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Abstract

Logging is an important feature of a software system useful for recording its run-time informa-

tion. Although detailed logs are helpful to identify the cause of a failure in a program execution,

constantly recording them in a long-running system is challenging because of performance over-

head and storage cost. To solve the problem, we propose a method named PADLA that dynam-

ically adjusts the log level of a running system so the system can record irregular events such as

performance anomalies in detail, while recording regular events concisely. It employs an online

phase detection method to recognize irregular events, which monitors run-time performance and

learns regular execution phases of a program. If this method recognizes an irregular behavior ex-

cluding the regular phases, it automatically changes the log level threshold of a system to record

its behavior in detail. PADLA aims at cost-effective logging that suppresses the entire log file

size while keeping necessary information. We evaluated the logging quality of PADLA by using

a benchmark tool. In our case study, PADLA successfully recorded information useful for debug-

ging a real-case bug. The case study also showed that PADLA can greatly reduce the log file size

from detailed logging while keeping much more information than ordinary logging.
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1 Introduction

Logging is a common practice used for recording run-time information of program execu-

tion [12]. Developers insert logging statements to record run-time information such as error mes-

sages and actual values of variables. The information is often used in failure diagnosis [3, 8, 14],

program comprehension [11], and so on.

Logging in detail incurs system run-time overhead (e.g. CPU consumption and I/O operations),

while logging too little may miss necessary run-time information [4]. Long-running systems like

a web service may produce a huge amount of logs and consume a huge amount of disk space. For

instance, a service system of Microsoft can produce dozens of Terabytes of logs per day [5]. Such

a high overhead might cause adverse effects such as service delays.

To address the trade-off, popular logging libraries such as Apache Log4j1 provide log levels to

control the amount of log messages recorded on disk. Developers assign a log level to each logging

statement in a system, then a logging library filters log messages by comparing the log levels with

a threshold specified by the program user. In the case of Log4j, six log levels are available by

default: fatal, error, warn, info, debug, and trace. These levels represent the messages degree

of importance. The error level represents error messages, the info level represents important but

normal events, and the trace level represents detailed information for tracing a program execution,

respectively [16].

The log levels are easy to use but ineffective at analyzing irregular behavior such as perfor-

mance anomaly of long-running systems. Such behavior infrequently occurs during daily opera-

tions. Since the info level does not record detailed log messages, reproducing those behaviors is

difficult [15]. For example, in our case study, we could find the cause of a bug in a server system

only from debug and trace level log messages. For the case study, we use Bug 598132 of Apache

Tomcat 8.5.3. This bug causes an infinite loop when the server system starts up. Two library files

of the server system refer to each other in the Classpath causing an infinite loop. Log messages of

these behavior only exist in debug and trace level, so we cannot know the cause of the infinite loop

from info level log messages. This case is an example of info level messages being insufficient for

debugging. On the other hand, logging the entire execution of a system with the trace level is un-

feasible due to the huge amount of log messages and performance overhead. We conducted some

load tests against a web application on Tomcat. The log file size was 12.5 MB when the log level

threshold was set to info, however, the log file size was 1,525 MB on trace. The execution time of

1http://logging.apache.org/log4j
2https://bz.apache.org/bugzilla/show_bug.cgi?id=59813
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the threshold trace is 4.84 times greater than that of the threshold info. The execution time of these

load tests was about several tens of seconds, so we can infer that in large-scale and long-running

system, the log file size and performance overhead of the threshold trace will increase much more.

To solve the problem, we propose a cost-effective detailed logging method that dynamically

adjusts the log level threshold of a running system. The method employs an online phase detection

method that divides a program’s execution into a sequence of phases according to their dynamic

properties or traits [10]. PADLA monitors run-time performance metrics of a system and learns

regular phases of the system, then it recognizes an irregular phase like a performance anomaly

and automatically changes the log level threshold of the running system to record detailed log

messages only while the irregular phase is happening. PADLA aims at cost-effective logging that

suppresses the entire log file size while keeping detailed log messages of the irregular behavior.

The implementation of PADLA is an extension of Apache Log4j2.

This paper also proposes two different phase detection methods (time-based method and number-

based method). Time-based method uses the execution time of each method to detect phases. This

method attaches importance to detect performance anomaly (e.g. method execution time too long).

On the other hand, number-based method uses the number of method call events. The number-

based method aims at “stabler” phase detection than time-based method. The execution time of

each method can fluctuate even with the same execution scenario because the program execution

can be affected from memory status, other processes running on the same machine and so on. For

this reason, the result of PADLA with the time-based method can be unstable. The number-based

method is proposed against this problem.

To evaluate PADLA, we have conducted some experiments using an open source benchmark

tool, DaCapo Benchmarks3. As a result, PADLA successfully maintained detailed log messages

of unknown behavior with a small log file size compared with the trace level logging. In addition,

PADLA with time-based phase detection method succeeded to reduce the execution time. More-

over, we experimented PADLA with several parameter values to investigate how these parameters

affect the performance of PADLA. By using the result of the experiment, we compared the char-

acteristics of the two phase detection methods which affect the performance of PADLA. Finally

we confirmed that we could collect useful debugging information from log messages output by

PADLA by using a real-case bug.

The main contribution of this paper can be summarized as follows:

(1) We propose two different methods that recognize the execution phase of a program to detect

3http://dacapobench.org/
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its irregular behavior.

(2) We propose a method that dynamically adapts the log level threshold of a running system

according to its behavior detected from step (1).

(3) We evaluate the proposed method in a benchmark tool, and show its usefulness by comparing

it against a fixed threshold.

(4) We investigate how the parameters of the proposed method affect the performance of the

method itself by using the benchmark tool.

