art approaches. The listed programs have been
compared against du.

bin BinCC (ours) BinDi↵ DeepBinDi↵

dir 0.9593 (172) 0.9333 (105) 0.9368 (95)
ls 0.9593 (172) 0.9333 (105) 0.9167 (96)
mv 0.9704 (169) 0.9739 (115) 0.9245 (106)
cp 0.9652 (144) 0.9783 (92) 0.8295 (88)
sort 0.9923 (131) 0.9670 (91) 0.9157 (83)
du 0.9574 (188) 0.9937 (159) 0.9933 (150)
csplit 0.9574 (94) 0.9254 (67) 0.9194 (62)
expr 0.9489 (98) 0.9677 (62) 0.9062 (64)
nl 0.9444 (90) 0.9672 (61) 0.9828 (58)
ptx 0.9266 (109) 0.9444 (72) 0.9254 (67)
split 0.9375 (96) 0.9538 (65) 0.9831 (59)
mean 0.9562 0.9580 0.9303

In Table 4.7 we compare our approach against BinDi↵ [27], a commercial tool
for binary di�ng, and DeepBinDi↵ [21], a research tool performing the same
task using deep learning. Given that both BinDi↵ and DeepBinDi↵ support only
pairwise comparison, and none of them support cross-architectural comparison,
we compared eleven binaries in the coreutils package of di↵erent size against
du. In particular we used our tool combining structural and semantic analysis
with a low threshold in order to match as many clones as possible (✓ = 2). For
BinDi↵ and DeepBinDi↵, instead, we report as clone a pair of functions having
at least half their basic blocks matching. Using higher threshold for all tools
would result in perfect precision, but would miss most function pairs.

We can see that BinCC, our tool, even with low thresholds, can emit more
clones compared to the state-of-the-art. This is due to our tool being capable of
emitting intra-project clones that, depending on the use case, may be desirable
or not. The precision of the detected clones is similar with respect to the other
state-of-the-art tools. We determined that our tool, similarly to DeepBinDi↵,
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Table 4.8: Time required to compare du with the binary listed in the column
bin, in seconds. The size column contains the combined size of du and the
target binary. Times have been counted from program invocation until program
termination.

bin size (KiB) BinCC (ours) DeepBinDi↵

dir 1081 3.40s 1409s
ls 1081 3.18s 1432s
mv 1045 3.43s 1999s
cp 978 3.22s 1740s
sort 952 2.90s 1216s
du 921 2.80s 2043s
csplit 682 2.55s 659s
expr 673 2.44s 652s
nl 642 2.43s 527s
ptx 749 2.58s 771s
split 701 2.43s 702s

fails in cases where functions have identical implementation modulo a di↵erent
function call. For example, they both detect xcalloc and xmalloc as clones,
being these two functions di↵erent only in the allocation function used. The
results obtained from DeepBinDi↵ are comparable with the results presented
in its original paper [21], while for BinDi↵ we obtained slightly more accurate
results compared to previous experiments [64].

A huge di↵erence instead, can be noted in the speed. Table 4.8 shows a
comparison between our tool and DeepBinDi↵. BinDi↵ using Ghidra requires
to manually disassemble the file, and for this reason it is not listed. The Table
clearly shows that our tool is order of magnitudes faster than the competition,
in some cases reaching di↵erence of a factor 103 (e.g. the comparison du-du).
In addition, DeepBinDi↵ can compare only two binaries together, requiring to
perform the analysis for any combination of executables, whereas our tool can
report the clones for all 108 coreutils binaries together in less than a minute.

For RQ2 we can thus conclude:

Even without using semantic analysis our approach is capable of reaching
more than 90% precision if the function is complex enough. For simpler
functions, this precision can be reached by combining the structural anal-
ysis with a semantic one, sacrificing some detection speed. Nonetheless,
our tool is still order of magnitude faster than the competition and can
achieve similar precision.

4.4.3 RQ3: Use-case

After performing the evaluation on a controlled case with unstripped binaries
in our possession, in this section we want to simulate a use-case by checking the
detection rate on stripped-only, real-case binaries.

Given that after the strip phase every information about the function name
is lost, building a ground truth set requires manually checking every function.
For this reason, we adopted an approach similar to the one of Hemel et al. [37]:
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we compiled several binaries with the default options and static linking. After
that, we ran the comparison between the binary itself and the libraries reported
to be used at link time. Additionally, we performed the check for a limited
set of extra libraries unrelated to the project. In this case, being more of a
use-case, we wanted to check more consistent functions and thus used higher
thresholds. In the dataset summary of Table 4.1, we reported the optimization
for this Research Question as “unknown”: being this a real-case scenario, we
used binaries without knowing the original compilation options. We used a value
✓ of 7 and a minimum number of nodes of 7 for the reconstruction and 15 for
the CFG.

Table 4.9: Results of the library and function usage detection for busybox. The
column “used” refers to functions in the library that were used inside busybox.
“checked” refers to the amount of functions checked from that library.

library name used checked

libresolv.so.2 1 2
libm.so.6 2 40
libjpeg.so.8.1.2 0 8
libti↵.so.5.3.0 0 7
libpng16.so.16.34.0 0 8
libMagick++-6.Q16.so.7.0.0 0 4
libFLAC.so.8.3.0 0 1
libsamba-util.so.0.0.1 0 21
libXext.so.6.4.0 0 20

Table 4.9 shows the results for busybox tag 1 31 0 which uses libm and libre-
solv. Our tool correctly reported function reuse only in the libraries statically
linked with the binary. We then ran the same analysis against those libraries
compiled for aarch64 and obtained similar results except for libm that was not
detected: of the 40 functions checked in x86 64, 0 were analyzed in aarch64.
The reason for this is that multiple functions were under the threshold and thus
not analyzed, probably due to the smaller CFG in the second architecture. The
number of analyzed functions for the other libraries were similar instead.

However, in order to not bias the evaluation given that we purposely used
libraries unrelated to the project, we also reran the evaluation with 800 libraries
usually present in an Ubuntu Linux install. In this specific case, we found 407
libraries that had function reuse and 393 that did not. We did not check if
all the reports were false positives or negatives, because this would require a
prohibitively high amount of time having to manually understand and analyze
over 8000 functions in assembly. However, we found that most of the reported
libraries are dependent upon libc, that is statically linked with the executable
we analyzed.

For this reason, we plan to conduct a more controlled test, analyzing also
the dependencies between the various libraries.

We can then answer RQ3 as follows:

By analyzing a stripped real-case binary executable our approach detects
the libraries statically linked with it and also the dependencies of those
libraries. Libraries unrelated with them are not detected
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Figure 4.14: Time required for disassembly and reconstruction on x86 64 O2.

4.4.4 RQ4: Performance

The last research question evaluates the performance and the scalability of our
analysis. In order to do so, we used a subset of the same dataset used for RQ1,
limited to x86 64 and O2. These times were recorded on a machine mounting
an Intel Xeon E5-2620 @ 24x 2.5GHz with 64GB of RAM, limited to a single
core and with hyper-threading disabled. Figure 4.14 shows the time required
for the disassembly of the executables. We can observe that the time scales
linearly with respect to the executable size, and it is in the order of hundredth
of seconds.

However, by observing Figure 4.15, showing the time required for the struc-
tural analysis only, we can note that the time required is in the order of tenth
of seconds. The entire procedure is thus completely dominated by the time re-
quired by the disassembly on which we depend, rather than the time required
by our analysis. This can be seen clearly also in Figure 4.16 showing the compo-
sition of time required to perform the combined analysis. In the Figure we can
note how the disassembly operation takes half the total time of the entire anal-
ysis, represented by the line. Moreover we can note that our approach working
with a 158MiB executable requires the same time as existing approaches on a
400KiB, as shown in Table 4.8.

We experimented with the disassembler, and managed to perform a faster
disassembly by analyzing only the function calls instead of performing a full
binary analysis. However, the reconstruction accuracy su↵ered greatly: the
fast disassembly took around the same time as our structural analysis, but
the reconstruction accuracy presented in RQ1 dropped by a flat 20% in every
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Figure 4.15: Time required for the CFG reconstruction step.

optimization level. For this reason, we decided not to report this analysis with
the fast disassembly option.

