S
AT\ Eof’ryvcre_
&= Engineerin
AN chttg?orcn’roryg

Scalable Clone Detection on Low-
Level Codebases

Davide Pizzolotto

Advisors: Katsuro Inoue, Yoshiki Higo

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents

1. Introduction
2.Clone Detection in IR | Part T:Improving
3. Transforming Source Code souree Clone detection
4.Function Detection in Binary Code —
- . Part 2: Scalable Binary
5. Compiler Detection T Clone detection
6. Conclusion —
& Rz, 2

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents

i [1] Code Clone Detection in Rust Intermediate Representation.
1 . I ntrOd u Ctl o n Davide Pizzolotto and Makoto Matsushita and Katsuro Inoue.
. . In IPSJ/SIGSE, 2022-SE-211(26), 1-7 (2022-07-21), 2188-8825.
2 - C I O n e DeteCt I O n I n I R [dI] [2] Blanker: A Refactor-Oriented Cloned Source Code Normalizer.
Davide Pizzolotto and Katsuro Inoue.
" In Proceedings of the 14th IEEE International Workshop on Software
3 . Tra n SfO rm I n g SO u rce CO d e [2] Clones, IWS?J 2020, London, ON, Canada, February 18, 2020
. . : : [3] BinCC: Scalable Function Similarity Detection in Multiple Cross-
4. Function Detection in Binary Code [3] | et sinares
Davide Pizzolotto and Katsuro Inoue.
. . IEEE Access, 2022, Volume 10, Pages 124491-124506.
5. Compiler Detection [4] [5] o o |
[4] Identifying Compiler and Optimization Options from Binary
6 C I . Code using Deep Learning Approaches.
Davide Pizzolotto and Katsuro Inoue.
- O n C u S I O n In Proceedings of the 36th IEEE International Conference on

Software Maintenance and Evolution, ICSME 2020, Adelaide,
Australia, September 28 - October 2, 2020.

[5] Identifying Compiler and Optimization Level in Binary Code
From Multiple Architectures.

Davide Pizzolotto and Katsuro Inoue.

IEEE Access, 2021, Volume 9, Pages 163461-163475.

Software.
é%’ Engineering 3

Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Introduction

* Copying and reusing portions of code has become a common
practice

* Copying code often generates Code Clones

* Clones create maintainability problems: fixing a bug in a clone
snippet requires fixing the same bug in all clones

=5 =5

Software.
é:%’ Engineering 4
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Introduction

8000 — /o
¥ 6000 — °
% /
» 0
Q
g 4000 — o/
5 /
c _0
. ®
O 2000 — -
'Y &O
— - -A—A-
0 - m—ﬁ=%=##-} t—t—t—t—+
o o o o
o o o o
o o o o
- N ™ <
Methods

Comparison reduction in the
SourcererCC tool [1]

* |In recent years, several
tools to detect code
clones have been
developed

« Several techniques have
been developed to reduce
the amount of
comparisons done.

[1] Sajnani, Hitesh, et al. "Sourcerercc: Scaling code clone detection to big-code." Proceedings of the 38th International
Conference on Software Engineering. 2016.

Software
é%’ Engineering
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Introduction

 Moreover, also the quality of code clones have improved

« Ragkhitwetsagul et al. experimented with
compilation-decompilation to normalize code and reduce

differences between clones [1]

r j . .
software — > original
clones
| ®
4 compiler) clone QR —» (disiont | common Setup of Ragkhitwetsagul et al. to
decoiwpner) |detector| nvestigation \.clones /|\ clones detect clones using a compiler
decompiled software _,,| decomp. clone decomp. & mapped

clones mapper clones

Software
é%’ Engineering
Laboratory

[1] Ragkhitwetsagul, Chaiyong, and Jens Krinke. "Using compilation/decompilation to enhance clone detection." 2017 IEEE 11th
International Workshop on Software Clones (IWSC). IEEE, 2017. 6

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Introduction

Rust Source We tried to remove the
J_ Parsing and Desugaring decompilation step of previous

Check for < HiR > works, and applied code cloning on
clones here : ! :
T Tope cnecting the compiler intermediate code

MIR * We also manually implemented
l Borrow checking compiler transformations

opTeaton » Results were good, but too much
effort is required to map the
transformed code to the original one

LLVM IR

l Optimization

Machine Code

Software.
é:%’ Engineering 7
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

We have to go deeper!