(5) We compare the characteristics of the two phase detection methods which affect the perfor-

mance of PADLA.

(6) We show, by using a real-case bug, that dynamically adapting the log level threshold can

collect useful information for debugging.

In the remainder of the paper, Section 2 presents related works and explains our background.

Section 3 explains the tool in detail. Section 4 shows our evaluation of PADLA. Section 5 shows

our case study demonstrating the effectiveness of the tool. Section 6 describes limitations. Sec-

tion 7 describes the future work and concludes the paper.

The PADLA tool is publicly available on GitHub: https://github.com/inoueke-n/

PADLA.
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2 Background

2.1 Log-based anomaly detection

Log analysis is conducted when any problems occur during the execution of a program to diag-

nose their cause. However, it is often difficult to analyze the log manually to detect problematic

portions given the vast amount of log [5]. To solve the problem, some studies focused on log-based

anomaly detection [2, 5, 6, 17]．

Min, et al. proposed an approach that detects irregular log sequences using deep learning [2]. At

first, the approach learns “normal” log sequences by using a LSTM, then it detects log sequences

that deviate from learned log sequences and labels them as “irregular”. Lin, et al. proposed Log-

Cluster that clusters log files according to weighted log messages the log files have [6]. LogCluster

can reduce logs to be examined by checking whether the clusters are known or unknown by the

knowledge base approach. Shilin, et al. proposed an approach that makes traditional log-based

anomaly detection approach faster and more accurate [5]. This approach used information of sys-

tem Key Performance Indicators to detect problems of a target system. In addition, they used

cascading clustering to shorten the time consumed by clustering the log sequences. Zhang, et al.

focused on the fact that log messages and sequences are unstable and proposed LogRobust an

approach robust against that [17]. Traditional log-based anomaly detection approaches need to

rebuild models when the log messages evolve (e.g. changed, added). LogRobust is robust against

the evolved log messages because it converts the log messages to semantic vectors. These ap-

proaches can detect anomalies from logs, however, these can only collect log messages of a log

level specified in advance. Like the case study sample of Section 1, sometimes it is not possible to

collect useful information without debug and trace level. PADLA can collect detailed information

of an irregular behavior by adapting the log level threshold. Thus, PADLA can not only detect

anomalies but also collect detailed information about them.

2.2 Execution Phase

PADLA monitors the execution of a target system and recognizes execution phases to detect an

irregular behavior of the target system. In this paper, the word “phase” represents a portion of the

program that exhibits common behavior recognizable by the programmer [10].

Reiss proposed an approach that monitors the execution of a target system and obtains software

metrics to detect execution phases [10]. This approach firstly converts software metrics (e.g. num-

ber of entries into methods, number of allocations of objects of class) of target system at each
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fixed time interval to a performance vector, and then, compares it with a previous one to determine

whether the execution phase changes or not. PADLA applies this approach to its phase detec-

tion (time-based method). Time-based method recognizes the execution phase by monitoring the

method execution time of a target system, and then, compares the phase with previously collected

phase information to determine whether the current phase is known or unknown.

Watanabe, et al. proposed an approach that detects phase, or high-level behavioral units de-

scribed in a use-case scenario by using an execution trace [13]. Their approach is based on the

hypotheses that many objects are created to achieve a task and most of them are destroyed after

their task. The approach loads an execution trace and keeps object information related to method

call events into a LRU cache and interprets a sharp rise in the frequency of the cache update as a

phase transition. It is a static approach and it aims to detect high-level behavioral units such as

“login” and “show list of items”. On the other hand, PADLA is a dynamic approach and it aims to

detect more fine-grained phases (e.g. “initializing”, “loading class files”).

2.3 Detecting Irregular Behavior at Run-time

PADLA monitors the execution of a target system for online detection of irregular behavior. In

existing research, some studies were conducted for detecting irregular behavior at run-time.

Liu, et al. proposed a framework named DOUBLETAKE that detects memory errors and helps

to diagnose them [7]. DOUBLETAKE monitors the memory during the execution, and records

detailed information of the memory state when an irregular behavior (e.g., buffer overflow, mem-

ory use-after-free error, memory leak) happens. Using these detailed information, DOUBLETAKE

can reproduce the irregular behavior during debugging. This framework focuses on memory errors

as irregular behavior while PADLA monitors the execution of each method and detects irregular

behavior of a target system. In addition, DOUBLETAKE needs 2 executions (error detection and

reproduction) in order to diagnose errors while PADLA only needs one to collect detailed log

messages. Dean, et al. proposed an unsupervised anomaly detection approach for cloud environ-

ment [1]. This approach uses the self organized map method to detect performance irregularities

without learning data labeled manually. PADLA can detect irregular behavior without learning

data labeled manually and it can also collect detailed log messages of the irregularities by dynam-

ically adapting the log level threshold. Ogami, et al. proposed a real time profiler named Heijo

that visualizes run-time information of a target system to detect performance anomalies [9]. Heijo

obtains the execution time of each method and makes a code city to visualize the performance of

a target system online. To detect a performance anomaly using this tool, we have to watch the city
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while the target system is running. PADLA uses the information obtained by Heijo and detects

irregular behavior automatically.
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Figure 1: An overview of PADLA

3 PADLA

PADLA takes as input a log level for recording regular behavior, e.g. info level and takes also

execution scenarios. If unavailable, regular behavior is learned on the fly. PADLA produces

application logs using the specified level for regular events and the trace level for irregular events,

respectively.

PADLA comprises two components: 1) Phase Detection and 2) Logging. Figure 1 shows an

overview of these components. 1) The phase detection component monitors a program execu-

tion and divides it into a sequence of phases according to their performance characteristics, then

classifies each phase as either known or unknown. 2) The logging component buffers recent log

messages and filters them using the original level specified by a user for known phases and the

trace level for unknown phases, respectively. The following subsections explain each component

in detail.