For RQ4 we can thus conclude:

Our analysis scales linearly and is completely dominated by the time required to
perform the disassembly.

4.5 Limitations and Threats to Validity

4.5.1 Predication

In some architectures, such as ARM, predication is used as an alternative to
branching by converting flow dependency to data dependency. Predication
works by associating instructions with a predicate, a boolean value, usually
a CPU flag, used to indicate if the instruction is allowed to execute. If this
boolean value does not hold at the time the instruction should be executed,
that instruction does not modify the architectural state, with the advantage of
not breaking the CPU pipeline. As an example, consider the following code:

0x410 cmp r0 , 0
0x414 cmpne r1 , 0
0x41C movne r0 , 5
0x420 moveq r0 , 6
0x424 bx l r
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Figure 4.16: Time required for the combined analysis. The line represents the
total amount of time required, while the colors represent the portion of time
taken by each analysis step.

The first instruction executes a comparison and sets the CPU flags according
to the result. If the flags are set as true, the second and third instructions do
nothing, and the fourth is executed, otherwise the second is executed which
changes the flags values again for when the third will be executed. The problem
with predication thus lies in the fact that a CFG reconstructed just by looking
at jumps will miss the flow hidden beneath these instructions. In our implemen-
tation we decided to ignore predication given that only two mnemonics, namely
CMOV and SETcc, supports these operations in x86 64, while in aarch64 these are
mostly deprecated given the recent advancements with branch predictors [35].

4.5.2 Mismatched compiler configurations

In addition to the results showed in Section 4.4.2, we briefly analyzed poten-
tial clones between binaries compiled with di↵erent compilers or optimization
settings.

Results show that our algorithm fails at finding potential clones when the
compiler or the optimization flags are di↵erent: these results are due to the fact
that code is rearranged during the data flow analysis performed by the compiler,
and thus the output dramatically changes depending on the analyses performed
at compilation time.

This was originally highlighted by Sæbjørnsen et al. [89] and we can con-
firm that not only the compiled binary is semantically di↵erent at various opti-
mization levels but also structurally di↵erent, and we expect every CFG-based
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approach to su↵er from this limitation. In order to overcome this problem,
Chapter 5 is dedicated to preventively detecting if there is a mismatch between
the executables’ optimization levels, to known if the results from binary clone
detection will be reliable or not.

4.5.3 Disassembler dependency

In this work, the starting point of our analysis is the disassembler. We relied
on an external tool as there is no novelty in implementing our own and deemed
the process as out-of-scope for this work. However, this means the goodness
of our structural analysis is dependent on the disassembly quality: using a
di↵erent disassembler may result in a di↵erent qualitative result in terms of
structural analysis ability and clone detection precision. We highlighted this
fact in Section 4.4.4 by citing the fast analysis: using a faster but less accurate
disassembly resulted in a flat drop of 20% accuracy in the structural analysis
alone.

4.6 Conclusion

In this chapter, we presented our approach for finding function reuse and clones
using a high-level refined CFG. We implemented this analysis and conducted
several tests in 24 million functions in the x86 64 and aarch64 architectures.

Results show that our analysis is faster than existing approaches, and the
time required is dominated by the disassembly step on which it depends. Our
technique can be applied without any training step in 20 di↵erent architectures,
analyzing any given number of executables at the same time.

When performing the comparison, our work showed to be capable of detect-
ing function clones with precision ranging from 91% to 99% when comparing
binaries from the same architecture and 75% when comparing binaries in dif-
ferent architectures. We showed that this precision is enough to detect the
presence of functions coming from a particular library, that partially answers
our motivation of detecting the presence and propagation of a vulnerable func-
tion in compiled software. However, more studies are required to determine if
this can work e�ciently also at basic block granularity.

We also showed that the weak point of binary clone detection in general,
as determined previously by Sæbjørnsen et al. [89] is the presence of di↵erent
compilers and optimization levels in the analyzed binaries. For this reason,
Chapter 5 is focused on detecting this information on a binary.

4.7 Replication

The dataset used in our study can be found on Zenodo at the following URL [74],
while source code can be found publicly on GitHub 4. On GitHub, the branch
experiments contains all the experimental data and results used in this paper.

4http://github.com/davidepi/bincc

http://github.com/davidepi/bincc
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Chapter 5

Compiler Detection

5.1 Introduction

During the software development life-cycle of a natively compiled application,
the process of converting source code to binary code performed by a compiler
occurs frequently. During this transformation, the compiler is passed several
flags via the “build” commands and settings contained within a Makefile or
equivalent. This informs the compiler of the developer’s intent to retain or omit
some information or to modify the original code in an optimized version.

These flags can be used to optimize faster executions, smaller sizes, and
lower energy consumption [40]. However, the flags are not explicitly recorded in
the binary itself, as they are completely unnecessary for the machine to execute
the binary code.

Moreover, the compiler itself is not easily identifiable. There is no standard
way to record this information, and although some compilers write a comment
in the binary itself, it is easily skipped or duplicated and not guaranteed to
be parsable. For example, if a file compiled with the Clang compiler is linked
with a library compiled with GNU compiler collection (GCC), this comment
will contain both signatures.

However, this information is extremely valuable for various applications, such
as categorizing an older build, finding vulnerabilities [18], finding similarities in
binaries [16], rewriting a binary [103], or providing accurate bug reports in case
the compilation environment cannot be controlled [79]. A simple example of the
latter case could be a library that has incompatibilities only with a specific com-
piler, in a product published by a di↵erent vendor than the library developer.
Pallister et al. have shown that di↵erent optimization options can have a signif-
icant impact on final energy consumption [69]. The use of precompiled libraries
could be problematic in embedded applications where energy consumption is a
concern.

Knowing the compilation flags could even be helpful when performing binary
analysis. In their work, Pewny et al. reported that applying their analysis to
di↵erent compilation flags significantly a↵ects accuracy [71]. In this case, our
work will help to provide confidence in the analysis results, because the di↵er-
ences between the optimization levels of O2 and O3 are much less pronounced
than those of O0 and O3.

65
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Although there are several papers on detecting the compiler [79] and toolchain
[78] used, these methods do not rely on automatic learning approaches. There-
fore, a significant e↵ort is required to detect the above information in di↵erent
architectures. The new architecture must be studied and understood to check if
and how the information can be retrieved. In contrast, with a machine learning-
based approach, it is su�cient to provide new data and re-run the training to
detect a new compiler or flag. With the automated dataset generation provided
in our work, the time required to generate this data is a couple of hours for each
optimization level that we want to classify.

In this study, we present our approach for recognizing both compiler and
optimization levels using a long-short term memory network (LSTM) [39] and a
convolutional neural network (CNN) [58] within di↵erent architectures. We ana-
lyzed common optimization levels on Linux binaries, compiled with either GCC
or Clang in two di↵erent architectures, and with GCC only in seven di↵erent ar-
chitectures. We want to identify optimization levels ranging from non-optimized
code (O0), code that is optimized for speed with di↵erent levels of aggressive-
ness (O1, O2, O3) or code optimized for small binary size (Os). Although we
are not the first to tackle this problem [13], the novelty of our research can be
summarized as follows:

• The creation of a huge dataset with automated replication scripts consist-
ing of 76630 compiled files. These files come from seven di↵erent CPU
architectures and two di↵erent compilers, with a combined total of 123
GB of stripped binary data.

• The implementation and tuning of a neural network structure that out-
performs existing work in flag detection.

• An analysis that examines the minimum possible number of raw bytes
that are required to obtain accurate predictions.

This study is an extended version of our previous work [73]. The main
di↵erences between our previous study and the current study are as follows.

• The number of optimization levels test was increased from {O0, O2} to
{O0, O1, O2, O3, Os}.

