
Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Scalable Clone Detection on Low-
Level Codebases

Davide Pizzolotto

Advisors: Katsuro Inoue, Yoshiki Higo

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents
1. Introduction
2.Clone Detection in IR
3.Transforming Source Code
4.Function Detection in Binary Code
5.Compiler Detection
6.Conclusion

2

Part 1: Improving
Source Clone detection

Part 2: Scalable Binary
Clone detection

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents
1. Introduction
2.Clone Detection in IR [1]
3.Transforming Source Code [2]
4.Function Detection in Binary Code [3]
5.Compiler Detection [4] [5]
6.Conclusion

3

[1] Code Clone Detection in Rust Intermediate Representation.
Davide Pizzolotto and Makoto Matsushita and Katsuro Inoue.
In IPSJ/SIGSE, 2022-SE-211(26), 1-7 (2022-07-21), 2188-8825.

[2] Blanker: A Refactor-Oriented Cloned Source Code Normalizer.
Davide Pizzolotto and Katsuro Inoue.
In Proceedings of the 14th IEEE International Workshop on Software
Clones, IWSC 2020, London, ON, Canada, February 18, 2020

[3] BinCC: Scalable Function Similarity Detection in Multiple Cross-
Architectural Binaries.
Davide Pizzolotto and Katsuro Inoue.
IEEE Access, 2022, Volume 10, Pages 124491-124506.

[4] Identifying Compiler and Optimization Options from Binary
Code using Deep Learning Approaches.
Davide Pizzolotto and Katsuro Inoue.
In Proceedings of the 36th IEEE International Conference on
Software Maintenance and Evolution, ICSME 2020, Adelaide,
Australia, September 28 - October 2, 2020.

[5] Identifying Compiler and Optimization Level in Binary Code
From Multiple Architectures.
Davide Pizzolotto and Katsuro Inoue.
IEEE Access, 2021, Volume 9, Pages 163461-163475.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Introduction
• Copying and reusing portions of code has become a common

practice
• Copying code often generates Code Clones
• Clones create maintainability problems: fixing a bug in a clone

snippet requires fixing the same bug in all clones

4

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Introduction
• In recent years, several

tools to detect code
clones have been
developed

• Several techniques have
been developed to reduce
the amount of
comparisons done.

5

Comparison reduction in the
SourcererCC tool [1]

[1] Sajnani, Hitesh, et al. "Sourcerercc: Scaling code clone detection to big-code." Proceedings of the 38th International
Conference on Software Engineering. 2016.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Introduction
• Moreover, also the quality of code clones have improved
• Ragkhitwetsagul et al. experimented with

compilation-decompilation to normalize code and reduce
differences between clones [1]

6

Setup of Ragkhitwetsagul et al. to
detect clones using a compiler

[1] Ragkhitwetsagul, Chaiyong, and Jens Krinke. "Using compilation/decompilation to enhance clone detection." 2017 IEEE 11th
International Workshop on Software Clones (IWSC). IEEE, 2017.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Introduction
• We tried to remove the

decompilation step of previous
works, and applied code cloning on
the compiler intermediate code

• We also manually implemented
compiler transformations

• Results were good, but too much
effort is required to map the
transformed code to the original one

7

Check for
clones here

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

We have to go deeper!
• Going closer to machine level

complicates everything: no
more variables, comments,
optimized code everywhere…

• Source clone detectors fails
• Binary clone detectors are

limited to pairwise comparison
and slow

8

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

We have to go deeper!

9

quotearg in /bin/ls

quotearg in /bin/mv

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

We have to go deeper!

10

quotearg in /bin/ls

quotearg in /bin/mv

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Goals
• A fast clone detection in binary code
• Comparing multiple files at once
• Ability to scale up to hundred of megabytes
• Cross-architecture compatibility

11

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents
1. Introduction
2.Clone Detection in IR
3.Transforming Source Code
4.Function Detection in Binary Code
5.Compiler Detection
6.Conclusion

12

Part 1: Improving
Source Clone detection

Part 2: Scalable Binary
Clone detection

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Binary clone detection – Main Problem

13

• Our idea is to compare the program flow, called Control Flow
Graph (CFG) and find similar ones.

