
Master Thesis

Title

Investigating Impact to Compilability of Python Code Snippets on
Stack Overflow due to Python Version Upgrades

Supervisor

Professor Katsuro Inoue

Author

Shiyu Yang

2022/2/2

Software Engineering Laboratory, Department of Computer Science

Graduate School of Information Science and Technology, Osaka University

令和４年度Master Thesis

Investigating Impact to Compilability of Python Code Snippets on Stack Overflow due to Python

Version Upgrades

Shiyu Yang

Abstract

Stack Overflow is a popular Q&A site for programmers that have accumulated a wealth of

code snippets. However, as time goes on, code snippets can become unavailable due to obsolete

programming languages and other reasons. Such unavailable code may mislead answer seekers

and cause unexpected problems. In December 2008, Python 3.0 was released. Python 3.0 is

a new language version that is not backward compatible with Python 2. This means that code

snippets written in Python 2 on Stack Overflow may not be compiled directly by Python 3. If not

identified or documented clearly, it may mislead answer seekers and cause unexpected problems.

In this work, we use PyComply to parse Python code snippets on Stack Overflow extracted from

SOTorrent. Using the PyComply parsing results, we investigate the impact of the Python version

upgrade on the compilability of Python code snippets on Stack Overflow. We found that Python

version upgrades had an impact on the compilability of Python code snippets on Stack Overflow,

as evidenced by: 1)about 40% of the Python code snippets on Stack Overflow whose compilability

changed with the Python version in this study are uncompilable for Python 3. 2)The release of

the new Python version inhibits the development of the old versions. 3)The trend of code snippets

responding to newer versions increases over time.

Keywords

Stack Overflow

Python Version Evolution

Compilability

1

Contents

1 Introduction 4

2 Background 7

2.1 Stack Overflow . 7

2.2 SOTorrent . 7

2.3 Reasons for the obsolescence of code snippets on Stack Overflow 10

2.4 Python Language Evolution and Backward Compatibility 11

2.5 PyComply . 12

3 Study Approach 13

3.1 Data Collection . 13

3.1.1 Data source . 13

3.1.2 Data Processing . 14

3.2 PyComply Analysis . 15

3.2.1 Preprocessing . 15

3.2.2 PyComply parsing . 16

3.3 Case Study . 17

3.3.1 RQ1:What are the available Python version ranges for Python code snip-

pets on Stack Overflow? . 19

3.3.2 RQ2:How Stack Overflow users respond to each Python release, and what

are the differences between Python 2 and Python 3? 21

3.3.3 RQ3:How are Python 2-only compilable Python code snippets and Python

3-only compilable Python code snippets distributed on Stack Overflow? . . 22

4 Case Study Results 23

4.1 RQ1:What are the available Python version ranges for Python code snippets on

Stack Overflow? . 23

4.2 RQ2:How Stack Overflow users respond to each Python release, and what are the

differences between Python 2 and Python 3? . 27

4.3 RQ3:How are Python 2-only compilable Python code snippets and Python 3-only

compilable Python code snippets distributed on Stack Overflow? 29

5 Discussion 31

5.1 Findings . 31

2

5.2 Implications . 31

5.2.1 Suggestions for Stack Overflow . 32

5.2.2 Suggestions for Stack Overflow Users 32

5.3 Threats to Validity . 32

6 Conclusion 34

Acknowledgement 35

References 36

3

1 Introduction

Stack Overflow is a Q&A site for programmers, which provides a platform for programmers to

exchange information and share knowledge. Here, users can post questions in the form of posts

with different topics divided by titles and tags to make it easy for other users to search for content

they are interested in. Users can also post answers as well as comments in the posts. The content

of the posts is mainly text and code snippets. Users usually describe their questions or answers by

attaching code snippets to their posts. As of January 20221, Stack Overflow has accumulated over

22 million posts, 33 million answers, and 84 million comments. These numbers are increasing

every day.

This vast amount of information on the Internet has changed the way developers seek knowl-

edge. Ready-to-use code snippets also provide developers with an easy way to find daily program-

ming problems.

While it is convenient to search for available code snippets on Stack Overflow, recent studies

have shown that code snippets can be toxic [10], obsolete [15] as well as low quality [14] and

lead to software quality issues [15], license violations [2] or migration of security vulnerabili-

ties [5], [13]. Therefore, more research needs to be done on identifying these problems and how

to reduce the impact on Stack Overflow users. There are many reasons why code snippets in a

Stack Overflow post become unavailable [15]. One of the reasons is the obsolescence of the code

snippet due to the outdated programming language used in the code snippet [15].

Programming languages are not set in stone. Existing programming languages are constantly

evolving to meet new needs and thus gain longevity. Popular programming languages often use

versions to indicate their evolution, with newer versions usually representing more mature forms

of the language. Many programming languages address language evolution by maintaining back-

ward compatibility, which means that programs compiled with an earlier language version can be

compiled with a later version and exhibit the same behavior as the previous version. However,

the release of Python 3.0 made the Python language break this rule; Python 3 series versions are

not backward compatible with Python 2 series versions. The lack of backward compatibility for

Python 3 can cause problems for Stack Overflow users. For example, a user found a code snippet

that meets his/her needs and wants to reuse it in his/her project. However, this code snippet is

written in Python 2 and may not be compilable if used directly in the user’s project written in

Python 3. Therefore, it is necessary to provide insights on how to track or alleviate this problem.

To our knowledge, no studies have investigated the Python language versions of Python snippets

1https://data.stackexchange.com/

4

on Stack Overflow. We are interested in investigating the compilability of Python code snippets

on Stack Overflow for each Python version, and what impact Python version upgrades have on the

compilability of Python code snippets. Knowledge of the compilability of Python code snippets

may provide insight into new research directions and tool support.

In this paper, we extracted 2,475,559 code snippets from SOTorrent whose post tag contained

”Python” (we consider such code snippets as code written in Python) and filtered 307,788 code

snippets whose compilability changed with the Python version for research. We used a Python

compliance analyzer, PyComply, to parse the code snippets we studied to understand the impact

to compilability of Python code snippets on Stack Overflow due to Python version upgrades. We

organized our study by answering the following research questions:

• RQ1:What are the available Python version ranges for Python code snippets on Stack

Overflow?