00000000 3b 00 91 df 96 f6 33 73 7f f1 de 13 a2 8a 45 30 * GOIng Closer to maChIne Ievel

00000010 £6 01 ff e2 52 43 15 4e 1c a9 bf 9a 1c 41 8b 40 (3()fT1[)|i(3€itE§€5 EB\/EBF}/tf]if\Q)' no
00000020 fa 14 30 24 2f ed bc 00 7d 46 4c 32 03 f2 ba 69)

00000030 dd £5 28 87 84 20 61 £f5 c9 3a 54 c2 98 9e ci 11 more variables. comments
00000040 20 df 23 16 22 64 71 90 cl1 2¢c 7c le 68 Oe e2 28 ’ ’

00000050 66 b8 d2 05 2e e7 75 11 1b c8 4e 4c d4 9b 4a 8b C)[)tifT]iZZEB(j (3()(163 EB\/EBF}/\A/f\EBFfB. ..

00000060 69 75 fb de 05 b3 4f f2 dc 26 04 4a 02 2a 2¢c 56
00000070 55 ef 93 07 e6 a3 2f 01 4a d9 75 3d b8 2b 13 f1 ° r | N r f i|
00000080 a3 30 7d c5 e2 Of 69 16 03 21 51 Oe b5 d5 08 98 SOU ce clone deteCtO S 1alls
00000090 3e ca c5 22 5f b0 d4 3d 2e 78 11 92 99 66 24 5a

00000020 56 96 74 41 cd 41 91 a4 02 65 ca 20 30 1c a2 c1° DBINAry clone detectors are
000000b0 c9 b6 e9 aa 89 89 40 e4 66 c4 d4 3f 49 85 e5 66 limited to pairwise comparison

000000cO 56 82 93 f9 94 87 15 9¢ 2f 46 08 30 01 79 28 e3
000000d0 41 e7 29 24 ad 21 Oa 4b e0 79 ea 7f fd 4b ec 10
000000e0 a9 b8 23 96 69 17 a9 4e 8b 13 0d 5c 4c 28 28 f2 and SIOW
000000f0 ae e7 6e d8 e8 54 7e 15 da 51 2d 38 00 5f 59 26

Software.
é% Engineering 8

Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

We have to go deeper!

4889fe
488d0dab0601.
48c7c2ffffff.
31ff
e998faffff

4889fe
488d0d361900.
LB8cT7c2fTfffff.
31ff
e998faffff

Software.
é:% Engineering 9
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

We have to go deeper!

4889fe mov
488d0dab0601l. lea
48c7c2ffffff. mov
31T X0r
e998faffff jmp
4889fe mov
488d0d36T900. lea
48c7c2ffffff. mov
SLTT X0r
e998faffff jmp

Software.
é:%’ Engineering
Laboratory

rsi,
TeX.,
Fax;
edi,

rdi
obj.default_quoting_options

OxFEFFFFFFfFffffe

. quotearg in /bin/ls
ed1

sym.quotearg_n_options

rsi,
rcX;
rdx,
edi,

rdi
obj.default_quoting_options quotearg in /bin/mv

OXFFFffFffffffffff
edi

sym.quotearg_n_options

10

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Goals

* A fast clone detection in binary code
Comparing multiple files at once

Ability to scale up to hundred of megabytes
* Cross-architecture compatibility

Software.
é%’ Engineering 11
1" Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents

1. Introduction

2.Clone Detection in IR | Part T:Improving
3. Transforming Source Code source Clone detection
4. Function Detection in Binary Code —

- . Part 2: Scalable Binary
5. Compiler Detection T Clone detoctio
6. Conclusion —
> Bz, 2

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Binary clone detection — Main Problem

* QOur idea is to compare the program flow, called Control Flow
Graph (CFG) and find similar ones.

 CFGs encode the program’s logic and can be extracted from the
binary code.

 However, comparing CFGs requires exponential time!

* The worst case require 210000 comparisons.
« The average case require 240 comparisons.