• The number of architectures tested have increased from {x86 64} to {x86 64,
AArch64, RISC-V, SPARC, PowerPC, MIPS, ARM32}. These additional ar-
chitectures require a completely di↵erent cross-compilation approach for
generating the dataset, as described in Section IV-A. We also made con-
siderable e↵orts to automate the generation of the dataset. In our previous
work, compilation was a manual task, while now we provide several scripts
to automate the process. The main advantage of this automated approach
is the ability to generate a di↵erent dataset with di↵erent compilation flags
without the user having to do anything. Although this does not work for
additional architectures, it still provides an e↵ortless way to generate the
dataset with additional flags.

• The evaluation has been completely reworked, considering the expanded
category set. Moreover, in this extended version, we tested the feasibil-
ity of our study in a scenario with function-level granularity. We also
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examined the distribution of flags in the Ubuntu and MacOS operating
systems.

The rest of this chapter proceeds as follows. Section 5.2 presents the moti-
vation for our work. Section 5.3 discusses related work in the field of binary file
analysis with machine learning. Section 5.4 presents the problem and our ap-
proach and Section 5.5 presents the empirical evaluation. Section 5.6 compares
our choices with another similar work in the field and discusses them in terms
of the results obtained. Section 5.7 describes the limitations of our study and
Section 5.8 concludes the chapter. In addition, Section 5.9 provides instructions
to download our dataset and source code.

5.2 Motivation

After briefly introducing the motivation behind our work in Section 3.1, we
provide an example of the reasons behind our work in this section. Although
there are several reverse engineering tools such as IDA1 or Ghidra2, these usually
do not detect the flags used during compilation or at link time. This is because a
user is interested in extracting and collecting information from single binary files
as part of reverse engineering. Despite this, in some applications knowing the
original binary flags is almost mandatory. For example, Wang et al. showed how
in binary rewriting most of the failures are due to compiler optimizations [103].

The decompilation scenario is also equally interesting. According to Katz
et al. [52], the presence of optimizations reduces the success rate in correctly
decompiling an executable. Moreover, their results are based on recurrent neural
networks (RNNs), so we expect traditional approaches with hand-crafted rules
to be more susceptible to underlying optimizations. With a higher level of
optimization, we expect the decompiler to output a higher amount of goto

statements. If this is the case, knowing the optimization flags may give an
indication of the expected accuracy of a decompiler, knowing that a heavily
optimized code may decompile into source code that is more di�cult to analyze.

Nevertheless, the focus of our study was on code analysis. When compar-
ing multiple binaries, knowledge of the compilation flags becomes much more
useful, almost mandatory. As reported in Section 3.1, Pewny et al. in their
analysis of cross-architectural binary code devoted an entire research question
investigating the presence of false/true positives at di↵erent optimization lev-
els [71]. Ultimately, they concluded that comparing non-optimized to optimized
code results in significantly lower accuracy. In our internal study, we came to
a similar conclusion. Comparing control flow graphs (CFGs) of functions, even
within the same architecture but with di↵erent compilers or optimization flags,
is dominated by false positives. The impact is so great that the comparison
is usually impractical when dealing with di↵erent compilers or O0 versus O2,
where it is perfectly fine when comparing O1 with O2 or O3. Thus, performing
analyses or comparisons between binaries may lead to results that are either
good or completely unusable, depending only on the compilation flags used.
These two contrasting results have led us to look for a way to detect in advance

1https://hex-rays.com/
2https://ghidra-sre.org/

https://hex-rays.com/
https://ghidra-sre.org/
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the presence of optimizations. This is a way to determine whether a comparison
or analysis between binaries is feasible, and if the results will be reliable.

In our previous study, we focused only on the presence/absence of optimiza-
tions, the most influential factor in determining a poor comparison between two
binaries. In this extended version, we also tried to detect the degree of opti-
mization. In fact, we can expect a lesser loss of accuracy when comparing, for
example, an O1 optimized code to an O3 optimized code.

5.3 Previous Works

Binary file analysis is widely used in the field of security. Recently, machine
learning techniques have been used to aid malware detection. Pascanu et al.
used recurrent neural networks (RNNs) [70] to extract malicious features from
a binary file in an unsupervised manner, which was extended with convolutional
neural networks by Athiwaratkun et al. [6].

Related works dealing with compiler flags, instead, focuses on the e↵ects
of these flags rather than their detection. Work performed by Triantafyllis
et al. focused on exploring optimal compiler flags [101] as did the work of
Hoste et al. [40]. In recent years, several machine learning-based techniques
have been developed [104] [5]. Older techniques focus on the use of machine
learning to reduce the number of iterative compilations required to obtain a
good set of flags [1] and to help approximate NP-hard problem e�ciently, like
phase ordering [99]. Instead, more recent techniques use deep learning to detect
function boundaries, a work by Bao et al. [7], which was then extended by Shin
et al. [97]. Chua et al. instead detected function types using RNNs [14] whereas
He et al. attempted to recover the debug symbols from a stripped binary [36].

To the best of our knowledge, the only work attempting to detect flags in
an existing binary, rather than optimizing them, is that of Chen et al. [13]. The
main di↵erences between their study and our work are as follows:

• We investigate the detection of not only flags but also compilers.

• We investigate the detection in seven di↵erent architectures instead of only
one.

• Our analysis aims not only to maximize the accuracy but also to minimize
the required input.

• Our dataset is more than 100 times larger [74], disproving some claims of
previous research.

5.4 Approach

The problem we are trying to solve is to identify the optimization level and
possibly the original compiler used to compile from source code to binary code,
when only a portion of the binary code is available. Specifically, given a sequence
of bytes v of arbitrary length coming from a binary, we want to train a classifying
function Mflags capable of predicting the compilation flags and a classifying
function Mcompiler predicting the compiler used.
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Source A gcc -O0

Source B gcc -O2

A.o

libB.a

Linker a.out

Figure 5.1: Linking an executable may include binary data compiled with dif-
ferent flags.

With Mflags, we try to classify the optimization level used in the input bi-
nary. In our study, we target the commonly used optimization levels
{O0, O1, O2, O3, Os}

3. We trained di↵erent Mflags for each of the seven archi-
tectures we studied, namely x86 64, AArch64, ARM32, MIPS, PowerPC, RISC-V,
and SPARC, and expect a user to select the prediction model according to the
input architecture. The architecture of a binary is easily recognizable by tools
such as file, so this fact is not a limitation and simplifies training.

Similarly, with Mcompiler we classify the compiler between gcc and clang,
which means that the compiler analysis is a binary classification. This is done
only for the natively generated architectures, such as x86 64 and AArch64,
for reasons explained in Section 5.4.1. Thus, we have trained two di↵erent
Mcompiler.

Our goal is not only to maximize accuracy, but also to keep the sequence
of bytes v as small as possible; as such, we dedicate Section Section 5.4.2 to
explain how the binary code is transformed into v (or several vs), the input
expected by our learning network. To compare the performance of di↵erent
models, we trained all the aforementioned configurations using a feed-forward
Convolutional Neural Network M

CNN and a Long-Short Term Memory Net-
work M

LSTM , producing in total 7MCNN

flags
, 7 M

LSTM

flags
, 2 M

CNN

compiler
and 2

M
LSTM

compiler
. These networks are trained in several di↵erent datasets, explained

in detail in Section 5.4.1, and their prediction results are compared.
More details about the network models can be found in Section 5.4.4.

5.4.1 Dataset

To train our networks, we must first collect the data. Our networks perform su-
pervised learning, so it is necessary to partition the binary code by optimization
level and compiler used.

Although this task may seem trivial, as there are plenty of open-source soft-
ware programs that can be compiled with the desired flags, several precautions
are required during the linking phase. This is because although we can choose
both the optimization level and compilers, we have no guarantees about the en-
vironment that performs the compilation. There are several libraries available
to be statically linked, and we know nothing about the compilation settings
used for these libraries. This problem is highlighted in Figure 5.1.