We found that this study’s available version ranges of Python code snippets whose compil-

ability varies with Python version changes in this study can be divided into three categories.

The code snippets whose available version range spans Python 2 and Python 3 account for

42.0% (307,788 in total), those whose available version range is only in Python 2 account

for 39.6%, and those whose available version range is only in Python 3 account for 18.4%.

Code snippets are relatively concentrated in the range of versions containing 2.7 and 3.6.

• RQ2:How Stack Overflow users respond to each Python release, and what are the

differences between Python 2 and Python 3?

We found that new versions are released and get a response shortly afterward. The release

of new Python version inhibits Stack Overflow users ’response to older versions. It is

impossible to compare the differences in user response to each version of Python 2 and

Python 3 releases.

• RQ3:How are Python 2-only compilable Python code snippets and Python 3-only com-

pilable Python code snippets distributed on Stack Overflow?

The number of Python 2-only compilable Python code snippets increased year by year start-

ing in 2008, peaked in 2015 and began to decline year by year after that. There is an overall

upward trend in Python 3-only compilable Python code snippets. But overall, among the

code snippets investigated by RQ3, the Python 2-only compilable Python code snippets are

about twice as large as the Python 3-only compilable Python code snippets.

5

Paper Organization: The rest of the paper is organized as follows. Section 2 presents the back-

ground. Section 3 introduces our study approach. Section 4 presents the results of our research

questions. Section 5 discusses the implications and limitations of our study. Finally, Section 6

concludes the paper.

6

2 Background

2.1 Stack Overflow

Stack Overflow is a popular Q&A site for programmers. Developers can post questions, answer

questions, and search and browse for the content of their interest on the site. When posting a

question on Stack Overflow, questioners can indicate to viewers what the question is about by

adding information such as a title and tags. In addition, code snippets and other references (e.g.,

URLs or images) related to the question can be pasted into the body of the post, allowing the

questioner to describe the question in detail. Each question can receive multiple answers from

different answerers. Answerers can also post answers with code snippets and other references to

explain their answers. Figure 1 shows an example of a post on Stack Overflow. The questioner

asked how to change the name of objects in Django admin and attached a code snippet and image

to detail the question.

In the process of posting and answering questions, Stack Overflow collects a significant number

of code snippets. Developers often try to find code snippets on Stack Overflow that meet their

needs to reuse in their projects. Regarding these code snippets on Stack Overflow, Wu et al. [14]

studied how developers utilize source code from Stack Overflow. They found that one of the top 3

barriers that make it difficult for developers to reuse code on Stack Overflow is low code quality.

From this point, Stack Overflow needs to improve or verify the quality of code snippets.

Zhang et al. [15] conducted an empirical study of obsolete answers on Stack Overflow. As

time passes, specific knowledge in answers may become obsolete. If not identified or docu-

mented clearly, such obsolete answers may mislead answer seekers and cause unexpected prob-

lems. Therefore, it is necessary to provide insights on how to track or alleviate this problem.

2.2 SOTorrent

SOTorrent is an open dataset based on the official Stack Overflow data dump [4]. The official

Stack Overflow data dump collects and organizes questions, answers, and user information on

Stack Overflow in posts units.

SOTorrent provides access to the version history of Stack Overflow content at the level of whole

posts and individual text or code blocks [4]. A post can contain both text and code blocks, de-

pending on how the author formats the content. In our study, the definition of Stack Overflow

code snippets refers to code blocks.

SOTorrent contains all tables from the official Stack Overflow data dump [3], marked in gray

7

Figure 1: An example of a question and its accepted answer on Stack Overflow

(https://stackoverflow.com/questions/60767482/how-to-change-the-name-of-objects-in-django-

admin)
8

Figure 2: Database schema of SOTorrent [3]

in the SOTorrent database schema as shown in Figure 2. Additionally, the tables created by SO-

Torrent authors based on the official data dump tables are blue. In the following sections, we will

describe how to obtain data from the relevant tables in SOTorrent for our study.

Several other studies have used SOTorrent. Manes et al. [7] investigated how often GitHub de-

velopers re-use code snippets from the SO forum, as well as what concepts they are more likely to

reference in their code. For their goal, they mined the SOTorrent dataset that provides connectivity

between code snippets on the SO posts with software projects hosted on GitHub.

Manes et al. [8] investigated the change histories of snippets on Stack Overflow and GitHub. We

studied SO snippets that have been reused in GitHub projects by mapping data sources, SOTorrent

and GHTorrent, and building a new dataset that provides a mapping of these data to the revision

history of the reused code snippets along with code diffs.

Rahman et al. [11] investigated how often insecure responses appeared in Stack Overflow posts

related to Python. In this study, SOTorrent was used to extract code snippets and identify approved

responses.

9

Abric et al. [1] presented an initial exploration into the value of duplicate questions and their

answers on Stack Overflow, using SOTorrent to investigate the nature of users who ask duplicate

questions by knowing their past credibility and activity.

2.3 Reasons for the obsolescence of code snippets on Stack Overflow

Zhang et al. [15] manually derived and categorized the reasons why answers on Stack Overflow

are obsolete, as shown below:

(1) Third Party Library: An answer becomes obsolete due to third-party libraries, Application

Programming Interfaces (APIs), or frameworks becoming obsolete.

(2) Programming Language: Answer obsolescence is caused by obsolete programming language

features and/or its standard APIs.

(3) Reference: References in an answer are obsolete.

(4) Tool: Tool information is obsolete, such as an old version.

(5) Mobile OS: An answer becomes obsolete due to an obsolete mobile platform.

(6) Non-mobile OS: An answer becomes obsolete due to an obsolete nonmobile OS platform.

(7) Protocol: An answer is obsolete because a protocol is updated.

Most of the above also apply to analyzing and explaining the reasons for the obsolescence of

code snippets on Stack Overflow. Taking the Third Party Library as an example, APIs are often

used in software development because they allow developers to call commonly used functions

from external programs. There are many posts on Stack Overflow about problems encountered

when using APIs. API developers can also use these posts to understand how users use the API,

and what features they want the API to provide. However, the APIs included in those posts are

not always correct in the latest version of the library. Those obsolete APIs are detrimental to users

who want to reuse the code snippets. For example, users find a code snippet in a Stack Overflow

post that meets their needs and reuse it in their project. However, the user may not realize that the

APIs used in the code snippet are outdated. Using such outdated APIs has the potential to cause

software quality problems.