• CFGs encode the program’s logic and can be extracted from the
binary code.

• However, comparing CFGs requires exponential time!
• The worst case require 210000 comparisons.
• The average case require 240 comparisons.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Binary clone detection – Our solution

14

• Our solution is to convert the program flow into high level
structures, and compare with hashing

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Binary clone detection – Our solution

15

• Our solution is to convert the program flow into high level
structures, and compare with hashing

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Disasm and CFG

16

We use existing tools to disassemble and build the Control Flow
Graph (CFG)

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Reconstruction

17

We check for 11 different high-level patterns defining a CFG,
finding them with a set of rules

If-else rules:
Sequence rules:

While rules:
If-then rules:
- node has two children, 1 and 2
- child 1 has one parent and one child
- child 2 is the son of 0 and child 1

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Reconstruction

18

We check for 11 different high-level patterns defining a CFG,
finding them with a set of rules

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Comparison

19

Finally, we compare using hashing, and check for semantic
consistency using cosine similarity.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Comparison

20

Finally, we compare using hashing, and check for semantic
consistency using cosine similarity.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Overview

21

Step 1 Step 2 Step 3 Step 4 Step 5

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Research Questions

22

• RQ1: Can we convert every CFG to a tree?
• RQ2: How accurate is our clone detection?
• RQ3: Can we detect library usage in a real-world application?
• RQ4: How performant is our tool varying the input size?

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ1

23

RQ1: Can we convert every CFG to a tree?

No. In highly optimized
code our approach can
convert only 50% of the
functions

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ2

24

How accurate is our clone detection?

Using structural analysis and semantic analysis

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ2

25

How accurate is our clone detection?

Using semantic analysis only

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ2

26

Precision comparison with BinDiff and DeepBinDiff

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ2

27

Speed comparison with DeepBinDiff

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ4

28

How performant is our tool varying the input size?

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Limitations

29

• Our approach is faster and more scalable than the competition,
while obtaining the same accuracy

• However, like the rest of the binary clone detectors, it is limited by
different compilers and optimization flags in the analyzed files

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents
1. Introduction
2.Clone Detection in IR
3.Transforming Source Code
4.Function Detection in Binary Code
5.Compiler Detection
6.Conclusion

30

Part 1: Improving
Source Clone detection

Part 2: Scalable Binary
Clone detection

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Compiler detection
Checking just the PE/ELF header is not always sufficient

31

String dump of section '.comment':
[0] Linker: LLD 10.0.0
[13] GCC: (GNU) 9.2.0
[25] clang version 10.0.0

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Compiler detection - Overview

32

• Deep Learning based approach
• Trained on 76k different binary files and more than 24M functions
• Real-time performance, several microseconds for each batch
• Detecting O0/O1/O2/O3/Os optimization levels

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Input Type

33

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Adding variation

34

We also padded and shifted the input to teach the network how to
work with small sequences

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

LSTM network

35

• Slow training (hours)
• Slow inference (hundredth of

milliseconds)
• High accuracy for very small

inputs (less than 50 bytes)

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

CNN network

36

• Fast training (minutes)
• Fast inference (several microseconds)
• Lower accuracy for very small inputs, comparable to RNNs for

medium sized inputs

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Research Questions

37

• RQ1: Is is better to use a LSTM or a CNN?
• RQ2: What is the minimum number of bytes for accurate

predictions?
• RQ3: Using a disassembler increases accuracy?
• RQ4: Using padding increases accuracy?
• RQ5: What are the most common optimizations?

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ1

38

RQ1: Is is better to use a LSTM or a CNN?

LSTM CNN

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ1

39

RQ1: Is is better to use a LSTM or a CNN?

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ2

40

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ5

41

RQ5: What are the most common optimization levels?

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents
1. Introduction
2.Clone Detection in IR
3.Transforming Source Code
4.Function Detection in Binary Code
5.Compiler Detection
6.Conclusion

42

Part 1: Improving
Source Clone detection

Part 2: Scalable Binary
Clone detection

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Conclusion

43

• We presented a new approach at detecting clones in binary code
• This approach is fast and scalable, works in cross architecture

and can reach the same accuracy as state-of-the-art
• Although this approach suffers when comparing differently

optimized binaries, we developed an optimization detector