Binary clone detection — Our solution

* Qur solution is to convert the program flow into high level
structures, and compare with hashin

- 63: fcn.00000019 ();

bp: 1 (vars 1, args 9)
sp: @ (vars @, args 0)
. . . rg: © (vars @, args 0)
vold test(int input) { 0x00000019 837dfcee cmp dword [var_shl,
. 0x0000001d ~ 0©f8513000000 jne 0x36
prlntf(. he:l-lo -) ; ;—— mach@_segmenté4_0:
. . b ;—— mach@_cmd_0:
i (1nPUt - 9) { 0x00000020 0000 add byte [rax], al
1 n ny . 9x00000022 00 invalid
prlntf(then)' ----------- true: Ox00000036 false: 0x00000023
} else { —p 0x00000023 488d3d350000. lea rdi, [@x0000005f]
& 0x0000002a b00o mov al, ©
prlntf("else") H 0x0000002c e800000000 call ox31
9x00000031 £90e000000 imp Ox44
} ——————————— true: 0x00000044
. " TR 9x00000036 488d3d270000. lea rdi, [0x00000064]
prInth(® LLL"); 0x0000003d b0eo mov al, ©
} 0x0000003f ©800000000 call ox&4
——————————— true: 0x00000044
0x00000044 488d3d1e0000. lea rdi, [0x00000069]
0x0000004b o] 2] 2]%] mov al, ©
9x0000004d ©800000000 call ©x52
9x00000052 4883c410 add rsp, 0x10
0x00000056 5d pop rbp
L 9x00000057 c3 ret

Software
é%’ Engineering
Laboratory

14

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Binary clone detection — Our solution

* Qur solution is to convert the program flow into high level
structures, and compare with hashing

If-else
Sequence

n H — @ — Sequence

Software.
é%’ Engineering 15
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Disasm and CFG

We use existing tools to disassemble and build the Control Flow
Graph (CFG)

0x0000e080 4155 4989 f541 5455 4889 fd53 4883 ec08

0x0000e090 4883 faff bad5 0000 0074 5548 8d35 8dol

0x0000e0a@® 0100 31ff e847 61ff ff49 89c4 4889 eebf

0x0000e0b0 0100 0000 e827 8900 004c 89ea bed8 0000

0x0000e0cO® 0031 ff48 89c3 e825 8100 0048 83c4 0849

0x0000e0d0 89d8 4c89 e25b 4889 ci15d 31f6 415c 31ff

0x0000e0e® 31cO 415d e937 64ff ffof 1f80 0000 0000

0x0000e0f0 488d 351d 0101 0031 ffe8 f260 ffff 4989

0x0000e100 c4eb a%966 662e Of1f 8400 0000 0000 6690

0x0000e110 4157 4156 4155 4531 ed4l 5449 89d4 ba®b |
0x0000e120 0000 0055 4889 f548 8d35 1e@l 0100 5348

0x0000e130 89fb 4883 ecl18 4c8b 35c3 7401 0048 897c —
0x0000e140 2408 31ff e8a7 60ff ffiac 89f6 4c8d 350e

0x0000e150 0101 0048 89c7 e8eb5 61ff ffic 8b3b 31db v
0x0000e160 4d85 ff75 44e9 8600 0000 660f 1f44 0000

0x0000e170 4c89 ff49 89ed e885 8800 0048 8b3d 7e74 |
0x0000e180 0100 4c89 f2be 0100 0000 4889 c131 cPe8

0x0000e190 5c64 ffff 488b 4424 0848 83c3 0lic 0leb

0x0000ela® 4c8b 3cd8 4d85 ff74 4748 85db 74c2 4c89

0x0000e1b0 e248 8%9ee 4c89 efe8 6461 ffff 85c@ 75b0

0x0000elcO® 4c89 ffe8 3888 0000 488b 3d31 7401 @0be

0x0000e1d0 0100 0000 488d 158e 0001 0048 89cl 31cH

0x0000ele@ e80b 64ff ffeb ad66 OfLlf 8400 0000 0000

Software.
é%, Engineering 16

Laboratory

[0xe080]

oxed9b [oc] 0xedf0 [og]

Vv

oxe@ac [of]

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Reconstruction

We check for 11 different high-level patterns defining a CFG,
finding them with a set of rules

If_alca riilac: 4
Seaiience riileg: 4
A \\/hile riles: o
If-then rules:
- node has two children, 1 and 2 —
"‘ ' - child 1 has one parent and one child
- child 2 is the son of 0 and child 1

Software.
é% Engineering 17
1" Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Reconstruction

We check for 11 different high-level patterns defining a CFG,
finding them with a set of rules

N OIS 2 e
S

Software. B
é%’ Engineering 18

Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka Universi

Comparison

Finally, we compare using hashing, and check for semantic
consistency using cosine similarity.