Nishimura [9] investigated whether the APIs in the code snippets included in the Stack Overflow

posts were available in the latest library versions, targeted APIs included in five Java libraries. As

a result, they found that many of the invalid code snippets containing deprecated APIs were no

longer valid shortly after 2017.

10

2.4 Python Language Evolution and Backward Compatibility

Programming languages need to evolve in response to external and internal factors continually.

Without evolution, the language may become less competitive and even deprecated. Versions

are a common way for popular programming languages to express evolution, and later versions

usually represent a more mature form of the language. Many popular programming languages

have maintained backward compatibility during their evolution to avoid raising concerns among

developers about software product compatibility, meaning that software developed in an earlier

version of the language can be compiled with a later version and express the same behavior as the

previous version.

However, Python breaks the backward compatibility rule and is one of the notable few excep-

tions. Python 3 versions starting with 3.0 are not backward-compatible with Python 2 versions

from 2.0 to 2.7. In other words, programs developed in Python 2 may not be interpreted by Python

3 without modification.

With its simplicity, readability, and extensibility, the Python versions has grown linearly since

2004, and many programmers have welcomed and loved it. Beginning with version 2.0 released

in October 2000, the Python language continued to evolve until version 2.5. Python 2.6 was

then released in October 2008, followed by Python 3.0 in December of that year. Python 3.0 is not

backward compatible with previous Python versions. Despite the release of Python 3.0, the Python

team decided to support both development branches due to the large number of users continuing

to use Python 2. Since then, versions of the Python language have been split into two series.

In addition, the Python team announced in 2008 that Python 2 would be supported until 2015.

Python 2.7 was released in July 2010 as the last version of the Python 2 series. However, in 2014,

the date for ending support for Python 2 was extended to 2020 to accommodate those who were

still unable to migrate to Python 3. Eventually, official support for Python 2.7 ended on January

1, 2020. This marks the end-of-life of Python 2. With official support for Python 2 no longer

available, many projects also announced to stop supporting Python 2 (including TensorFlow, Pan-

das, Numpy, Jupyter Notebook, Cython, etc.). If you’re still using Python 2, it’s time to upgrade

to Python 3. Suppose Python users continue to use unsupported modules. In that case, you are

taking a risk with the security of your organization and data, because vulnerabilities will appear at

some point, and no one will fix them.

Also, as mentioned before, a large number of code snippets have been accumulated on Stack

Overflow. There may be code snippets written in various Python versions among these code

snippets. When Python 2 is completely deprecated in the future, code snippets written in Python 2

11

on Stack Overflow will also become obsolete. Therefore, it is necessary to investigate the Python

code snippets on Stack Overflow to determine their availability for each Python version.

2.5 PyComply

To investigate the impact of the transition from Python 2 to Python 3 on Python applications,

Malloy et al. [6] developed a Python compliance analyzer, PyComply. It is based on an approach

that exploits grammar convergence to generate parsers for each of the major versions in the Python

2 and Python 3 series and conducted an empirical study on the Qualitas corpus, a selection of

Python applications.

Input to PyComply is the Python grammar for the version under study together with a Python

program or test case; output from the tool includes the statistical information such as pass/fail

result for each file or the number of Python 3 features that PyComply recognized. The core of

PyComply is the grammar formalism used to define the Python syntax, along with the parser

actions inserted into the grammar to facilitate identifying the Python 3 features.

The Python developers make a test suite available for each Python version. In addition to us-

ing correctness preserving grammar transformations to build their parsers, they also validated the

parsers by comparing the number of test cases that their PyComply parsers pass with the number

of test cases that the Python parsers passed numbers were the same. Moreover, the fact that their

parsers recognize the same test cases that the Python parsers recognize substantiates the validity

of their investigation.

12

3 Study Approach

This study wants to know how the compilability of python code snippets on Stack Overflow has

changed due to python version upgrades. Therefore, we surveyed the compilability of python code

snippets on Stack Overflow, focusing on the following three three research questions:

(1) RQ1:What are the available Python version ranges for Python code snippets on Stack Over-

flow?

(2) RQ2:How Stack Overflow users respond to each Python release, and what are the differences

between Python 2 and Python 3?

(3) RQ3:How are Python 2-only compilable Python code snippets and Python 3-only compilable

Python code snippets distributed on Stack Overflow?

In designing the study approach to answering these research questions, we first utilized SOTorrent,

mentioned in Section 2, to extract our desired Python code snippets from Stack Overflow. In the

second step, we preprocessed the Python code snippets and parsed the Python code snippets we

studied using PyComply, as mentioned in Section 2. Finally, we explain each research question

regarding the purpose of the study and the definitions required for the experiment.

3.1 Data Collection

This subsection describes how we gathered the dataset to address our research questions.

3.1.1 Data source

To understand the impact of Python version upgrades on the availability of python code snippets

on Stack Overflow, we first need to obtain code snippets written in Python among the code snippets

included in the questions and answers posted on Stack Overflow.

As we introduced in Section 2, when a questioner posts a question on Stack Overflow, he can

show viewers the relevant content of the question by adding information such as title and tags.

Also, due to editing, the content of the currently posted code snippet may differ from that of the

original posting. In addition, the content of the now posted code snippet may vary from that of

the initial posting due to editing. To investigate the compilability of the current code snippet, we

focused on the most recent posted data currently available to users. Based on these, we used the

following two criteria to identify the code snippets required for this study:

(1) Code snippets from posts containing the tag ”Python”.

13

Table 1: Posts

Field Name Data Type Interpretation

Id Integer PostID

PostTypeId TinyInt ID to identify the type of post

CreationDate DateTime Date of post

Body Text Body of a post

Tags VarChar(150) Tags of post

(2) Posting data is up to date.

We use SOTorrent to get Python code snippets on Stack Overflow. SOTorrent has been contin-

uously updated with many versions since its creation. At the time we started our study, the latest

version of SoTorrent was SOTorrent20 03 as of March 15, 2020.