The implementation of PADLA is an extension of Apache Log4j2 that dynamically adjusts the

output log level of a running system according to its run-time behavior. PADLA keeps the logging

interface of Log4j2 and can be activated it by adding PADLA’s configuration to the log4j2.xml file

along with arguments for the program execution. It does not need to modify the source code of a

target system.

3.1 Phase Detection

PADLA has two different online phase detection methods: time-based and number-based. Both
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Figure 2: How to make the performance vector in each phase detection method

methods translate an execution trace into a sequence of performance vectors, and then compare

them to categorize known/unknown phases. Figure 2 summarizes how to create the performance

vector in each phase detection method. The time-based method uses the method execution time

in every fixed time interval as a performance vector. The number-based method uses the number

of method executions in every certain number of method executions as a vector. The number of

dimensions in the performance vector depends on the number of methods or method call events.

For example, in the time-based method, the number is 2,074 in tomcat and 166,885 in kafka

(tomcat and kafka are the target benchmark program of a benchmark tool we use in Section 4). In

the number-based method, the number is 163,109 in tomcat and 287,135 in kafka. The time-based

method attaches importance to detect performance anomaly. In case there are some performance

anomalies such as freeze for a moment and when such anomaly occurs, the execution time of

some method changes from the regular behavior. For this reason, monitoring the method execution

time can be expected to detect such performance anomaly. The number-based method attaches

importance to stabler phase detection than the time-based method. The execution time of each

method can fluctuate even with the same execution scenario because of the execution environment

which the program is running on (e.g. memory status, other processes). Therefore, the phase

detection result of the time-based method might be unstable. On the other hand, the order and

the number of method execution is relatively stable with the same execution scenario (“relatively

stable” means that the order and the number may fluctuate a little when the execution scenario has
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some random elements such as random value or random access). For this reason, the number-based

method is expected to be stabler than the time-based method.

3.1.1 Time-based Method

The time-based method employs an online phase detection method proposed by Reiss [10].

This method firstly divides a program execution into fixed time intervals. Then it translates the

t-th interval into a performance vector vt. Two intervals (e.g. s-th interval and t-th interval) belong

to the same phase if the cosine similarity between their vectors vs and vt is greater than a threshold

θ. Otherwise, the intervals belong to different phases.

The time-based method employs a performance vector used in an existing performance profiling

tool [9]. Each element in a vector represents the actual execution time spent by a corresponding

method in the interval. To observe performance vectors, the time-based method uses dynamic

bytecode instrumentation to inject a performance reporter into a target application. The injected

code reports the time spent for each executed method. The time-based method obtains a perfor-

mance vector every fixed time interval I .

The time-based method maintains a set of known vectors Vk to classify an interval as either

known or unknown. The t-th interval is classified as a known or unknown phase if there exists

or not a vector v ∈ Vk that is similar to vt. The classification result is passed to the logging

component that dynamically adjusts the log level of the running program.

To construct the initial Vk for a program, PADLA requires an execution of the program that

covers regular behavior. Once a Vk is constructed, it can be available in subsequent executions as

an execution scenario. If the scenario is unavailable, PADLA starts with Vk = ϕ.

The component updates Vk to learn unknown phases as known phase if they repeatedly occur

during an execution. Learning is necessary because an unknown phase may continue for a long

time due to various reasons. For example, a permanent change of a run-time environment may af-

fect its performance. The log level change of PADLA also may affect performance characteristics.

If the component records detailed log messages of repeated occurrences of an unknown phase, the

log file size and performance overhead will be huge. So it records detailed log messages of only

the first few intervals of a long-duration phase for analysis. In the current implementation, the

method add a vector vt to Vk if two consecutive time intervals (i.e. one second) belong to the same

unknown phase. In other words, the unknown phase is likely a new known phase for the system.
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3.1.2 Number-based Method

The number-based method is similar to the time-based method. The different point is how to

make the performance vector. The number-based method has a method call counter and it counts

the number of method call events. When the counter reaches its limit L, a performance vector is

made with the counter information. Each member of the performance vector corresponds to each

method, and the value of the member is the number of method call events of the corresponding

method.

The performance vector is classified as known or unknown same as the time-based method.

After that, the counter is reset and starts again. The classification method of the number-based

method is the same with the time-based method. It keeps past performance vectors as known

vectors and compare latest performance vector with the known vectors using cosine similarity.

3.2 Logging

The logging component writes log messages to the disk according to the classification of the

latest phase. Since an unknown phase is recognized after its occurrence, the component internally

buffers recent N log messages on memory using the trace level. During known phases, the logging

component filters the detailed messages output but keeps them in memory. If an unknown phase

is detected, the buffered log messages up to the previous interval are written to log files, and then

the component starts to record log messages using the trace level. The buffered messages provide

detailed behavior of the last interval before the unknown phase detection allowing developers to

investigate what actually happened in the unknown phase.

It should be noted that the overhead of the buffering is small because an application using

Log4j2 always produces log messages irrelevant to a run-time log level. An existing logger in

Log4j2 filters the generated log messages for each logging method call. Our logging component

delays the filtering step until a phase classification.