Sequence
If-else Basic
Basic Sequence Sequence
While If-then Basic While Basic
Basic Basic Basic Basic Basic Basic
Software.
é% Engineering 19

Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Comparison

Finally, we compare using hashing, and check for semantic
consistency using cosine similarity.

Sequence
If-else Basic
Basic Sequence Sequence
While If-then Basic While Basic
Basic Basic Basic Basic Basic Basic
Software.
é% Engineering 20

Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Overview

Structural Arelysis

Binary 1 —# Disasm —— CFG [—-» Reconstruction

Structural Arelysis

Binary 2 —# Disasm —» CFG [—{ Reconstruction » Comparison — Semantic Analysis

Structural Arelysis

AN
Binary 3 —# Disasm —— CFG [—-{ Reconstruction @
& NS 2"
1" Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Research Questions

RQ1: Can we convert every CFG to a tree?

RQ2: How accurate is our clone detection?

RQ3: Can we detect library usage in a real-world application?
RQ4: How performant is our tool varying the input size?

Software.
é% Engineering 22
1" Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ1

RQ1: Can we convert every CFG to a tree?

Perfect reconstructions

1.0

:
R e e
1
H
0.8 1---+&
i,
15
%
| S s
- B it T TR PEREESORTS PRSP, (TR §

Perfect reconstructions %

0.6 1 —— aarch64-gcc-00
—=—= aarch64-gcc-o02

------- aarch64-gcc-os

0.59 ---- amd64-gcc-00
amd64-gcc-02 T T T Tt e e e e e

---= amd64-gcc-0s
0.4 +—; : ; . T T
0 100 200 300 400 500

XV Laboratory

Input CFG size

No. In highly optimized
code our approach can
convert only 50% of the
functions

23

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ2

How accurate is our clone detection?

Same architecture (x86_64)

0.98

Min. Cosine Sim.

0.99

0.999

Cross architecture (x86-64, aarch64)

0.98

Min. Cosine Sim.

0.99

0.999

SO W N D

0.8494 / 0.9746
0.9148 / 0.9114
0.9178 / 0.9143
0.9627 / 0.8593
0.9658 / 0.8905

0.8702 / 0.9708
0.9280 / 0.9084
0.9345 / 0.9145
0.9876 / 0.8646
0.9888 / 0.7599

0.8752 / 0.7690
0.9306 / 0.9235
0.9363 / 0.9039
0.9901 / 0.7964
0.9907 / 0.8004

Software.
%’ Engineering
Laboratory

S UL W N D

0.7311 / 0.5071
0.7241 / 0.5402
0.7691 / 0.5504
0.7204 / 0.5398
0.7410 / 0.4922

0.7334 / 0.5087
0.7368 / 0.5476
0.7679 / 0.5647
0.7240 / 0.5145
0.7430 / 0.4908

0.7516 / 0.4645
0.7449 / 0.5250
0.7720 / 0.5402
0.7320 / 0.5263
0.7500 / 0.4888

Using structural analysis and semantic analysis

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

24

RQ2

How accurate is our clone detection?

Same architecture (x86-64) Cross architecture (x86-64, aarch64)
Min.Cosine Sim. | TP FP FN Precision Recall TP FP FN Precision Recall
0.95 93287 252978 7360 0.2694 0.9269 | 218512 867087 209742 0.2013 0.5102
0.98 12256 14320 2090 0.4612 0.8543 | 39171 41092 41092 0.3710 0.4880
0.99 7928 2648 307 0.7496 0.9627 | 16626 11555 17958 0.5900 0.4807
0.999 8922 1163 3724 0.8847 0.7055 | 17406 3701 28343 0.8247 0.3805