3.1.2 Data Processing

We first built a database using the SOTorrent dataset to get Python code snippets from Stack

Overflow posts. In this study, we use the data stored in Posts, PostBlockVersion, and PostBlock-

Type in the tables shown in Figure 2. The contents of these three tables2 are as follows:

(1) Posts: HTML content of most recent version of Stack Overflow posts.

(2) PostBlockVersion: Version history on the level of post blocks, which are either text (1) or code

(2) blocks (extracted from Table PostHistory).

(3) PostBlockType: Available post block types (text or code).

We do not need to use all the fields of these tables. Tables 1, 2, and 3 show the fields in each

table used in this study and their interpretations.

After constructing the database, we extracted code snippets from all posts containing a tag

”Python” from the database. We created a new table PythonPost in the database to store the fol-

lowing information about these code snippets: the posting date of the post including the extracted

code snippet, the body of the post, the content of the code snippet, the tags attached to the post,

and whether the post is the latest version or not. Finally, we extracted the code snippets we needed

from this table, totaling 2,475,559.

2https://empirical-software.engineering/sotorrent/

14

Table 2: PostBlockVersion

Field Name Data Type Interpretation

Id Integer Version ID of the post

PostBlockTypeId TinyInt The ID of the post type

PostId Integer Post ID that is the source of the post version

Content Text Content of a post

MostRecentVersion Boolean Whether it is the latest after editing

Table 3: PostBlockType

Field Name Data Type Interpretation

Id TinyInt The ID of the post type

Name VarChar(50) Name of the post type

3.2 PyComply Analysis

This subsection introduces how PyComply parses a Python code snippet to identify its Python

version. Next, we present PyComply analysis in two parts, preprocessing and PyComply parsing.

3.2.1 Preprocessing

As mentioned in Section 2, PyComply was initially designed to parse Python files in applica-

tions. Our research objects are individual code snippets on Stack Overflow. To accommodate our

research needs, we first need to perform a simple preprocessing of the code snippets we obtained

in the previous steps. The steps are as follows：

(1) Select the code snippets with the MostRecentVersion value of ”true” from PythonPost and save

them as separate python files.

(2) Handle formatting issues that cause code snippets not to be parsed by PyComply: redundant

indentation, inconsistent indentation, etc.

In addition, before the formal PyComply parsing, we need to build the corresponding PyComply

for all Python 2 and Python 3 versions investigated in this study, i.e., generate and build the relevant

parsers and scanners for each Python version.

When Malloy et al. [6] ran PyComply for the eight major releases in Python 2 and the seven

major releases in Python 3 and examined the pass rates for the applications, they found that the

15

pass rates for versions 2.1, 2.3, 3.2, and 3.4 were the same as the corresponding previous version

for all applications. To investigate whether a similar situation might arise when parsing Python

code snippets on Stack Overflow with PyComply, we performed a PyComply parsing test. We ran

PyComply for the same eight major releases in Python 2 and the seven major releases in Python

3. When we examined the pass rates of Python code snippets, we found that the pass rates for

versions 2.1, 2.3, 3.2, and 3.4 were the same as the corresponding previous version for all Python

code snippets. This result is consistent with the findings of Malloy et al. [6]. Therefore, we omitted

these versions in this study, showing only the six and five major versions of Python 2 and Python

3.

3.2.2 PyComply parsing

In this study, a code snippet is considered compilable for a Python version if it can pass Py-

Comply parsing for that Python version. Otherwise, the code snippet is deemed uncompilable for

that Python version.

We parsed 2,475,559 code snippets obtained earlier with PyComply corresponding to each

Python version, and recorded the pass/fail results of each snippet as shown in Table 4. We re-

moved 1,173,905 code snippets during this process because they could not be compiled as Python

code snippets.

The first column of Table 4 is the posting year of the python code snippets. To facilitate the

observation of the change of python code snippets on Stack Overflow over time, we group the

python code snippets based on the year of posting. One row for each year and one column for

each Python version, ranging from 2.0 to 2.7 in series 2 and from 3.0 to 3.6 in series 3. The last

column shows the number of Python code snippets in each year. The data in all but the first and

last columns show the percentage of these Python code snippets that passed PyComply for the

corresponding year.

According to the data in Table 4, we found that the Python code snippets have high pass rates

for all Python versions. This indicates that a significant fraction of the code snippets we parsed

were compilable for all Python versions. This may be the case because they lack some features

that would make the compilability of code snippets vary between Python versions. While these

code snippets are useful for users, this study focuses on code snippets that are (only) compilable

in certain versions, i.e., code snippets whose compilability changes depending on the version of

Python. Additionally, we found that the magnitude of change in the data in the table is too small

to easily observe changes in code snippets over time or Python versions. Therefore, we believe

16

Table 4: Pass rates for Python code snippets for each year for Python versions 2.0 through 3.6

Year ver2.0 ver2.2 ver2.4 ver2.5 ver2.6 ver2.7 ver3.0 ver3.1 ver3.3 ver3.5 ver3.6 # code snippets

2008 92% 93% 95% 97% 97% 98% 82% 82% 83% 83% 83% 917

2009 91% 92% 94% 96% 96% 97% 78% 78% 80% 80% 81% 7,588

2010 90% 91% 94% 96% 96% 96% 80% 80% 81% 81% 82% 17,055

2011 90% 91% 93% 96% 96% 97% 79% 79% 80% 80% 81% 30,619

2012 89% 90% 92% 95% 96% 97% 79% 79% 80% 80% 81% 54,062

2013 88% 89% 92% 95% 96% 97% 80% 80% 81% 81% 82% 91,413

2014 87% 88% 91% 95% 96% 96% 81% 81% 83% 83% 84% 116,229

2015 86% 87% 90% 95% 96% 96% 83% 83% 85% 85% 86% 141,352

2016 85% 86% 89% 95% 95% 96% 86% 86% 87% 87% 88% 169,301

2017 84% 85% 88% 94% 95% 96% 90% 90% 91% 92% 93% 210,517

2018 83% 84% 87% 93% 94% 95% 94% 94% 94% 95% 97% 233,781

2019 83% 84% 86% 92% 93% 94% 95% 95% 95% 96% 98% 195,983

2020 82% 83% 86% 92% 93% 93% 95% 95% 95% 96% 99% 32,837

that excluding code snippets compilable for all Python versions can make the changes in the data

clearer when studying specific research questions. We removed 993,866 code snippets that were

compilable for all Python versions. The Pass rates for the remaining 307,788 code snippets are

shown in Table 5. The first column of Table 5 is the posting year of the python code snippets.