When a library is statically linked, its binary code is copied inside the fi-
nal executable during the linking phase. As such, in most build systems, pre-
existing libraries could be linked while generating the dataset. In Figure 5.1,

3Note that some applications might use additional “hand-picked” flags. This limitation is
discussed in Section 5.7
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this is shown in the Source B path, where, a source originally compiled with an
optimization level of O2 is linked within the same binary with an optimization
level of O0. This implies that these libraries could irreversibly contaminate our
build, because we lack information about their creation.

Possible options for solving this problem would be:

1. Use a dataset composed of object files prior to linking.

2. Edit the build script for the generated binary to exclude static linking.

3. Create a system with only shared libraries. Then use this system to build
the dataset.

In our study, we chose options 3 for the following reasons: Option number
1 would not provide a realistic case study, as several optimizations can also
be performed at link time [2]. Option 2, could be “too risky” as it involves
manually checking various compilation settings written in di↵erent languages
and styles in order to ensure dynamic linking and has an high risk of error. For
example, in our experiments, we found that some build scripts use hard-coded
parameters, others use environment variables, and others recursively integrate
files. Checking, understanding, and modifying all these build scripts correctly
is entirely possible but carries a high risk of error.

Option 3 can guarantee the absence of contamination, but requires some
care, as one needs to isolate from the existing environment. While generating our
dataset, in order to ensure this constraint was respected, we used two di↵erent
approaches depending on whether the build architecture was matching the target
one or not. The final dataset is publicly available on Zenodo at the following
link [74].

Dataset: Native compilation

The dataset we use for the native compilation contains all software listed in the
Linux from Scratch book4, version 9.1-systemd, published on March 1, 2020.
In addition, we added to every dataset the LLVM suite version 10.0.0, which
is required for building Clang5. To solve the static linking problem within a
native build system we performed the following steps:

1. We built a toolchain with no particular compiler and optimization level
from the host machine. We ensured that only shared libraries were built
in this toolchain.

2. We created a chrooted environment containing only the toolchain to isolate
it from the original build system.

3. We built the actual dataset, with the desired compiler and optimization
level.

After building all software binaries, we then strip and use each ELF file.

4http://www.linuxfromscratch.org/lfs/index.html
5https://releases.llvm.org/10.0.0/

http://www.linuxfromscratch.org/lfs/index.html
https://releases.llvm.org/10.0.0/
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Dataset: Cross compilation

The cross-compilation approach we use is based on the presence of readily avail-
able toolchains in the Ubuntu Package repository6. For the following study, we
need the gcc, g++ and binutils packages for each architecture we want to target.
For cross-compiled architectures, we did not build a Clang dataset and limit our
analysis to GCC only.

Unlike in the native compilation presented in Subsection 5.4.1, the linker is
not capable of linking binaries from the build system because they are compiled
for a di↵erent architecture. However, existing toolchains may still ship static
libraries, requiring some care to ensure either these libraries are built with the
correct flags or not present at all. Aside from that, chrooting is not neeeded,
meaning that we can fully automate the entire building process, which normally
ends with the execution of the chroot command. Pointers to the script used to
perform this automated building can be found in Section 5.9.

However, not all software used in the native building supports cross-compiling.
Despite heavily editing most scripts, some software, such as Perl, fails to cross-
compile. For this reason, when cross-compiling, we use a slightly di↵erent
dataset and limit our study to the GCC compiler. This new dataset comprises all
the software from LFS that supports cross-compilation as well as some software
coming from Beyond Linux from Scratch7. Due to space limitations, we cannot
list every piece of software used in this building process. For a comprehensive
list see the resources/scripts folder in the repository listed in Section 5.9.

As with native compilation, each ELF file generated is stripped and used in
the dataset.

5.4.2 Preprocessing

In this section, we explain the additional preprocessing before the input vector
is fed into the networks. In the evaluation, we prove that advanced encoding is
unnecessary, but we report it here anyway because previous research has used
it.

The goal of this preprocessing is to transform a binary file, usually composed
of a sequence of data and instructions, into one or more input vectors for the
automated learning step. We are naturally interested in correctly classifying the
smallest possible input, with the finest grain being the function grain. We com-
pare two approaches: one using a stream of bytes without prior knowledge of the
underlying data and one that requires disassembly and precise function bound-
aries. The e↵ectiveness of these two approaches is analyzed in Section 5.5.3.

The first approach, referred to as “raw bytes” throughout the chapter, has
been shown to be e↵ective for learning functions boundaries in previous re-
search [7].

To generate this representation, we use readelf to dump the .text section
of the executable and divide it into fixed-size chunks. We chose a-priori 2048
bytes as the maximum size of this chunk of bytes v. However, we also evaluated
the precision of the networks in detecting the compilation settings for these
chunks as their size varied, in order to simulate a case where we want to detect
the optimization of a single function.

6https://packages.ubuntu.com
7http://www.linuxfromscratch.org/blfs/index.html

https://packages.ubuntu.com
http://www.linuxfromscratch.org/blfs/index.html


72 CHAPTER 5. COMPILER DETECTION

4889442418  mov qword [rsp+0x18], rax
31C0        xor eax, eax
4885FF      test rdi, rdi
7423        je 0x25
488B4208    mov rax, qword [rdx+0x8]
48893424    mov qword [rsp], rsi
4889E6      mov rsi, rsp
4889442408  mov qword [rsp+0x8], rax
488B02      mov rax, qword [rdx]
4889442410  mov qword [rsp+0x10], rax
E85A0E0000  call 0xE5F
4885C0      test rax, rax
0F95C0      setne al

Figure 5.2: Portion of a disassembled function.

One drawback of this representation is that we do not know whether the raw
data represents instructions or stack data. In contrast, if we want to classify
an entire executable, disassembly is not required, a step that usually requires
several minutes. Even when we want to classify at function granularity, based
on the research of Bao et al. [7], we can extract function boundaries and perform
classification without disassembling the executable, which is not only slow, but
is also inherently di�cult and prone to error in some architectures [4].

In the second representation, the one that requires disassembly, radare2 8,
is used to extract each function from the executable. The results are shown in
Figure 5.2.

In the figure, the left column represents the raw bytes written in the binary
and the right column their translations in Intel Assembly syntax. The example
is taken from x86 64 disassembled code. We can see many bytes specifying
that the registers to be used should have a length of 64 bits, represented by
the red bytes in figure, preceding every instruction involving rax, rsi, rsp reg-
isters. This is a problem, because real functions can be of arbitrary length,
but our networks support fixed-length vectors as input. We expect these ex-
tra bytes to contribute almost nothing to the final result and thus decide to
remove them and keep only the byte(s) representing the operations to be per-
formed, without parameters. Unlike the previous research, we also remove the
operands in our representation, in order to save more space and accomodate
even more “valuable” instructions inside the limited length vector [13]. Finally,
only the blue bytes in Figure 5.2 were encoded in our representation. Extra
data are pre-truncated, because we expect the most useful operations are at
the end of a function and not at the beginning, which contains the initializa-
tion. Insu�ciently long functions are pre-padded with zeroes, as pre-padding
has been proved to be better for LSTMs [22]. From now on, we will refer to this
representation as “encoded”.

In both representations, we feed our data to the networks as a time series,
where each point in time is actually a byte of data from the binary file. For
example, the first two instructions of Figure 5.2 would have this vector in the
raw byte approach: [0x48,0x89,0x44,0x24,0x18,0x31,0xC0]. In the encoded

8https://rada.re/

https://rada.re/
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f0 25 14 de af 8c 85 c3    00 f0 25 14 de af 8c 85  
85 bf 5b cf e0 f2 63 0b    00 00 00 00 85 bf 5b cf 
92 af 97 0b 06 84 1d 5d    00 00 00 92 af 97 0b 06 
e3 14 bc ac a8 de 21 e7    00 00 00 00 00 00 e3 14 
73 11 27 9a ff 4f d9 73    00 00 00 00 00 73 11 27 
03 d6 ce de 8b 0d af 46    00 00 03 d6 ce de 8b 0d 
74 37 35 f2 49 c3 e5 69    00 00 00 74 37 35 f2 49 
8c 47 4a 57 d2 cf 7e 46    00 8c 47 4a 57 d2 cf 7e 
 

Figure 5.3: Truncation of input sequences on the left and subsequent padding
on the right. The amount of truncated bytes in this Figure is symbolic.

representation instead they would be [0x89,0x31].