Using semantic analysis only

Software.
é% Engineering 25

Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ2

Precision comparison with BinDiff and DeepBinDiff

bin BinCC (ours) BinDiff DeepBinDiff
dir 0.9593 (172) 0.9333 (105) 0.9368 (95)
Is 0.9593 (172) 0.9333 (105) 0.9167 (96)
mv 0.9704 (169) 0.9739 (115) 0.9245 (106)
cp 0.9652 (144) 0.9783 (92) 0.8295 (88)
sort | 0.9923 (131) 0.9670 (91) 0.9157 (83)
du 0.9574 (188) 0.9937 (159) 0.9933 (150)
csplit | 0.9574 (94) 0.9254 (67) 0.9194 (62)
expr 0.9489 (98) 0.9677 (62) 0.9062 (64)
nl 0.9444 (90) 0.9672 (61) 0.9828 (58)
ptx 0.9266 (109) 0.9444 (72) 0.9254 (67)
split 0.9375 (96) 0.9538 (65) 0.9831 (59)
mean 0.9562 0.9580 0.9303

Software.
éﬂ% Engineering
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

26

RQ2

Speed comparison with DeepBinDiff

]

N

Software

Engineerin
Lclgoro’roryg

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

bin size (KiB) BinCC (ours) DeepBinDiff
dir 1081 3.40s 1409s
Is 1081 3.18s 1432s
mv 1045 3.43s 1999s
cp 978 3.22s 1740s
sort 952 2.90s 1216s
du 921 2.80s 2043s
csplit 682 2.558 659s
expr 673 2.44s 652s
nl 642 2.43s 527s
ptx 749 2.58s 771s
split 701 2.43s 702s

27

How performant is our tool varying the input size?

RQ4

Composition of time required for the combined analysis

B Structural Analysis
I Semantic Analysis
Disassembly

Time(s)

Software.
Engineering
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

20 40

Input size (MiB)

Limitations

« Our approach is faster and more scalable than the competition,
while obtaining the same accuracy

 However, like the rest of the binary clone detectors, it is limited by
different compilers and optimization flags in the analyzed files

Software.
é%’ Engineering 29
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents

1. Introduction

2.Clone Detection in IR | Part T:Improving
3. Transforming Source Code souree Clone detection
4.Function Detection in Binary Code —

- - Part 2: Scalable Binary
5. Compiler Detection = Clons detection
6. Conclusion —
& Rz, o

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Compiler detection

Checking just the PE/ELF header is not always sufficient

String dump of section '.comment':
[©] Linker: LLD 10.0.0
[13] GCC: (GNU) 9.2.0
[25] clang version 10.0.0

Software.
é% Engineering 31

Laboratory
Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Compiler detection - Overview

Deep Learning based approach

« Trained on 76k different binary files and more than 24M functions
Real-time performance, several microseconds for each batch
Detecting O0/01/02/03/0s optimization levels

Input Type

Without disassembly With disassembly
4889442418 mov gqword [var_18h], rax 4889442418 mov qword [var_18h], rax
31cO X0or eax, eax 31cO X0r eax, eax
4885ff test rdi, rdi 4885f f test rdi, rdi
7423 je 0xde3c 7423 je 0xdo3c
488b4208 mov rax, qword [rdx + 0x8] 458b4208 mov rax, qword [rdx + 0x8]
48893424 mov qword [rspl, rsi 48893424 mov gqword [rspl, rsi
4589e6 mov rsi, rsp 4889e6 mov rsi, rsp
4889442408 mov qword [rsp + 0x8], rax 4889442408 mov qword [rsp + 0x8], rax
488b02 mov rax, qword [rdx] 488b02 mov rax, qword [rdx]
4889442410 mov qword [rsp + 0x10], rax 4889442410 mov qword [rsp + 0x10], rax
e85a0e0000 call fcn.0000de90 €85a0e0000 call fcn.0000de90
4885c0 test rax, rax 4885c0 test rax, rax
0f95¢c0 setne al 0f95c0 setne al
Better for long input sequences Better for (very) short input sequences
Software

£ frghiciins | 33

Department of Computer Science, Graduate School of Information Science and Technology, Osaka niversity

Adding variation

We also padded and shifted the input to teach the network how to
work with small sequences

f@ 25 14 de af 8c 85 c3 00 f@ 25 14 de af 8c 85
85 bf 5b cf e@ f2 63 @b 00 00 00 00 85 bf 5b cf
92 af 97 @b 06 84 1d 5d 00 00 00 92 af 97 0b 06
e3 14 bc ac a8 de 21 e7 00 00 00 00 00 00 e3 14
73 11 27 9a ff 4f d9 73 00 00 00 00 00 73 11 27
03 db6 ce de 8b @d af 46 00 00 03 dob ce de 8b @d
74 37 35 f2 49 c3 e5 69 00 00 00 74 37 35 f2 49
8c 47 4a 57 d2 cf 7e 46 00 8c 47 4a 57 d2 cf 7e

Software.
é% Engineering 34

Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

LSTM network

[0x89, 0x31, 0x85, 0x74, ..]