One row for each year, and one column for each Python version, ranging from 2.0 to 2.7 in series

2 and from 3.0 to 3.6 in series 3. The last column shows the number of Python code snippets in

each year. The data in all but the first and last columns show the percentage of these Python code

snippets that passed PyComply for the corresponding year.

3.3 Case Study

As we described in Section 2, in 2008, the successive release of Python 2.6 and Python 3.0

started the path of branching Python versions. Python 2 and Python 3 are no longer released

linearly like other programming languages. Therefore, when investigating the research questions,

we analyzed the timelines of Python 2 and Python 3 separately to avoid the interference caused by

the overlap in the release schedule of the Python 2 and Python 3 series.

In addition, we used the same dataset when investigating RQ1, RQ2, and RQ3. We obtained

307,788 code snippets by filtering out code snippets that are compilable for all Python versions

and those that are uncompilable for all Python versions, as mentioned earlier. Table 6 records the

pass and fail results of the dataset parsed by the PyComply of each Python version.

17

Table 5: Pass rates for Python code snippets for each year for Python versions 2.0 through 3.6

(Removed the code snippets compilable for all python versions)

Year ver2.0 ver2.2 ver2.4 ver2.5 ver2.6 ver2.7 ver3.0 ver3.1 ver3.3 ver3.5 ver3.6 # code snippets

2008 68% 72% 81% 89% 89% 90% 25% 25% 28% 28% 30% 220

2009 68% 70% 80% 85% 86% 88% 23% 23% 29% 29% 31% 2,150

2010 65% 67% 76% 84% 85% 87% 26% 26% 30% 30% 33% 4,689

2011 65% 67% 76% 85% 86% 88% 25% 25% 30% 30% 32% 8,674

2012 62% 64% 74% 84% 86% 88% 27% 27% 31% 31% 35% 15,682

2013 59% 61% 71% 84% 86% 88% 30% 30% 34% 34% 38% 25,980

2014 54% 56% 67% 82% 85% 87% 33% 34% 38% 38% 42% 32,392

2015 48% 51% 63% 81% 84% 86% 38% 39% 43% 43% 47% 38,354

2016 42% 45% 57% 79% 82% 85% 45% 45% 49% 50% 54% 42,720

2017 29% 33% 47% 74% 78% 82% 57% 58% 61% 63% 68% 47,501

2018 16% 20% 35% 65% 70% 74% 67% 68% 70% 74% 83% 46,476

2019 9% 13% 28% 59% 64% 69% 72% 72% 74% 78% 91% 36,783

2020 5% 10% 25% 55% 61% 65% 72% 73% 74% 77% 95% 6,167

Table 6: PyComply parsing results for Python code snippets for Python versions 2.0 through

3.6(Removed the code snippets compilable and uncompilable for all python versions)

Version Failed Passed # code snippets

ver2.0 193,302 114,486 307,788

ver2.2 183,894 123,894 307,788

ver2.4 145,069 162,719 307,788

ver2.5 77,753 230,035 307,788

ver2.6 66,748 241,040 307,788

ver2.7 56,880 250,908 307,788

ver3.0 158,135 149,653 307,788

ver3.1 156,784 151,004 307,788

ver3.3 145,660 162,128 307,788

ver3.5 141,555 166,233 307,788

ver3.6 122,155 185,633 307,788

18

3.3.1 RQ1:What are the available Python version ranges for Python code snippets on Stack

Overflow?

This study would like to investigate the lifespan of SO code snippets that are not compilable

in some Python versions. The available python version ranges for Python code snippets may

represent the survival period of code snippets to some extent.

One thing to note about the available python version ranges for Python code snippets is that the

available python version ranges may not be continuous but are subject to breaks. For example,

if a code snippet is compilable for Python 2.4, uncompilable for Python 2.5, but compilable for

Python 2.7. The available python version range for that code snippet is 2.4-2.7. Just because a

code snippet is uncompilable for a newly released Python version does not mean that it is entirely

deprecated, and there are many other Python versions available simultaneously. We only need to

focus on the earliest available Python version and the latest available Python version for that code

snippet. Based on the above, we define the criteria for available Python version ranges as follows:

(1) The available version range of a code snippet is from the oldest python version to the latest

python version that the code snippet can pass PyComply parsing.

(2) There can be breaks between available python version ranges.

Figure 3 is a schematic diagram of the available Python version ranges for Python code snippets

in this study, with the left and right graphs representing Python 2 and Python 3, respectively. The

two series do not interfere with each other. The available version ranges in Python 2 are observed

without considering the compilability of Python code snippets for each version of Python 3 and

vice versa. The first row of both graphs shows the Python versions in the figure, each marked with

a color. A rectangular block of color represents a range of Python versions in the rest of the charts,

marked with the color corresponding to the Python version that the range starts with. There are 21

possible ranges in the Python 2 series and 15 possible ranges in the Python 3 series. Taking Python

2 on the left as an example, the available version range represented by the orange-colored part of

line eight is 2.2-2.4. Python code snippets in this range are not compilable for Python 2 versions

before Python 2.2 and after Python 2.4, but only for Python 2 versions in the range 2.2-2.4.

Based on the above criteria, we investigate the available version ranges of Python code snippets

within the two series Python 2 and Python 3, respectively. Only the respective series’ versions

are considered as these version ranges are obtained. Those code snippets whose available python

version ranges span Python 2 and Python 3 will get the version range within Python 2 and within

Python 3, respectively. We combine the version ranges in the respective series of Python 2 and

19

Figure 3: Schematic diagram of the available Python version ranges

Python 3 in pairs. If there are duplicates of code snippets in the Python 2 range and Python 3

range in a combination, it means that the code snippets in those duplicates are compilable for both

Python version ranges. This way, we can get Python code snippets that are compilable across

Python 2 and Python 3.