3.3 Usage

To apply PADLA, we need two execution files, Agent.jar and log4j-core-extended.jar. All files

needed to apply PADLA are located on the GitHub repository written in Section 1. The additional

disk space is at most 3MB. Agent.jar represents the phase detection component of PADLA. This

component comprises a Performance Reporter function which collects information necessary for

the Phase Detection and a Phase Detection function which detects execution phases using the

result from the Performance Reporter. The phase detection component is implemented as a Java
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Agent so it has to be installed into a target system when the system starts. log4j-core-extended.jar

represents the logging component and it is implemented as an extension of a Log4j2 library file. It

can be used by replacing the original log4j-core.jar file and editing the original configuration file

of log4j2. When PADLA is applied, Agent.jar sends results of the phase detection to log4j-core-

extended.jar via socket. When receiving the result, log4j-core-extended.jar filters log messages

using the original log level threshold if the current phase is known. Instead, if the current phase

is unknown, it turns off the filter. Using this method, we can collect log messages of a level

higher than the original one in known phases. Therefore, in unknown phases, all log messages are

collected.

PADLA has two parameters and a user can adjust PADLA’s performance by changing the pa-

rameters. The two parameters will be changed with the phase detection method which a user

chooses. If the time-based method is chosen, the parameters are I and θ. The parameter I repre-

sents the length of the fixed time interval. This parameter is related to the frequency of the phase

detection step and grain size of a phase, so we can infer that I affects results of the phase detec-

tion. In other words, it is related to the amount of log messages created in a single interval. The

parameter θ represents a phase similarity threshold that is used to judge the phase that is known or

unknown. When θ is changed, the amount of intervals judged as unknown phase changes. If the

number-based method is chosen as the phase detection method, the parameters are L and θ. The

parameter L represents the upper limit of a method call events. Phase detection is executed every

time the counter reaches L. This parameter is also related to the frequency of the phase detection

step and the grain size of a phase same as I . The parameter θ is the same thing as in the time-based

method.
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4 Evaluation

We want to investigate the following research questions to evaluate the effectiveness of PADLA.

RQ.1 What is the logging performance of PADLA?

RQ.2 How do parameter values affect the performance of PADLA?

RQ.3 What characteristics do the two phase detection methods give PADLA?

To answer the three RQs, We apply PADLA to benchmark programs and evaluate the logging

results in terms of the content quality and run-time overhead.

We use four logging configurations listed below.

• none. This configuration executes a program without logging. The resultant log includes

nothing.

• trace. This configuration executes a program using the trace log level threshold. The resul-

tant log records all the log messages generated in a program execution.

• info. This configuration executes a program using the info log level threshold. The resultant

log excludes detailed messages of debug and trace levels.

• PADLA. This configuration dynamically adapt two log level thresholds (info and trace)

using our phase detection.

The none configuration is used to investigate the overhead of log the output process itself. The

trace log is used as baseline of the log contents. To evaluate the quality of contents in the info and

PADLA traces, we define a Message Coverage M(l) metric against the log content of a log l as

follows:

M(l) =
|Ctrace ∩ Cl|

|Ctrace|
The log content Cl represents a set of source code locations that generated messages in the log

l. This means that for each log message we record the caller position only once in Cl. M(Cl)

is calculated based on trace level log (Ctrace) because Ctrace contains log messages of every log

levels. We employ a set of log messages that called from a unique position of its source code

as the log content Cl because PADLA aims to record the unknown behavior. As we describe in

Section 3, PADLA treats an unknown phase as a known phase after its third appearance (if it has

already appeared in two consecutive intervals). In other words, it records detailed log messages at

the first few occurrence having similar behavior, but after these, nothing is recorded anymore in
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order to save disk space and avoid performance overhead. According to that, we can say PADLA

detects the unknown behavior and maintains the contents of its log if and only if PADLA can

record log messages that called from an unique position of the source code.

The execution time of the benchmark is the benchmark resulting from every target program. It

is not the time from the beginning to the end of the benchmark program. The log file size is the

file size of a file output by log4j2. The PADLA tool outputs two log files, a log file created by the

original log4j2 function and a log file for recording memory buffered log messages. These two

files are combined and treated as one log file.

Our target benchmark programs are tomcat and kafka in the DaCapo Benchmark Suite4 because

they implement logging features. We replace their underlying logging library with the PADLA

tool. The tomcat benchmark provides three execution scenarios: small, default, and large. We

choose the large scenario because we expect PADLA to be used on server programs so we need a

long time execution. For kafka, we use the only available default scenario.

The evaluation is conducted with a Windows 10 Pro machine running on a Xeon E5-1650v3

processor, 32 GB RAM, and an SSD. We execute the benchmark 10 times for each target program,

and then, calculate an average. Calculating an average is also needed for none, info and trace

because the execution time and the log file size of the benchmark are not constant between each

execution. DaCapo Benchmarks uses some random numbers in its benchmarks, so the numbers

of some steps slightly fluctuates between each execution. On the other hand, Ctrace is always the

same meaning that M(l) is immutable in this evaluation.

Recall that the two phase detection methods have their own parameters. The time-based method

has the interval for the phase detection I and the phase similarity threshold θ. The number-based

method has the limit of method call events counter L and the phase similarity threshold θ. For

RQ1, we use the default values of our implementation: I = 0.5s, L = 1, 000, 000 and θ = 0.95

(the default value of θ is the same between the two phase detection methods). For RQ2, we tried

varying values for a parameter while maintaining the other one fixed. When time-based method

is applied, we choose [0.1s, 0.5s, 1.0s] for I when θ is fixed, and values in increments of 0.01

from 0.90 to 0.99 for θ when I is fixed. When the number-based method is applied, we choose

[500,000, 1,000,000, 1,500,000] for L when θ is fixed, and values in increments of 0.01 from 0.90

to 0.99 for θ when L is fixed.
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Table 1: The result of RQ1. (PADLA t represents PADLA with time-based method. PADLA n

represents PADLA with number-based method.)