5.4.3 Padding

For the encoded representation presented in Section 5.4.2, the input vector
length is equal to the function length. This makes it necessary to pad the data,
as the function length is always di↵erent. However, the raw data approach,
requires a fixed amount of sequential data from the binary. As any data in
any part of the .text binary section can be used as an input, in principle, no
padding is strictly required.

However, we determined that by always providing unpadded vectors, both
CNN and LSTM are unable to deal with padded data during evaluation. The
experimental data in Section 5.5.4 shows that when training with unpadded
inputs, the inference of a vector padded with zeroes by more than 60% of its
length results in a 10% accuracy drop. This can be detrimental in a real case,
as it would be necessary to train di↵erent models for di↵erent input sizes if we
want to infer a smaller amount of data or just a portion of the executable.

To solve this problem, we truncate a random number of bytes in the interval
[0,↵] where

↵ = len(v)� 32

The value 32 has been chosen so that the input chunk v to be still classifiable:
if we pad too much, we might get chunks where the classification is impossible
due to lack of enough information. This number is also extremely conservative:
consider that in x86 64, for example, just calling an imported function requires
at least 11 bytes of data, and translates to a single opcode.

The random amount is defined by an exponential distribution. Our intention
is to use a distribution where 99% of the values fall within the above interval,
while clamping the outliers to 32. In this case, the network would predominately
receive low-padded vectors, while occasionally encountering a mostly-padded
vector. With the exponential cumulative distribution function as y = 1� e

��x

we fix y to 0.99 and x to ↵ to obtain the � shown in Equation 5.1.

� =
2 ln 10

↵
(5.1)

We then use this � in the exponential distribution generating the random
number of bytes that should be truncated for each input. After truncating the
input, we prepad it by adding zeroes.
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Embeddings

LSTM

Dense

out=128

n=256

n=#classes

[0x89, 0x31, 0x85, 0x74, ...]
[0x89, 0xE8, 0x89, 0x89, ...]
...

[0.96, 0.0, 0.04, 0.0]

Softmax

Tanh

Figure 5.4: LSTM model structure.

An example of this can be seen in Figure 5.3, where each line represents
an input sequence before padding on the left block and after padding on the
right block. The red part represents the amount of input data that will be
truncated. The length of this part is decided randomly within the interval
bounds previously mentioned. On the right block we can see that the same
amount is replaced by prepending zeroes.

Evaluation of this padding is provided in Section 5.5.4.

5.4.4 Networks

For our analysis, we used two di↵erent networks: a LSTM [39] and a feed-
forward CNN [58]. These networks have been chosen due to their successful
applications in natural language processing or image recognition. In fact, we
model our optimization recognition problem as a pattern recognition problem: a
particular optimization can be recognized by a network as a pattern of opcodes
in the input sequence of bytes.

n=128 n=#classes

[0x89, 0x31, 0x85, 0x74, ...]
[0x89, 0xE8, 0x89, 0x89, ...]
...

[0.96,
 0.0,
 0.04,
 0.0]
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Figure 5.5: CNN model structure.

The first model is shown in Figure 5.4. This model depicts a simple LSTM,
given that we encoded our sequence of bytes as a time series and the ability of
LSTMs to perform well on this type of problem. LSTMs, in fact, have special
“memory” cells, that allows them to memorize a particular input or pattern
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even in long sequences [39]. Our core idea is to train this kind of model into
memorizing a particular pattern, representing the compiler or the optimization
level, over a long sequence of bytes belonging to the binary.

As we can see from the figure the model is pretty straightforward. It is
composed of an embedding layer with 256 as vocabulary size (because we use
bytes in range 0x0 to 0xFF) and 128 as dimension for the dense embedding. This
layer encodes positive integers into a dense vector of fixed size, understandable
by the LSTM. Then, the LSTM layer with 256 units is used for the actual
learning. This layer uses a hyperbolic tangent (tanh) as the activation function.
The kernel is initialized by drawing samples from a uniform distribution in
[�64�

1
2 , 64�

1
2 ]. The last part of the network is a dense layer with 1 output and

Sigmoid activation for the binary case, dense layer with 5 outputs and Softmax
activation for the multiclass case. The optimizer is Adam [55] with learning rate
of 10�3.

The second model, is based on the trend in image recognition and catego-
rization [98] and is based on a convolutional neural network. The idea is that a
series of convolutions is used to extract highly dimensional information from the
sequence of raw bytes passed as input. The Structure is shown in Figure 5.5.

The first layer is identical to that of the LSTM version, because its utility
is the same. Then, three blocks of convolution, convolution, and pooling, with
increasing number of filters, were used. In the Figure, the label k3n32s1 for a
convolutional layer indicates a kernel size of 3, a number of filters of 32, and a
stride of 1. In these blocks, the convolutions are used to extract features from the
sequence of bytes, and the pooling is used to make these features independent
of their position in the sequence.

The leaky ReLU [63] is used in place of the ReLU [67], because the latter
su↵ers from the vanishing gradient problem. Although the ReLU function re-
turns 0 for values less than 0, the leaky variant returns an ✏, in our case 0.01,
to keep the neuron alive. Before output, the final fully connected layer com-
posed of 1024 neurons is used, followed by a ReLU activation and the canonical
dense and sigmoid for binary classification or dense and softmax for multiclass
classification. Also in this case the optimizer is Adam with learning rate of
10�3.

All the models use binary cross-entropy as loss function for the binary clas-
sification and categorical cross-entropy for the multiclass classification [34].

The presented hyperparameters of both the LSTM and the CNN were es-
timated using the Hyperband algorithm [60]. We used powers of two as space
search in the interval [32, 1024] for most features, except kernel size and strides.
For the kernel size, the space search was the set {3, 5, 7}. Instead, for the stride,
the space search was {1, 2}.

5.5 Evaluation

We performed experiments using an Nvidia Quadro RTX5000 on the data pre-
sented in Section 5.4.1 after the preprocessing explained in Section 5.4.2. How-
ever, given the high amount of binary data, we obtained a number of input
vectors in the order of millions. Thus, we could safely split the data into dis-
jointed sets, while maintaining a high number of samples for each set. Thus,
we set training, validation, and testing with split ratios of 50%, 25% and 25%
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respectively.
No augmentation was performed and no overlapping sequences were col-

lected, with each sample being absolutely unique between training validation
and testing. Duplicate samples were removed from each set. These are com-
mon especially in the opcode-encoded datasets. Training was performed for
40 epochs using a batch size of 512 samples. An early stopper was employed,
which stopped the learning after three epochs if the loss function in the valida-
tion dataset did not improve by at least a factor 10�3. In total, we trained 36
models in approximately 550h.

In this section we want to answer the following research questions:

• RQaccuracy: Is it better to use a CNN or a LSTM? What results can be
expected from each network?

• RQmin: What is the minimum number of bytes required to have accurate
predictions?

• RQencoding: Does extracting data with a disassembler increase the accu-
racy of the predictions?

• RQpad: Does padding during training improve the performance of the
networks?

• RQoccurrence: What are the most common optimization levels in real-case
distributions?

RQaccuracy aims to investigate the advantages and disadvantages of using
one network over the other for both compiler detection and optimization level
detection. This question is then expanded in RQmin to investigate how much
the input size can be reduced while still maintaining a su�ciently high accu-
racy. RQencoding was investigated to explain our choice of training with raw
data. In particular, this contradicts the claim of previous work conducted by
us and Chen et al. [13]. RQpad, instead, serves the purpose of justifying why in
Section 5.4.3, we claim that padding is necessary while training with raw data.
Finally, RQoccurrence concludes our study by running our models in real-case
code to obtain statistics about the most used flags, proving the assumption of
O2 being the most popular flag as not always correct.