When we combine the available version ranges of Python 2 and Python 3, we use forms like

[2.0,3.0-3.3] to represent our combinations of version ranges within the Python 2 and Python 3

series. [2.0,3.0-3.3] means that the code snippets are compilable for Python 2.0 and versions in

the range Python 3.0 to Python 3.3. We use ∅ to represent that there are no Python 2 versions

available or no Python 3 versions available.

These combinations can be divided into three categories:

(1) Ranges span Python 2 and Python 3：contains both the range of Python 2 and Python 3, such

as [2.0,3.0-3.3]

(2) Only in Python 2：Contains only the range of Python 2, not the range of Python 3, like [2.0,

∅]

(3) Only in Python 3：Contains only the range of Python 3, not the range of Python 2, like [∅,

3.6]

20

Table 7: The release date of each version of Python

Version Release Date

v2.0 2000.10.16

v2.2 2001.12.21

v2.4 2004.11.30

v2.5 2006.09.19

v2.6 2008.10.1

v2.7 2010.7.3

v3.0 2008.12.3

v3.1 2009.6.27

v3.3 2012.9.29

v3.5 2015.9.13

v3.6 2016.12.23

3.3.2 RQ2:How Stack Overflow users respond to each Python release, and what are the

differences between Python 2 and Python 3?

We wondered how authors of Python code snippets on Stack Overflow would react and choose

when faced with the constant release of new versions of Python. And how this reaction behaves

differently between Python 2 and Python 3. By investigating the authors’ responses of Python

code snippets on Stack Overflow to each version, we can get a sense of how Python versions are

trending and how they interact with each other.

To do this, we first need to determine the release date of each python version. As shown in

Table 7, we obtained the release date of each python version from Python.org3. The first column

in the table is the Python version, and the second column is the Python version release date.

To observe how Stack Overflow users respond to each Python release, we can investigate how

the Python code snippets responding to that Python version have evolved since each Python version

release. We refer to the Python code snippets that are compilable for a certain Python version after

it is released as the code snippets responding to that version, which is defined in detail as follows:

(1) The posting date for code snippets responding to a certain Python version needs to be after the

release of that Python version.

(2) Code snippets that respond to a certain Python version need to be compilable for that version,
3https://www.python.org/

21

and uncompilable for the Python versions before that version. As shown in Figure 3, the

available python version ranges for code snippets responding to Python 2.4 are within the four

ranges in green, starting with 2.4.

Since it is impossible in this study to determine whether code snippets that are compilable

for Python 2.0 are uncompilable for Python versions before Python 2.0, therefore, we do not

investigate Python 2.0 in this research question.

3.3.3 RQ3:How are Python 2-only compilable Python code snippets and Python 3-only

compilable Python code snippets distributed on Stack Overflow?

While developers can upgrade to Python 3, code snippets written in Python 2 on Stack Overflow

may not be modified by their authors to make them compilable for Python 3. While studying

obsolete answers on Stack Overflow, zhang et al. [15] found that only a tiny proportion of such

answers are updated afterward when an obsolete answer is identified. Soni et al. [12]. explored

how comments affect answer updates on Stack Overflow, using the SOTorrent dataset. Their

results show that a large number of answers on Stack Overflow are not updated, even when they

receive comments that warrant an update.

Therefore, we need to find out if Python 2-only compilable Python code snippets on Stack Over-

flow. If so, compare it to the Python 3-only compilable code snippets and analyze the differences.

As shown in Table 7, the set of contents in the last column is the Python 2-only compilable Python

code snippets, i.e., Python code snippets are compilable for Python 2 and uncompilable for Python

3. The set of contents in the last row is the Python 3-only compilable Python code snippets, i.e.,

Python code snippets that are compilable for Python 3 and uncompilable for Python 2.

22

4 Case Study Results

We present the results of our analysis and provide answers to the research questions.

4.1 RQ1:What are the available Python version ranges for Python code snippets on Stack

Overflow?

To investigate the range of Python versions available for Python code snippets on Stack Over-

flow, we need to obtain the value of each of the available version range combinations for Python 2

and Python 3.

First, We investigated the available version ranges of Python code snippets within the two series,

Python 2 and Python 3, respectively. The results are shown in Table 8, Table 9. The first column

of Table 8 and Table 9 shows the available Python version ranges in the Python 2 series and the

available Python version ranges in the Python 3 series, respectively. The second column is the

number of Python code snippets in each range.

Table 8: The available python version range for Python code snippets in Python 2

Version Range # code snippets

2.0 9

2.0-2.4 139

2.0-2.5 22

2.0-2.7 114,316

2.2-2.4 1

2.2-2.7 9,488

2.4 11

2.4-2.5 7

2.4-2.7 38,807

2.5 9

2.5-2.7 67,386

2.6-2.7 11,043

2.7 9,868

Figure 4 provides a more intuitive view of the distribution of code snippets across the available

python version ranges. The first row of the two diagrams shows the individual Python versions in

the figure. A rectangular block of color represents an available Python version range in the rest of

the diagram. We divided the number of Python code snippets within each available Python version

range into six groups, marked with different colors. The correspondence between the number of

code snippets and the colors is shown in the legend on the right side of the figure. For example,

23

Table 9: The available python version range for Python code snippets in Python 3

Version Range # code snippets

3.0-3.3 147

3.0-3.6 149,506

3.1-3.3 1

3.1-3.6 1,350

3.3 54

3.3-3.5 169

3.3-3.6 10,901

3.5-3.6 4,307

3.6 19,569

the color of the 2.0-2.2 range in the figure is gray, indicating that there are no compilable code

snippets in that Python version range.

Second, we used the available python version ranges for Python code snippets as shown in

Table 8, Table 9 to combine the available version ranges of Python 2 and Python 3 and list the

possible combinations. For each of the three categories of combinations as mentioned in Section 3,

we investigate using the following methods:

(1) Ranges span Python 2 and Python 3： Taking [2.0,3.0-3.3] as an example, using the code

snippets of 2.0 and 3.0-3.3 in Table 8 and Table 9 for comparison. The duplicate items of the

two ranges are the code snippets contained in the range [2.0,3.0-3.3] that we need.