0x69, 0K, 0469, 0469, . e Slow training (hourS)
i « Slow inference (hundredth of
o milliseconds)
LSTM =256 » High accuracy for very small
N inputs (less than 50 bytes)
Dense n=#classes
Softmax

[0.96, 0.0, 0.04, 0.0]

Software.
é% Engineering 35
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

CNN network

k5n32s2 k5n64s2 k5n128s2
n=128 k3n32s1 k38n64s1 k3n128s1 n=1024 n=#classes
o| o = ol o = o| o = 3 [0.96
[0x89, 0x31, 085, OX74, ...] T |3 3 < | < S SRS 3 3) EL_ o0
o c = o c c o 5 .0,
[0x89, OxES, 0x89, 0x89, 1 8 8 % 8 8 % 8 8 % 8 8 1) 0.04,
. s s s 0.0]

 Fast training (minutes)

« Fast inference (several microseconds)

* Lower accuracy for very small inputs, comparable to RNNs for
medium sized inputs

Software.
é:% Engineering
Laboratory

36
Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Research Questions

« RQ1: Isis better to use a LSTM or a CNN?

« RQ2: What is the minimum number of bytes for accurate
predictions?

 RQ3: Using a disassembler increases accuracy?
 RQ4: Using padding increases accuracy?
 RQ5: What are the most common optimizations?

Software.
é% Engineering 37

Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ1

RQ1: Is is better to use a LSTM or a CNN?

x86 64

True optimization level
True optimization level

00 01 02 03 Os
Predicted optimization level

Software
@ Engineering LSTM

Laboratory

00

x86_64

01 02 03
Predicted optimization level

CNN

38

RQ1

RQ1: Is is better to use a LSTM or a CNN?

Time required to train the MIPS model
4x——x-_-x-——x-—x-—'x—-x- =Ko = X = X =X =X
e00%e® x~
0.95 - 50°*° o
x”
]
I
0.90 1 i
I
I
I
>]
o 0.85 1 i
5 I
v} I
v} I
< I
0.80 - ,x—""'—’{
lx/
]
1
0.75 1 ;
]
]
]
, II —@— Accuracy CNN
0.70 % —% - Accuracy LSTM
200 400 600 800 1000 1200
Time (minutes)
39

Software

% Engineering
é’ Laboratory
Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ2

Accuracy variation in optimization detection

with increasing input length Function length for each optimization level
09 T 103 I 1
0.8 A1 —ee
)
2 -1 268
0.7 A ey
> < 212 210
E (@]
S =
g 06 e 132
< S
g
0.5 1 Z 10° 84
0.4 A1
—8— Accuracy CNN, x86 64
0.3 —~% - Accuracy LSTM, x86_64 1 i 1 1 e
0 500 1000 1500 2000 00 o1 02 03 Os
Input bytes Optimization level
Software.
é% Engineering 40
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

RQ5

RQ5: What are the most common optimization levels?

Optimization levels of pre-compiled binaries

Operating System
0.30 B Ubuntu Server 20.04
. B macOS Catalina

0.25

Probability
o
)
o

o
N
(63}

0.10

0.05

0.00 00 01 02 03 Os
Software. Optimization level
é:% Engineering 41
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Table of Contents

1. Introduction

2.Clone Detection in IR | Part 1 Improving
3. Transforming Source Code source Clone detection
4.Function Detection in Binary Code —

' : Part 2: Scalable Binary
5. Compiler Detection = Clors dutection
6. Conclusion ——
B> 5o 42

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Conclusion

 We presented a new approach at detecting clones in binary code

« This approach is fast and scalable, works in cross architecture
and can reach the same accuracy as state-of-the-art

 Although this approach suffers when comparing differently
optimized binaries, we developed an optimization detector

Software.
é:%’ Engineering 43
Laboratory

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