Target Configuration
File size (KB)

(division by trace (%))
M(l) (%)

Execution time (s)

(division by trace (%))

tomcat

none 0 (0.00) 0.00 118.49 (30.49)

info 20 (0.01) 6.25 114.65 (29.50)

PADLA t (I = 0.5s,θ = 0.95) 39,866 (0.84) 90.07 255.90 (65.85)

PADLA n (L = 1, 000, 000,θ = 0.95) 31,465 (0.66) 86.47 780.57 (200.88)

trace 4,752,124 (100.00) 100.00 388.58 (100.00)

kafka

none 0 (0.00) 0.00 6.34 (53.37)

info 166 (0.01) 27.46 9.38 (78.95)

PADLA t (I = 0.5s,θ = 0.95) 13,398 (26.11) 99.05 11.27 (94.86)

PADLA n (L = 1, 000, 000,θ = 0.95) 11,326 (22.07) 97.29 10.19 (85.77)

trace 51,324 (100.00) 100.00 11.88 (100.00)

4.1 RQ1: What is the logging quality of PADLA?

Table 1 shows the result of the evaluation for RQ1. In the tomcat result, the log file size of

PADLA with time-based method (hereinafter referred to as “PADLA t”) is 0.84% of trace and

26.11% in the kafka result. M(l) values of PADLA t are 90.07% in the tomcat result and 99.05%

in the kafka result. Likewise, the log file size of PADLA with number-based method (hereinafter

referred to as “PADLA n”) is 0.66% of trace and 22.07% in the kafka result. M(l) values of

PADLA n are 86.47% in the tomcat result and 97.29% in the kafka result while M(l) values of info

are 6.25% and 27.46% for tomcat and kafka respectively. M(l) values of trace is 100% because

M(l) values are calculated based on the log of trace. Besides, the execution time of PADLA t is

65.85% shorter than trace in the tomcat result and 94.86% shorter in the kafka result. Compared

to none, we can infer that the additional log output process of trace takes 270.09s (the execution

time difference between none and trace) in the tomcat result and 5.54s in the kafka result while

PADLA t takes 137.41s in the tomcat result and 4.93s in the kafka result. It means that, compared

to trace, PADLA t can reduce additional log output process to 50.88% in the tomcat result and

88.99% in the kafka result.

Indeed the log file size and the execution time of info are smaller than that of PADLA, however,

M(l) value of PADLA t and PADLA n greatly exceed that one of info in both tomcat and kafka.

The results indicate that PADLA can suppress the log file size (execution time can be suppress only

by PADLA n) compared to trace while keeping a higher M(l) value than info. In other words,

4dacapo-evaluation-git+8b7a2dc-java8.jar
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Table 2: Parameter I: Interval for the phase detection (PADLA t)

Target
Configuration

(θ = 0.95)
Execution time (s) File size (KB) M(l) (%)

tomcat

I = 0.10s 256.29 37,857 85.00

I = 0.50s 255.90 39,866 90.07

I = 1.00s 258.73 33,667 85.63

kafka

I = 0.10s 11.44 2,950 97.25

I = 0.50s 11.27 13,398 99.05

I = 1.00s 11.47 16,486 99.54

Table 3: Parameter L: Limit of method call events counter (PADLA n)

Target
Configuration

(θ = 0.95)
Execution time (s) File size (KB) M(l) (%)

tomcat

L = 500,000 841.42 30,950 88.31

L = 1,000,000 780.57 31,465 86.47

L = 1,500,000 755.54 22,791 82.35

kafka

L = 500,000 14.01 12,372 97.36

L = 1,000,000 10.19 11,326 97.29

L = 1,500,000 9.47 15,493 95.56

PADLA records the first occurrence of an exceptional behavior in the debug and trace level saving

disk space.

4.2 RQ2: How do parameter values affect the performance of PADLA?

Table 2 shows the PADLA t’s results when changing I in tomcat and kafka. In both results,

there are little differences between the execution time for each value of I . When I decreases, the

number of the phase detection step in a fixed interval increases. For example, when I halves, the

number of the phase detection step doubles. So this result indicates that changing the number of

the phase detection step caused by changing I does not affect the execution time by a great extent.

The log file size and M(l), in the result of tomcat, increase when I is between I = 0.10s and

0.50s, but decrease when between I = 0.50s and 1.00s. On the other hand, in the result of kafka,

these tend to only increase with increasing I . PADLA changes the log level threshold to trace

when it detects an unknown phase and changes the log level threshold to original level when it
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detects a known phase. When L increases, the time to change the log level threshold to original

level increases, so the number of log messages to be output also increases. For this reason, in the

result of kafka, the log file size increases when I increases making M(l) larger. However, because

the granularity of phase detection changes when I changes, the result of phase detection of tomcat

becomes affected. When the execution time is relatively long, the number of detected unknown

phases affects the log file size rather than the number of log messages output in one interval. So we

can conclude that at I = 0.50s in tomcat, the log file size and M(l) are larger than their respective

results with I = 1.00s because I = 0.50s detects more unknown phases than I = 1.00s.

Table 3 shows the PADLA n’s results when changing L in tomcat and kafka. In both results,

the execution time decreases when L increases. As with the parameter I , the number of phase

detection steps in fixed interval increases when L increases. However, unlike I , the execution time

increases with the number of phase detection steps. The reason for this result can be inferred as

the difference between the number of phase detection steps. For example, the phase detection step

was executed 8,585 times in an execution of tomcat with PADLA n (θ = 0.95, L = 1, 000, 000).