(2) Only in Python 2：Taking [2.0, ∅] as an example, we first use Table 6 to obtain code snippets

that are uncompilable for all Python 3 versions. We then compare them with the code snippets

in the 2.0 range in Table 8 to extract the duplicates. The duplicates are the code snippets we

need.

(3) Only in Python 3：Taking [2.0, ∅] as an example, we first use Table 6 to obtain code snippets

that are uncompilable for all Python 3 versions. We then compare them with the code snippets

in the 2.0 range in Table 8 to extract the duplicates. The duplicates are the code snippets we

need. For example, we first use Table 6 to obtain code snippets that are uncompilable for all

Python 2 versions. We then compare them with the code snippets in the 2.0 range in Table 9

to extract the duplicates. The duplicates are the code snippets we need.

We obtained the results shown in Figure based on the above methods5. The first column of the

figure shows the available Python version ranges in the Python 2 series in Table 8, and the first

24

Figure 4: Available python version range for Python code snippets on Stack Overflow

row shows the available Python version ranges in the Python 3 series in Table 9. The values in the

table represent the number of code snippets in each available Python version range. We divided

the number of Python code snippets within each Python available range into five groups, marked

with different colors. The correspondence between the number of code snippets and the colors is

shown in the legend on the right side of the figure. In total, there are 46 non-zero available Python

version ranges. The 13 ranges in the last column of the table belong to category 2, Only in Python

2. The total number of code snippets for this category is 121,784. The eight ranges in the last row

belong to category 3, Only in Python 3. The total number of code snippets for this category is

56,682. The remaining 25 ranges are in category 1, ranges span Python 2 and Python 3. The total

number of snippets for this category is 129,322.

In the figure, the data in the last column, which corresponds to the Python 3 series version range,

is ∅, indicating that the code snippets in this column are uncompilable for all versions of Python

3. It is only compilable for Python 2 versions, which belong to category 2 mentioned above. The

last row of data corresponding to the Python 2 series version range is ∅, and the code snippet is

only compilable for Python 3 versions, which belongs to category 3. The rest of the data belongs

to category 1, and the available Python version spans Python 2 and Python 3.

We first analyze the data of category 2 and category 3. Most of the code snippets in category

2 are in the range [2.0-2.7, ∅]. This means that code snippets in this range are compilable for all

25

Figure 5: Available version ranges span Python 2 and Python 3

versions of Python 2. Similarly, most code snippets in category 3 are in the range [∅, 3.0-3.6].

In addition, in category 3, most of the remaining code snippets except for [∅, 3.0-3.6] are in the

range containing version 3.6, such as [∅, 3.5-3.6], [∅, 3.6]. Although category 2 is not so obvious,

we can also see from the figure that, the code snippets except for the range [2.0-2.7, ∅] are mostly

concentrated in the range containing version 2.7, such as [2.5-2.7, ∅] and [2.6-2.7, ∅]. Looking

next at the data for category 1, they also show a similar pattern to the previous category 2 and

category 3, as shown in the figure. Most of the code snippets are concentrated in the range of

versions containing 2.7 and 3.6, such as [2.7, 3.1-3.6], [2.4-2.72.7, 3.3-3.6].

Answer to RQ1: We found that the available version ranges of Python code snippets whose

compilability varies with Python version changes in this study can be divided into three categories.

The code snippets whose available version range spans Python 2 and Python 3 account for 42.0%

(307,788 in total), those whose available version range is only in Python 2 account for 39.6%, and

those whose available version range is only in Python 3 account for 18.4%. Code snippets are

relatively concentrated in the range of versions containing 2.7 and 3.6.

26

4.2 RQ2:How Stack Overflow users respond to each Python release, and what are the dif-

ferences between Python 2 and Python 3?

To investigate how Stack Overflow users respond to each Python release and the differences

between Python 2 and Python 3, we studied the growth of Python code snippets responding to

each Python version release based on the release date of each version in Table 7.

To improve the experimental accuracy in this research question, we divided the code snippets

responding to each version by month. Figure 6 is the percent stacked area chart for Python 2 and

Python 3. The horizontal axis represents the posting date of code snippets. The vertical axis shows

the percentage of the number of code snippets per month. The release date of each Python version

is marked with a yellow line in the figure.

Figure 6a shows the growth of code snippets responding to each version of Python 2. Since

August 2008, 2.2 and 2.4, which were released in October 2000 and December 2001 respectively,

have shown an overall decreasing trend in their share of the total. 2.5 was released in September

2006 and took a more dominant position alongside 2.4 about two years after its release. 2.6 was

released in October 2008, and code snippets responding to its release appeared about six months

later. 2.6 also impacted 2.5 for a while after it gained a response, causing its share to continue to

drop. 2.7 was released in July 2010 and quickly gained response after its release, and its response

code snippets began to grow. 2.7 also impacted other Python 2 releases after its releases, such as

2.5 between August and December 2010, and saw a relatively significant drop.

Figure 6b shows the growth of code snippets responding to each version of Python 3 versions.

3.0 was released in December 2008, and 3.0 had a monopoly for quite some time as the Python

3 series was just getting started. 3.1 was released six months later, but it had almost no presence.

3.3 was released in September 2012. Although 3.3 was quickly responded to and gave 3.0 some

impact, it was still not very strong. Immediately after 3.5 was released in September 2015, 3.0

and 3.3 dropped significantly. But up until here, 3.0 still held a great advantage. Until December

2016, the release of 3.6 brought a massive hit to versions such as 3.0, which saw a steep drop in

share. 3.5 also took a hit but regained its vigor and grew modestly after a while. Together with

3.6, the newer Python 3 versions gradually took over the dominance of 3.0.

We found it impossible to compare the differences in user response to each version of Python

2 and Python 3 releases. However, some findings deserve our attention. After the response from

users, 3.6 developed rapidly.While 2.6, 2.7 and 3.5 show rapid development after receiving re-

sponses for a short period of time, they do not grow rapidly afterwards. 3.1 and 3.3 have almost

no obvious development after receiving the response, and the proportion is close to 0.