5.5.1 Accuracy

To evaluate the accuracy of both the CNN and LSTM we divided our dataset
by architecture. The number of samples we used for each architecture is listed
in Table 5.1. It should be noted that in the worst case we trained with at least
106 samples and tested on at least 6 · 105 samples.

The number of features for each sample are 2048 sequential bytes from the
specified architecture, categorized by optimization level. In addition, x86 64

and AArch64 contains samples compiled with both GCC and Clang. We trained
a CNN and a LSTM model for each dataset and obtained the results shown in
Table 5.2 regarding the optimization level detection. Note that all results were
obtained with raw encoding and padded data unless otherwise stated.

This table represents the categorical accuracy achieved while performing
supervised evaluation of our trained models in the testing data. Being the
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Table 5.1: Number of training and testing samples for each architecture. Each
sample is composed of 2048 bytes.

Dataset Training Testing

Dx86 64 2.4 · 106 1.2 · 106

Daarch64 2.3 · 106 1.1 · 106

Driscv64 1.3 · 106 7.0 · 105

Dsparc64 1.9 · 106 9.8 · 105

Dpowerpc 2.0 · 106 1.1 · 106

Dmips 1.6 · 106 8.2 · 105

Darm 1.2 · 106 6.2 · 105

Table 5.2: Accuracy for each architecture while detecting the optimization level.

Architecture CNN Accuracy LSTM Accuracy

x86 64 0.8781 0.9291
AArch64 0.9181 0.9687
RISC-V 0.8427 0.9209
SPARC 0.9364 0.9682
PowerPC 0.8702 0.9227
MIPS 0.9596 0.9837
ARM 0.9380 0.9588

accuracy a metric defined for binary classification, every time we use this term
in a multiclass context, we refer to the following formula in Equation 5.2, where
tp, tn, fp, fn are true positives, true negatives, false positives, false negatives
and k is the number of classes.

accuracy =

P
k

i

tpi+tni

tpi+tni+fpi+fni

k
(5.2)

We can note how that the LSTM is always better than the CNN, with
the worst accuracy being recorded for x86 64, RISC-V, and PowerPC in both
networks. However, the downside of using the LSTM is its extensive training
time. We can see this in Figure 5.6.

The figure shows the times obtained from the MIPS dataset, one of the
datasets with the fastest training times owing to its size. It takes approximately
seven epochs for the LSTM to reach the same accuracy as the CNN at the end
of the first epoch. In addition, the CNN can complete 10 epochs in the time
the LSTM is able to complete only 3. We also measured similar speeds during
inference, with a CNN two to three times faster than the LSTM. This is not
limited to the single architecture we presented in Figure 5.6. As we can see in
Table 5.3, it applies to any architecture, with the worst case being x86 64 having
an LSTM requiring more than five times the corresponding CNN training time.
Note, however, that these times were collected only once. As such, variations,
even significant ones, are expected.

To further investigate the accuracy, Figure 5.7 shows all the confusion ma-
trices for each model trained with the CNN.
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Figure 5.6: Accuracy obtained in the validation dataset at the end of each
training epoch.

The problematic part, as seen from the Figure, is the distinction between
O2 and O3. In fact, O0 and O1 can be detected with 99% accuracy in any
architecture and Os is never below 96%. O3, however, in the worst case has
more wrong classifications than correct ones, as we can see in PowerPC and
RISC-V. This situation is slightly better when an LSTM is used. The results are
shown in Figure 5.8

In this Figure, we can see how the LSTM achieves high accuracy in some
architectures, namely AArch64, SPARC, MIPS, and ARM. The architectures prob-
lematic for the CNN remain problematic also for the LSTM, but to a much
lesser extent. In fact, no optimization level reports more wrong classification
than correct ones, and the worst case is a 70% accuracy for PowerPC O2.

Table 5.3: Training time, in minutes, required for each network and architecture.

Architecture CNN Time LSTM Time

x86 64 361 min 1845 min
AArch64 298 min 1764 min
RISC-V 220 min 1034 min
SPARC 346 min 1397 min
PowerPC 398 min 1379 min
MIPS 257 min 1362 min
ARM 407 min 629 min
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Figure 5.7: Confusion matrices while detecting optimization level for each ar-
chitecture. Results obtained with the CNN.
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Figure 5.8: Confusion matrices while detecting optimization level for each ar-
chitecture. Results obtained with the LSTM.
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Figure 5.9: Confusion matrices whith split dataset. CNN on left, LSTM on
right.

To mitigate this problem, we trained two additional datasets: Dmerged and
Dsplitted: the first containing all optimization flags but with O2 and O3 merged
together, the second containing only O2 and O3.

Figure 5.9 reports this split dataset situation. We can notice how the CNN
network performs slightly better after separating O2 and O3 from the rest of
the dataset, whereas the LSTM performs slightly worse compared to the results
without separation.

Concerning the compiler detection, results are reported in Table 5.4.

The table shows how both networks in both architectures perform excellently.
Even in the x86 64 with CNN case, that performed quite poorly in the opti-
mization detection, the incorrect classifications were 587 compared to 1225822
correct classifications. Given the high accuracy of the CNN and its faster speed
compared to an LSTM, it should be the preferred choice for compiler detection.

We can thus answer RQaccuracy as follows:
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Table 5.4: Accuracy for each architecture while detecting the compiler.

Architecture CNN Acc. LSTM Acc.

x86 64 0.9995 0.9932
AArch64 0.9996 0.9996

Figure 5.10: Accuracy for the CNN in the optimization detection.

While detecting the optimization level, the LSTM can o↵er higher accu-
racy at the price of slower train and inference. The accuracy range from
a minimum of 92% to a maximum of 98% depending on the architecture.
While detecting the compiler, however, both networks perform well. In
this case the CNN is the preferred choice due to its speed advantage and
an accuracy of 99.95%.

5.5.2 Minimum bytes

This section investigates the possibility of detecting the optimization level and
compiler with function granularity. To this end, we performed our evaluation
for each model while feeding a progressively increasing number of bytes. We
thus performed the initial evaluation with only 1 byte for each sample; then,
we performed a second evaluation with 2 bytes and so on until we used the full
vector length of 2048 bytes.

Figure 5.10 shows the results obtained using the CNN network. Figure 5.11,
shows the same results but with the LSTM network.

Note that every architecture follows the same detection trend in the LSTM
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Figure 5.11: Accuracy for the LSTM in the optimization detection.

network. In the CNN one, however, the accuracy for x86 64, PowerPC, and
RISC-V stops increasing, unlike in the other architectures. These three architec-
tures are the same architecture we classified as “problematic” in Section 5.5.1.
In addition, this does not happen for the LSTM network. We can assume the
CNN failed to learn how to properly recognize O2 and O3 in these architec-
tures, given the strong similarity between these two optimization levels. As
such, additional bytes do not help the network at all, in contrast to the LSTM
case.

Additionally, we can note how, with any number of bytes, the LSTM per-
forms definitely better than the CNN.

To highlight this, Figure 5.12 shows a direct comparison between LSTM and
CNN in a single architecture, x86 64. This figure, shows how there is always
approximately 5% more accuracy in the predictions of an LSTM compared to
the predictions of a CNN.

Having analyzed how the overall accuracy varies when the input length
changes, we now want to check whether the average function length is su�cient
to achieve good accuracy. To do this, however, we need to gather statistical
data on binary files. The idea is to calculate the average function length at each
optimization level and check the accuracy of the network for that particular
level at that particular length.

We disassembled every binary for every optimization level and compiler and
counted the number of bytes that compose each function. The results are shown
in Figure 5.13.

The reported number is the median, calculated over 47 ·106 functions across
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Figure 5.12: Comparison between CNN and LSTM in the x86 64 optimization
detection.

Figure 5.13: Statistics about the length of 47 · 106 functions. The value inside
each box refers to the median.
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all architectures. We chose to show this average metric, as opposed to the mean,
as we want to draw conclusions based on the “typical” function length. This is
also a much more conservative approach, given that the mean is influenced by
some outliers with a very high number of bytes, on the order of 106. Although
Figure 5.13 shows the medians for all the architectures together, more precise
results for each architecture are reported in Table 5.5.