On the other hand, it was executed 571 times in an execution of tomcat with PADLA t (θ = 0.95,

L = 1, 000, 000). When the phase detection step of PADLA t becomes 5 times (I = 0.5s →
I = 0.1s), the number is smaller than that of PADLA n. However, when the phase detection step

of PADLA n becomes double (L = 1, 000, 000 → L = 500, 000), the number is greatly larger

than that of PADLA t. For this reason, increasing the phase detection steps increase the execution

time of PADLA n while it does not affect too much the execution time of PADLA t. The log

file sizes do not increase or decrease along with changing the value of L in both tomcat and kafka

results. The parameter I controls the time length of the interval between phase detection steps, so

the bigger I causes the longer interval. If the interval is an unknown phase, the amount of detailed

logs output in the interval will be huge. L is the limit of method call events counter and the number

of method call events in a fixed time interval is not fixed. Then, if an unknown phase is detected in

an interval which has many method call events, the time during which detailed logs are output will

be short. Conversely, if the unknown phase is detected in an interval which has a small amount

of method call events, the time during which detailed logs are output will be long. Consequently,

the log file size does not change monotonically along with changing of L, so we can infer that

it depends on the target programs. In both tomcat and kafka results, the smaller value of L, the

larger M(l) becomes. However, we cannot conclude that smaller values of L causes larger values

of M(l) because the effect of changing the grain size of a phase caused by changing L depends

on the target programs.
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Table 4: Parameter θ: Threshold for phase detection (PADLA t)

Target
Configuration

(I = 0.5s)
Execution time (s) File size (KB) M(l) (%)

tomcat

θ = 0.90 257.18 28,709 81.43

θ = 0.91 257.72 29,803 81.80

θ = 0.92 255.65 43,930 83.60

θ = 0.93 257.03 47,484 83.68

θ = 0.94 257.31 45,493 89.63

θ = 0.95 255.90 39,866 90.07

θ = 0.96 256.85 46,187 90.88

θ = 0.97 256.07 49,534 90.55

θ = 0.98 258.55 53,215 88.38

θ = 0.99 257.20 102,127 91.91

kafka

θ = 0.90 11.25 5,051 98.73

θ = 0.91 11.36 4,096 97.32

θ = 0.92 11.18 5,033 98.70

θ = 0.93 11.28 5,086 98.94

θ = 0.94 11.26 5,053 98.84

θ = 0.95 11.27 13,398 99.05

θ = 0.96 11.09 13,973 99.30

θ = 0.97 11.37 11,814 99.05

θ = 0.98 11.28 11,854 98.94

θ = 0.99 11.37 12,292 99.26
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RQ3_boxplot_filesize_tomcat_kafka

(a) tomcat

RQ3_boxplot_filesize_tomcat_kafka

(b) kafka

Figure 3: Boxplots of the resulting log file sizes (each file size is the result of 10 executions)
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RQ3, stable M(Ct)

Figure 4: Boxplot of M(l) values for all executions of the evaluation of θ
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Table 5: Parameter θ: Threshold for phase detection (PADLA n)

Target
Configuration

(L = 1, 000, 000)
Execution time (s) File size (KB) M(l) (%)

tomcat

θ = 0.90 769.57 26,212 86.40

θ = 0.91 773.15 25,104 85.74

θ = 0.92 774.77 25,778 85.74

θ = 0.93 774.33 27,208 85.85

θ = 0.94 773.77 29,083 86.07

θ = 0.95 780.57 31,465 86.47

θ = 0.96 786.41 30,008 86.43

θ = 0.97 783.82 34,212 88.27

θ = 0.98 783.33 40,145 87.21

θ = 0.99 780.08 49,389 89.67

kafka

θ = 0.90 9.53 10,951 97.64

θ = 0.91 9.77 10,476 97.15

θ = 0.92 9.49 11,331 96.90

θ = 0.93 9.71 11,431 97.43

θ = 0.94 10.39 10,935 97.39

θ = 0.95 10.19 11,326 97.29

θ = 0.96 10.47 12,777 97.22

θ = 0.97 10.56 13,195 97.29

θ = 0.98 10.57 16,659 97.29

θ = 0.99 10.91 23,781 97.29

Table 4 shows the results of changing θ in tomcat and kafka with PADLA t. There are little

differences between the execution time for each value of θ . Since the number of phases increases

as the value of θ increases, the log file size is expected to increase by detecting more types of

phases. However, although the log file size of tomcat increases as θ increases, the log file size of

kafka does not increase monotonically with increasing θ. Figure 3 shows boxplots of the log file

sizes for each value of θ. Figure 3 indicates that the log file size is unstable in both tomcat and

kafka. The result of the phase detection is greatly affected by the machine status, so the result

is somewhat unstable. For this reason, as a result of changing the number of unknown phases

with each benchmark execution, the log file size changes greatly with each benchmark execution.
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Figure 4 shows a boxplot of M(l) values for every evaluation of θ. In both tomcat and kafka, M(l)

has an high value in all executions. Although the log file size is unstable, the result of Figure 4

indicates that PADLA can achieve high M(l).

Table 5 shows the results of changing θ in tomcat and kafka with PADLA n. The execution time

increases as θ increases (although not linearly). The result is not the same as the result of PADLA t

because the number of dimensions of the performance vector is different. PADLA calculates the

cosine similarity between a performance vector and known vectors when it conducts the phase

detection, so if the number of dimensions of the vector is huge, the calculation time of the cosine

similarity will be long. For example, in the tomcat execution, the dimension of the performance

vector of PADLA t is 2,047 and that of PADLA n is 163,109. When θ increases, the number of

phases increase (e.g. 6 phase in θ = 0.90 and 9 phase in θ = 0.99 with tomcat and PADLA n)

so the number of known vectors for which cosine similarity should be calculated also increases.

In case of PADLA t, the number of dimensions of the performance vector is relatively small so

the increase in calculation of the cosine similarity is also low, as well as the increase of execution

time. However, the dimensions are huge in PADLA n so the increase of calculation cost is huge

and it can not be ignored at execution time. The log file size increases as θ increases because the

large θ makes many unknown phases and many unknown phases implies many detailed logs. In

the tomcat result, the M(l) value increases as θ increases while it hardly changes in the kafka

result. We can infer that new unknown phases which are detected when θ increases do not contain

the first occurrence of log events in kafka.

