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Introduction
• Copying and reusing portions of code has become a common 

practice
• Copying code often generates Code Clones
• Clones create maintainability problems: fixing a bug in a clone 

snippet requires fixing the same bug in all clones
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Introduction
• In recent years, several 

tools to detect code 
clones have been 
developed

• Several techniques have 
been developed to reduce
the amount of 
comparisons done.
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Comparison reduction in the 
SourcererCC tool [1]

[1] Sajnani, Hitesh, et al. "Sourcerercc: Scaling code clone detection to big-code." Proceedings of the 38th International 
Conference on Software Engineering. 2016.
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Introduction
• Moreover, also the quality of code clones have improved
• Ragkhitwetsagul et al. experimented with 

compilation-decompilation to normalize code and reduce 
differences between clones [1]
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Setup of Ragkhitwetsagul et al. to 
detect clones using a compiler

[1] Ragkhitwetsagul, Chaiyong, and Jens Krinke. "Using compilation/decompilation to enhance clone detection." 2017 IEEE 11th 
International Workshop on Software Clones (IWSC). IEEE, 2017.
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Introduction
• We tried to remove the 

decompilation step of previous 
works, and applied code cloning on 
the compiler intermediate code

• We also manually implemented 
compiler transformations

• Results were good, but too much 
effort is required to map the 
transformed code to the original one
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Check for 
clones here
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We have to go deeper!
• Going closer to machine level 

complicates everything: no 
more variables, comments, 
optimized code everywhere…

• Source clone detectors fails
• Binary clone detectors are 

limited to pairwise comparison 
and slow
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We have to go deeper!

9

quotearg in /bin/ls

quotearg in /bin/mv



Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

We have to go deeper!
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quotearg in /bin/ls

quotearg in /bin/mv
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Goals
• A fast clone detection in binary code
• Comparing multiple files at once
• Ability to scale up to hundred of megabytes
• Cross-architecture compatibility

11
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Binary clone detection – Main Problem
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• Our idea is to compare the program flow, called Control Flow 
Graph (CFG) and find similar ones.

• CFGs encode the program’s logic and can be extracted from the 
binary code.

• However, comparing CFGs requires exponential time! 
• The worst case require 210000 comparisons.
• The average case require 240 comparisons.



Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Binary clone detection – Our solution

14

• Our solution is to convert the program flow into high level 
structures, and compare with hashing
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Binary clone detection – Our solution
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• Our solution is to convert the program flow into high level 
structures, and compare with hashing
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Disasm and CFG
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We use existing tools to disassemble and build the Control Flow 
Graph (CFG)
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Reconstruction
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We check for 11 different high-level patterns defining a CFG, 
finding them with a set of rules

If-else rules:
Sequence rules:

While rules:
If-then rules:
- node has two children, 1 and 2
- child 1 has one parent and one child
- child 2 is the son of 0 and child 1
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Reconstruction
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We check for 11 different high-level patterns defining a CFG, 
finding them with a set of rules
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Comparison
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Finally, we compare using hashing, and check for semantic 
consistency using cosine similarity.
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Comparison
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Finally, we compare using hashing, and check for semantic 
consistency using cosine similarity.
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Overview
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Step 1 Step 2 Step 3 Step 4 Step 5
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Research Questions
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• RQ1: Can we convert every CFG to a tree?
• RQ2: How accurate is our clone detection?
• RQ3: Can we detect library usage in a real-world application?
• RQ4: How performant is our tool varying the input size?
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RQ1

23

RQ1: Can we convert every CFG to a tree?

No. In highly optimized 
code our approach can 
convert only 50% of the 
functions
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RQ2
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How accurate is our clone detection?

Using structural analysis and semantic analysis
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RQ2
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How accurate is our clone detection?

Using semantic analysis only
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RQ2
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Precision comparison with BinDiff and DeepBinDiff
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RQ2
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Speed comparison with DeepBinDiff
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RQ4
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How performant is our tool varying the input size?
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Limitations
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• Our approach is faster and more scalable than the competition, 
while obtaining the same accuracy

• However, like the rest of the binary clone detectors, it is limited by 
different compilers and optimization flags in the analyzed files
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Compiler detection
Checking just the PE/ELF header is not always sufficient
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String dump of section '.comment':
[     0]  Linker: LLD 10.0.0
[    13]  GCC: (GNU) 9.2.0
[    25]  clang version 10.0.0
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Compiler detection - Overview
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• Deep Learning based approach
• Trained on 76k different binary files and more than 24M functions
• Real-time performance, several microseconds for each batch
• Detecting O0/O1/O2/O3/Os optimization levels



Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Input Type
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Adding variation
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We also padded and shifted the input to teach the network how to 
work with small sequences
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LSTM network
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• Slow training (hours)
• Slow inference (hundredth of 

milliseconds)
• High accuracy for very small 

inputs (less than 50 bytes)
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CNN network
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• Fast training (minutes)
• Fast inference (several microseconds)
• Lower accuracy for very small inputs, comparable to RNNs for 

medium sized inputs
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Research Questions
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• RQ1: Is is better to use a LSTM or a CNN?
• RQ2: What is the minimum number of bytes for accurate 

predictions?
• RQ3: Using a disassembler increases accuracy?
• RQ4: Using padding increases accuracy?
• RQ5: What are the most common optimizations?
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RQ1
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RQ1: Is is better to use a LSTM or a CNN?

LSTM CNN
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RQ1
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RQ1: Is is better to use a LSTM or a CNN?
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RQ2
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RQ5
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RQ5: What are the most common optimization levels?



Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents
1. Introduction
2.Clone Detection in IR
3.Transforming Source Code
4.Function Detection in Binary Code
5.Compiler Detection
6.Conclusion

42

Part 1: Improving 
Source Clone detection

Part 2: Scalable Binary 
Clone detection



Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Conclusion

43

• We presented a new approach at detecting clones in binary code
• This approach is fast and scalable, works in cross architecture 

and can reach the same accuracy as state-of-the-art
• Although this approach suffers when comparing differently 

optimized binaries, we developed an optimization detector