Table 5.5: Median number of bytes per function for each optimization level in
each architecture. Results collected over a total of 47 · 106 functions.

Arch. O0 O1 O2 O3 Os

x86 64 65 223 220 257 125
AArch64 68 232 220 260 132
RISC-V 84 160 166 218 113
SPARC 104 192 220 268 132
PowerPC 136 224 264 292 148
MIPS 184 276 284 376 188
ARM 72 188 174 232 106

At this point, we calculated the accuracy for each of the listed medians.
Figure 5.10 and 5.11 show the overall accuracy of correctly predicting each
optimization level. Instead, we want to consider the accuracy of predicting
each optimization level at its own statistical median, that represents the typical
length of a function at that optimization level. As an example, for architecture
x86 64 we evaluate the accuracy for O0 with an input of 65 bytes, for O1 with
an input of 223 bytes. Table 5.6 shows the accuracy at these input lengths.

Table 5.6: Accuracy of each optimization level limiting input to the median
number of bytes per function at that optimization level. Results obtained with
the LSTM.

Arch. O0 O1 O2 O3 Os

x86 64 0.992 0.935 0.568 0.579 0.761
AArch64 0.984 0.948 0.719 0.590 0.694
RISC-V 0.987 0.863 0.729 0.344 0.791
SPARC 0.985 0.899 0.829 0.512 0.808
PowerPC 0.988 0.968 0.701 0.527 0.884
MIPS 0.985 0.986 0.786 0.771 0.909
ARM 0.984 0.951 0.658 0.529 0.807

The Table confirms the results we obtained in Section 5.5.1. Optimization
levels O0 and O1 are easy to detect even at function granularity. The same goes
for Os, although with a lower accuracy. The problem is, again, distinguishing
between O2 and O3, as the median length of each function at that optimization
level is not enough for an accurate prediction.

Regarding the compiler detection, the accuracy plot for increasing number
of bytes can be seen in Figure 5.14. Unlike the CNN and LSTM comparison
for optimization level detection, in Figure 5.12, we can see very few di↵erences
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Figure 5.14: Accuracy in the compiler detection.

between the two networks, even with shorter inputs. Moreover, the accuracy is
high even when there is not much data available; for example, with only 100
bytes, it is possible to have more than 90% accuracy. This means that we can
correctly predict the compiler, even with function granularity.

Given these results, we can answer RQmin as follows:

When performing a function grained analysis, with a short input, it
is generally possible to detect O0, O1 and Os optimization level. O2
and O3, instead, requires as much bytes as possible, given their subtle
di↵erences. In contrast, compiler detection does not su↵er this problem,
achieving great accuracy even with 102 input bytes.

5.5.3 Encoding

After showing how function-grained analysis is possible for some flags in Sec-
tion 5.5.2, we want to explore a possible improvement by removing redundant
information from the input array. This stems from the conclusion of Chen et
al. who found removing x86 64 prefixes increases the accuracy [13]. In this
section, we compare the raw input with the encoded variant which is explained
in Section 5.4.2. The result of this analysis is shown in Figure 5.15, depicting
only the x86 64 architecture.

We can note how the encoded variant reflects the same di↵erence between
LSTM and CNN previously highlighted in Section 5.5.2, in particular in Fig-
ure 5.12. More interestingly, the encoded variant reaches its maximum accuracy
with an input length of approximately 250 bytes. The raw input variant, in-
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Figure 5.15: Accuracy in the optimization detection with encoded input data.

stead, as more bytes are supplied to it, steadily improves in accuracy beyond
this limit.

Moreover, the comparison we used in the Figure is biased towards the en-
coded variant, especially when we use a small number of bytes. In fact, for any
given number of bytes in the encoded variant, we have more bytes available in
the corresponding raw one. We calculated this di↵erence to be an average of
186 bytes per function.

A similar situation can be seen when analyzing compiler detection, as de-
picted in Figure 5.16. In this case, we can see that the encoded variant reaches
maximum accuracy at approximately 100 bytes without further improvements.
In contrast, the raw data accuracy continues to increase, outperforming the
encoded variant at 150 bytes and peaking at 1000 bytes.

We decided, however, against extending this analysis to all seven architec-
tures. In fact, in Section 3.1, one of the motivations of our study was to have
an automated way of detecting optimization flags that does not require deep
knowledge of the underlying architecture. To generate the encoded variant,
however, it is necessary to possess a basic knowledge of the target architecture,
which contradicts our original motivation. This fact, in addition to the poor
performance and the need for accurate disassembly prompted us to abandon the
encoded variant study.

Before concluding this section, it is worth noting that the study of Chen
et al. used a dataset 100 times smaller and determined the encoding variant
was remarkably better [13]. In our previous study, we used a dataset 10 times
smaller than our current dataset and determined the encoding variant to be on
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Figure 5.16: Accuracy in the compiler detection with encoded input data.

par with the raw variant [73]. We can easily assume that with a smaller dataset,
the network is less capable of learning which information is useful and what is
not in the raw data. This would explain why in previous studies the encoded
variant, which provides data without useless prefixes, was more competitive.
However, with a su�ciently large dataset, the encoded variant does not o↵er
any advantages.

We can thus conclude RQencoding as follows:

Disassembling and encoding the data does not provide additional ben-
efits, requiring knowledge of the underlying architecture and function
disassembly for an overall lower accuracy.

5.5.4 Padding

In Section 5.4.2 we assert that our networks perform worse if, during train-
ing, raw byte sequences are never padded during training, and then padded
sequences are predicted. In this section we present RQpad, and investigate the
di↵erence between padding during training and not padding. In this experiment,
we trained two networks with the same dataset, seed, and samples ordered in the
same way. However, in one case; the training values were always of 2048 bytes,
in the other case, they were randomly cut in the interval [32, 2048], following
the distribution explained in Section 5.4.3.

We evaluated both CNN and LSTM over the MIPS architecture, which
achieved the best results. The di↵erences between the padded and unpadded
variants are shown in Figure 5.17
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Figure 5.17: Accuracy variation in the optimization detection evaluation when
including padding data during training.

From the figure, we can see how the absence of padding during training
is a problem when evaluating small input vectors. For example, the LSTM
is approximately 10% less accurate and reaches its counterpart trained with
padding only when the input vectors are longer than 1000 bytes. The CNN
results are even more extreme: with less than 100 bytes the network trained
without padding always predicts the same output, and even at 125 bytes, there
is a 60% accuracy gap between the two variants.

Although not presented, we performed this analysis also in the x86 64 ar-
chitecture, and obtained similar results.

We can thus conclude RQpad as follow:

If inputs are never padded during training, networks will have signifi-
cantly lower accuracy while predicting shorter sequences.

5.5.5 Occurrence

To conclude the evaluation, we would like to provide some data on the opti-
mization flag distribution in a real scenario. To do so, we took every binary
and library inside an Ubuntu Linux 20.04 server and macOS 10.15.7 Catalina,
both unmodified. For each binary, we predicted the optimization level using our
LSTM model for x86 64, reporting the results.

To analyze each binary, we divided the binary into several chunks of 2048
bytes, which is the same as our max input length. We then performed the
inference for each chunk, and calculated an average between all the chunks. For
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Figure 5.18: Optimization level in pre-compiled binaries shipped with Ubuntu
server 20.04 and macOS Catalina.

each chunk, we weighted its contribution to the average by the network accuracy
achieved at the chunk’s input length.

Figure 5.18 shows the results of this analysis, performed over 10254 and 1216
files, respectively, for Ubuntu and macOS. Given the highly imbalanced number
of input files, the histogram was normalized.