From the above, the effects of the parameters can be summarized as follows. I and θ of

PADLA t do not affect the execution time of a target system much. The optimal value of I

depends on the target program. The log file size increases as θ of PADLA t increases, but not

monotonically. The effect of changing θ of PADLA t on the log file size and M(l) is not clear

because the output log file size is not stable. However, we can conclude that PADLA achieves high

M(l) values in both tomcat and kafka. In the current implementation, when L becomes small, the

execution time increases and the M(l) value gets better. We can not determine the correlation

between the log file size and L in this evaluation. With PADLA n, the log file size and the exe-

cution time increase as θ increases. The M(l) value also can increase but it depends on the target

program.

4.3 What characteristics do the two phase detection methods give PADLA?

For RQ3, we compare PADLA t and PADLA n by using the following three points of view.
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Figure 5: Normalized average variance value of the log file size

• M(l)

• Execution time

• Stability

The stability represents how stable the results produced by PADLA are with each execution in

the same scenario and environment. Note that the log file sizes of PADLA t and PADLA n are

not compared because, as we mentioned above, the log file size of PADLA t is not stable in every

execution so it is difficult to compare. We use the data (file size, execution time, M(l) value)

collected for RQ2.

As Table 2 to Table 5 show, the maximum M(l) value of PADLA t is 91.91% in tomcat and

99.30% in kafka while PADLA n achieves 89.67% in tomcat and 97.43% in kafka. So it can be

clear that PADLA t can produce better M(l) value than PADLA n. For the comparison of the

execution time, we use parameter sets that have similar M(l) value because we need to compare

the situation where we can get similar result. From above, the M(l) value of PADLA t tends to

be higher than that of PADLA n. So we use the parameter set which has the maximum M(l)

value in PADLA n and the parameter set which has the M(l) value nearest (the absolute value of

the difference is the smallest) to the PADLA n’s maximum in PADLA t. In the tomcat result, we

choose [L = 1, 000, 000, θ = 0.99] (M(l) = 89.67) for PADLA n and [I = 0.5s, θ = 0.94]
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Figure 6: Normalized average variance value of the M(l) value

(M(l) = 89.63) for PADLA t. In the kafka result, we choose [L = 1, 000, 000, θ = 0.90]

(M(l) = 97.64) for PADLA n and [I = 0.5s, θ = 0.91] (M(l) = 97.32) for PADLA t. In the

tomcat result, the execution time of PADLA n is 2.83 times longer than PADLA t. On the other

hand, in the kafka result, the execution time of PADLA t is 1.19 times longer than PADLA n. The

reason for this can not be concluded only from the data collected from this evaluation. However,

we can infer that it is caused by the differences between implementation and target programs.

For the comparison of the stability, we calculate the variance values of the log file size collected

from PADLA t and PADLA n. As we explained in RQ2’s result, the log file size of PADLA t is

not stable in every execution even if it uses the same scenario and environment. So, we evaluate

the stability of PADLA t and PADLA n by their variance value of the log file size. We collected

the log file size 10 times in each parameter θ for PADLA t and PADLA n. We calculate the vari-

ance value of the log file size in each θ and then, we compare the average of the values between

the two methods. Note that the log file size is normalized by using the maximum value in each θ.

Figure 5 shows the normalized average variance value of the log file size in each method and target

program. In both tomcat and kafka, the normalized average variance value of PADLA n is smaller

than that of PADLA t. In the tomcat result, the value of PADLA n is about one third of that of

PADLA t and in the kafka result, the value is about half of that of PADLA t. Figure 6 shows

that the normalized average variance value of the M(l) value in each method and target program.
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The value is calculated from the log files collected from the same execution of Figure 5. The nor-

malized average variance value of PADLA n is smaller than that of PADLA t in both tomcat and

kafka. From these facts, we can infer that PADLA n is stabler than PADLA t. However, ideally,

PADLA n’s variance value of log file size should be zero because the number-based method ob-

serves the method call events for the phase detection and the method call events are expected to be

the same in every execution. The reason for this can be inferred as some random elements of the

benchmark tool and the target programs or the delay of changing the log level threshold (PADLA

uses the socket for the connection between the phase detection and logging component).

From the above, the characteristics of PADLA t and PADLA n can be summarized as fol-

lows. PADLA t can achieve better M(l) value than PADLA n. In addition, the execution time

of PADLA t is greatly shorter than PADLA n. However, the result can be changed depending on

the target program because in the kafka result, the execution time of PADLA n is shorter than that

of PADLA t. From the stability perspective, PADLA n is better than PADLA t because PADLA n

is smaller than PADLA t comparing the variance value of the log file size.
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5 Case Study

To investigate the usefulness of PADLA, we apply PADLA to the irregular behavior of a server

system to answer the following questions.

• Question 1. Is the log messages output by PADLA useful for debugging?

• Question 2. Compared to info and trace, is PADLA useful?

5.1 Use Case Scenario

We use PADLA to analyze Bug 59813 chosen from Bugzilla5 as a sample of real-case bugs of

a server system. Bug 59813 is a bug of Apache Tomcat 8.5.3 causing an infinite loop during the

starting up of the server system. This is caused by two jar library files read by Tomcat referring

to each other in the Classpath inside the MANIFEST.MF file, resulting in the two libraries loaded

cyclically. We apply PADLA to the bugged Tomcat, then for the Question 1 we investigate the log

file that output when the server starts up. For the Question 2, we measure and compare the log file

size and M(l) of each configuration info, PADLA and trace.

To set up the experiment, we have to replicate the bug, and apply PADLA to Tomcat. For this

reason, we make two additional library files and add them into the Classpath of Tomcat. The two

files (Lib1.jar and Lib2.jar) refer to each other in the Classpath in the MANIFEST.MF file, so they

cause the bug explained above. To apply PADLA to Tomcat, we firstly apply log4j2 to Tomcat and

then replace the log4j-core.jar with our log4j-core-extended.jar. We also add a javaagent option

to the JAVA OPTS of Tomcat to install Agent.jar.

In this case study, PADLA employs the time-based method as its phase detection method

(PADLA t). The objective of this case study is collecting detailed logs of irregular behaviors

of a real-case. As we compared in the Section 4, PADLA t is better than PADLA n in the M(l)

value. In addition, PADLA t suppressed the execution time to about one-third of PADLA n in

tomcat. Although the stability of PADLA n is better than that of PADLA t, the larger value of

the M(l) is desirable for collecting detailed logs of irregular behaviors. Furthermore, PADLA n

takes double execution time of trace so using PADLA n in “real-case” is not realistic. For these

reasons, we use PADLA t.

We start Tomcat and stop it after a given execution time. The execution times are 20s, 30s,

40s, 50s and 60s for each configuration. For each configuration and for each execution time, we

execute Tomcat 10 times and then, calculate an average of the log file size and M(l) value.

5https://bz.apache.org/bugzilla/
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…

Figure 7: Case study: a portion of the infinite loop output log obtained by PADLA (file paths are

omitted)

Table 6: Case study: the log file size and M(l) value of each execution time and each configuration

Execution time (s) Configuration
File size (KB)

(division by trace (%))
M(l) (%)

20

info 5 (0.01) 17.43

PADLA 15,365 (20.81) 100.00

trace 73,819 (100.00) 100.00

30

info 5 (0.01) 17.43

PADLA 15,249 (14.03) 100.00

trace 108,690 (100.00) 100.00

40

info 5 (0.01) 17.43

PADLA 15,750 (11.67) 100.00

trace 147,630 (100.00) 100.00

50

info 5 (0.01) 17.43

PADLA 15,635 (8.66) 100.00

trace 180,584 (100.00) 100.00

60

info 5 (0.01) 17.43

PADLA 15,382 (7.18) 100.00

tracetrace 214,259 (100.00) 100.00

In the experiment explained above, when PADLA is applied, the log level threshold is info at

the beginning. When PADLA detects an unknown phase, the log level threshold is changed to

trace. The experiment is conducted with the same environment as Section 4. The parameters I

and θ are set to 0.5s and 0.95 respectively. The parameters values follow the default values used

in Section 4.
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5.2 Result

Figure 7 shows a part of the log file output by PADLA. The debug and trace level log messages

are output because PADLA changes the log level threshold of the target system. In the Figure, lines

57,597, 57,598, 57,609 and 57,610 are the log messages when Tomcat loads Lib1.jar, lines 57,601,

57,602, 57,605 and 57,606 are the log messages when Tomcat loads Lib2.jar, the two types of log

messages repeats while the infinite loop continues. PADLA recorded these log messages in every

execution of this experiment. These log messages indicate that after the Lib1.jar or Lib2.jar is

loaded, Tomcat tends to load the other, so we can infer that the two library jar files are the cause

of the bug. In addition, the two types of log messages exist only in debug and trace level, so if

the log level threshold is set to info, the log messages does not appear in the log file. From these

facts we can conclude that PADLA can collect useful information for debugging by adapting the

log level threshold.

Table 6 shows that the log file size and M(l) value of each execution time and each configu-

ration. We can see that the log file size of trace increases as the execution time increases, while

that one of PADLA is relatively stable. The log file size of trace continues to increase until Tom-

cat stops because trace continues to output the log of the infinite loop while the loop continues.

On the other hand, PADLA learns a phase of the infinite loop and records detailed log messages

only at the first few intervals of the loop. So the log file size of PADLA is not affected by the

execution time and a reduction rate increases with the execution time. In addition, we can ob-

serve that PADLA keeps 100% M(l) value in every execution time while info keeps only 17.43%.

From these facts, in this case study, PADLA shows an higher M(l) value than info while greatly

suppressing the log file size that of trace.
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6 Limitations

In this evaluation, the phase detection function of PADLA is not strictly evaluated. To conduct

a strict evaluation for the phase detection function, we need an execution scenario labeled with

phases information. The information should specify when a phase starts and whether the phase is

known or unknown. However, the execution time of a program depends on its environment and

we cannot know accurately when a phase starts so observing phases information is not always

possible. For this reason, in this evaluation, we use M(l) to evaluate PADLA.

In the evaluation, the execution time of the number-based method is greatly longer than that

of the time-based method and trace. So the number-based method is not employed in the case

study. However, this long execution time might be caused by the implementation or the parameter

setting. For this reason, we can not conclude the usefulness of the number-based method before

reconsidering these.
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7 Conclusion

This paper presents PADLA, a cost-effective detailed logging method that dynamically adjusts

the log level threshold of a running system. Using the phase detection methods, PADLA monitors

the behavior of a system and adjusts the log level threshold to appropriate one for the situation.

We evaluated PADLA using DaCapo Benchmarks. In the evaluation, we investigated the logging

quality of PADLA and the effect of the parameters values. In addition, we compared the charac-

teristics of the two phase detection methods. The time-based method has better M(l) value and

execution time than number-based method in the tomcat result, while the number-based method is

stabler than the time-based method. As a case study, we applied PADLA to a real-case bug. In

the case study, PADLA successfully recorded information that is useful for debugging. The case

study also showed that PADLA can reduce the log file size from trace while keeping high M(l)

value compared to info.
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