We can note how the distribution of files in the Linux system tends towards
the O2 optimization level. This is not surprising, as the O2 optimization level
provides the highest optimization without increasing the code size to the same
extent as O3. The latter, in fact, could generate a larger code that does not fit
in the instruction cache, resulting in overall slower execution [49]. Therefore,
O2 is the suggested optimization level in some distributions, such as Gentoo
Linux9. The macOS result, despite being more diverse, shows how most of its
core programs are optimized for code size. As this is rather uncommon, we
verified this results by manually inspecting the publicly available build scripts
for Apple software10. As a confirmation, in most Makefiles we can find Os as the
default optimization flag, explaining the histogram results. However, no reason
for this choice is given in the build scripts.

Nonetheless, this final analysis is useful to prove the point that targeting bi-
nary analyses at the O2 optimization level assuming it to be the default one [71]
may be a completely wrong assumption in some cases.

With this data, we can answer RQoccurrence as follows:

9https://wiki.gentoo.org/wiki/GCC_optimization
10http://opensource.apple.com

https://wiki.gentoo.org/wiki/GCC_optimization
http://opensource.apple.com
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The most common optimization found in Ubuntu Linux is O2. In con-
trast, on macOs, Os is more common although not as dominant as O2
is for the Linux case. This proves that expecting O2 to always be the
most common optimization level may be a false expectation.

5.6 Discussion

The results obtained in Section 5.5 provide a fast way of detecting the optimiza-
tion level with multiple granularities.

One major change from previous studies is the lack of disassembly in our
approach. Using a disassembler in order to retrieve function boundaries can be
very time consuming. For large binaries, if the function grain is not required,
previous approaches still require functions beginning and function ending, where
ours can select a random 2048 bytes from the .text section and be dominated by
the inference time. Unlike disassembly, dumping raw bytes from an executable
or library is very fast, because it involves just reading the file itself.

If a function grain is necessary, the function headers may be retrieved by
other means (i.e. Deep Learning). Given that our method does not require
to preprocessing of the input data, we can skip disassembly also in this case,
avoiding again the slowest part of binary analysis. This allows our tool to be
used to check the compilation flags even at runtime, without any noticeable
performance impact.

This lack of disassembly is the result of our evaluation in Section 5.5.3, which
contradicts the claim of Chen et al. that the encoded variant is better [13]. As
mentioned in the section, this could be due to our larger dataset, which allowed
the network to automatically learn which data is useful in the input architecture
and which is not, rendering manual encoding useless.

In our study, given the larger size of our analysis, we also focused on produc-
ing an automated script to generate the dataset. In fact, manually compiling a
matrix of five optimization levels using seven architectures would have required
an unmanageable amount of time. In addition, with this automated generation,
we can extend the study to additional flags with small changes in the scripts
parameters. In previous approaches, including ours, the entire dataset had to
be manually regenerated to add new flags, the most tedious part of this entire
study.

In addition, thanks to the small number of bytes required by our method,
we can target very small portions of code, and thus, it can be used to check
which portions of the binary match the used compilation flags. This allows for
better categorization of the binary content and can help in binary analysis. In
fact, if a small portion of the file is found with di↵erent flags or compiler than
the rest of the file, there is a high probability that this portion belongs to a
static library or a di↵erent compilation unit.

5.7 Limitations and Future Works

The analysis we performed was limited to a pair of compilers and the most
common optimization levels. In this study, we have shown that detection results
can vary greatly between di↵erent architectures, and we have no guarantee that
this analysis can be extended to more architectures without sacrificing accuracy.
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This is true even in the case of di↵erent compilers. The main di�culty in our
study was distinguishing between O2 and O3 given their similarities. However,
optimization levels are compiler specific and we cannot assume compilers other
than GCC or Clang provide the same set of optimization levels.

Moreover, in this study, we focused entirely on optimization levels instead
of specific flags. Although it would be easy to consider optimization flags, given
our automated dataset generation, the classification should probably change
from multiclass to multilabel. Furthermore, some flags would be challenging if
not impossible to detect, the “dead code elimination” flag being one example.

Future work will involve assessing the feasibility of this multilabel classifica-
tion, especially in compilers other than GCC or Clang.

5.8 Conclusion

In this chapter, we have described two deep learning networks, one based on a
long short-term memory model and the other based on a convolutional neural
network model. We evaluated them in seven di↵erent architectures and showed
that they can achieve between 92% and 98% accuracy while detecting between
five di↵erent optimization levels and over 99.99% accuracy while detecting two
di↵erent compilers.

We also provided an evaluation of the minimum number of bytes needed for
accurate predictions, combined with statistical data about the di↵erent architec-
tures and their median function length for each optimization level. Ultimately
we proved that function grained optimization level detection is possible unless
we are not aiming to distinguish between O2 and O3.

The results obtained are consistent with the initial motivation for our study:
when comparing the structure of di↵erent binaries we reported the highest accu-
racy drop emerging in the case of di↵erent compilers or O0 compared with any
other optimization level. These are also the values with the highest detection
accuracy in our study, suggesting that our approach may be useful in detecting
accuracy drop when comparing di↵erent binaries.

The speed required for this detection is minimal, compared to deep learning
approaches presented in Chapter 4, allowing us to use this approach along with
techniques presented in the aforementioned chapter, while retaining the same
scalability.

5.9 Replication

The dataset used in our study can be found on Zenodo at the following url [74].
This dataset contains each binary, divided by architecture, optimization level
and compiler. Source code and pre-trained models can be found publicly on
GitHub 11.

11http://github.com/inoueke-n/optimization-detector

http://github.com/inoueke-n/optimization-detector


Chapter 6

Conclusion

6.1 Conclusion

This dissertation presents our studies in detecting cloned portions of code in
lower-than-source level.

Firstly, we studied if it is possible to increment the accuracy of the reported
clones by using compilation transformations and clones detection at IR level.
Our first study was focused on combining existing tools, in particular we used
the Rust compiler rustc to generate the IR and CCFinderSW as code clone
detector in order to e�ciently detect the clones. We detected the Type-2 clones
in the original codebases and their respective IR representation. We showed
that, despite an increase in the number of clones reported, most of these are
due to macro expansion. Moreover, a noticeable e↵ort is required to map the
IR representation clone to the original source version in order to be displayed
to the user.

For this reason, in the second study, we improved this approach by manually
implementing the compiler normalization instead of using IR. This allows the
implementor to control the code generation step and ease the mapping of the
original source code with the transformed one. This second study proved to
be more general and applicable to multiple languages, even non-compiled ones.
The reported clones have no drawbacks compared to the original ones, but a
non-trivial e↵ort is required to implement this normalization step.

In the third study, we focused entirely on binary clone detection and pro-
vided our approach for detecting clones exclusively in binary code. We showed
that our approach has the same accuracy of existing ones and is three order of
magnitude faster, while being capable of accurately detecting clones even across
architectural boundaries. This accuracy ranges between 91% and 99% while
detecting clones in the same architecture, and is around 75% when detecting
clones in di↵erent architectures.

Despite that, we had to dedicate a fourth study at detecting compiler and
optimization options. In fact, despite the goodness of our approach in binary
code clone detection, if the input files di↵er in the compiler or optimization
flags used, the final result may not be accurate. This was a common problem
highlighted even in the earliest work in binary code clone detection. This fourth
study showed that it is possible to detect the optimization level with an accuracy
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between 92% and 98% and the compiler with 99.95% accuracy. Despite the
implementation being a learning approach, its runtime is consistent with the
binary code clone detector, and can be used alongside it without hampering its
scalability.

6.2 Future Work

In the second part of the dissertation, we presented a novel binary clone de-
tection algorithm that can analyze multiple binaries altogether in a fast and
scalable way. However, in the original study, we focused only on the perfor-
mance of the approach and did not perform a large-scale study using it. Future
works will use the presented tool to compile a list of vulnerabilities propagation
across di↵erent architectures and versions.

Moreover, it would be interesting to apply the scalable approach presented
in Chapter 4 to low-level code (e.g. Bytecode and IR) and see if it provides
additional benefits over existing source code detectors. While we have deter-
mined that existing source code detector do not work particularly well in binary
code, we can not exclude that binary-level clone detectors may work better than
source-level one in these contexts, given the degree of similarity between binary
and low-level code.
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