27

(a) Growth of Python code snippets responding to Python 2 versions

(b) Growth of Python code snippets responding to Python 3 versions

Figure 6: Growth of Python code snippets responding to each Python version

28

Figure 7: Distribution of Python 2-only compilable Python code snippets and Python 3-only com-

pilable Python code snippets

Answer to RQ2: We found that new versions are released and get a response shortly afterward.

The release of new Python version inhibits Stack Overflow users ’response to older versions. It

is impossible to compare the differences in user response to each version of Python 2 and Python

3 releases.

4.3 RQ3:How are Python 2-only compilable Python code snippets and Python 3-only com-

pilable Python code snippets distributed on Stack Overflow?

To investigate RQ3, we utilized the code snippets compilable only for Python 2 (121,784) and

the code snippets compilable only for Python 3 (56,682) obtained in RQ1.

Figure 7 shows the distribution of Python 2-only compilable Python code snippets and Python

3-only compilable Python code snippets. Since SOTorrent only includes data for the first two

months or so of 2020, the overall number of Python code snippets in 2020 is less.

As shown in Figure 7, The number of Python 2-only compilable Python code snippets increased

year by year starting in 2008, peaked in 2015, and has since begun to decline each year. There is

an overall upward trend in Python 3-only compilable Python code snippets.

While the number of Python 3-only compilable Python code snippets is increasing, overall, the

number of Python 2-only compilable Python code snippets far exceeds the number for Python 3.

29

Answer to RQ3: The number of Python 2-only compilable Python code snippets increased

year by year starting in 2008, peaked in 2015, and began to decline year by year after that. There

is an overall upward trend in Python 3-only compilable Python code snippets. But overall, among

the code snippets investigated by RQ3, the Python 2-only compilable Python code snippets are

about twice as large as the Python 3-only compilable Python code snippets.

30

5 Discussion

5.1 Findings

The purpose of this work is to understand the impact of Python version upgrades on the compi-

lability of Python code snippets on Stack Overflow. We investigated the effects of Python 2 and

Python 3 internal version evolution on the compilability of Python code snippets on Stack Over-

flow separately. We also compared and analyzed the similarities and differences between the two

series. We found that:

(1) The available version ranges of Python code snippets whose compilability varies with Python

version changes in this study can be divided into three categories. The code snippets whose

available version range spans Python 2 and Python 3 account for 42.0% (307,788 in total),

those whose available version range is only in Python 2 account for 39.6%, and those whose

available version range is only in Python 3 account for 18.4%. Code snippets are relatively

concentrated in the range of versions containing 2.7 and 3.6.

(2) We found that new versions are released and get a response shortly afterward. The release of

new Python versions inhibits Stack Overflow users’response to older versions. It is impossible

to compare the differences in user response to each version of Python 2 and Python 3 releases.

(3) The number of Python 2-only compilable Python code snippets increased year by year starting

in 2008, peaked in 2015 and began to decline year by year after that. There is an overall

upward trend in Python 3-only compilable Python code snippets. But overall, among the code

snippets investigated by RQ3, the Python 2-only compilable Python code snippets are about

twice as large as the Python 3-only compilable Python code snippets.

Our study only investigated the compilability of code snippets on Stack Overflow and did not

delve into the syntactic features of the code snippets that affect their compilability changes. Future

research should focus on investigating the factors that influence these changes.

5.2 Implications

Through investigation, we found that the Python version upgrade impacted the compilability of

quite a few Python code snippets on Stack Overflow. Stack Overflow, as well as Stack Overflow

users, should pay attention to this issue.

31

5.2.1 Suggestions for Stack Overflow

An automated tool can be built to identify the Python language version of existing code snippets

in posts on Stack Overflow or help users identify the Python version used in the posted code

snippet in real-time as they create their questions or answers. In RQ3, we found that code snippets

only compilable for Python 2 accounted for about 40% of the total number of code snippets we

surveyed (307,788 total). Although the Python team discontinued support for Python 2 on January

1, 2020, there are still newly posted code snippets that are only compilable for Python 2 until

2020. An automated tool can be developed to identify possible Python versions of code snippets

by analyzing their syntactic features as they are entered. An example is the tool Vermin4, produced

by Morten Kristensen. It functions by parsing Python code into an abstract syntax tree (AST)

concurrently detects the minimum Python versions needed to run code.

5.2.2 Suggestions for Stack Overflow Users

We recommend that Stack Overflow users provide information about the Python version used to

write the code snippet when attaching code snippets to illustrate their questions or give answers.

In RQ1, we observed that many of Stack Overflow’s Python code snippets have different available

Python versions ranges and are not compiled by all Python versions. If users actively provide the

Python version of the code snippet when posting or answering questions.

Users searching Stack Overflow for the required code snippet should also pay more attention

to the information about the Python version in the posts. Alternatively, before utilizing the code

snippet, identify the possible Python version of the snippet.

5.3 Threats to Validity

Our study is subject to limitations and threats to validity.

Limitations of PyComply: Parsing metrics of PyComply [6] parsing metrics are based on

(static) syntactic observations, coarse-grained, and roughly categorize each Python file into com-

pliant or not, without attempting to estimate the degree of compliance. While we believe that the

level studied here is sufficient for our purposes, we should note that the parsing results of these

PyComply cannot assert that any code snippet is 100% compliant with the Python version.

Limitations of Python code snippets: As we mentioned in Section 3, about 47.4% (1,173,905)

of the Python code snippets we obtained from SOTorrent could not pass the PyComply parsing

for all Python versions, i.e., these code snippets are not compilable for all Python versions. These

4https://github.com/netromdk/vermin

32

code snippets contain programming errors, pseudocode, and other issues unrelated to the Python

version upgrade that caused the parsing failure. However, there may also be featured in these code

snippets related to Python version upgrades but are masked by errors caused by other unrelated

issues. Because of technical and time constraints, we abandoned processing and studying this part

of the code snippets in this study. This may pose a threat to the validity of our results.

External validity: The generality of our findings poses a danger to external validity. We fo-

cused on Stack Overflow in this study, and our findings may not apply to other Q&A sites because

of the differences in mechanisms. To mitigate this threat, we should study more Q&A sites in the

future.

Furthermore, unlike Malloy et al.’s analysis using Qualitas corpus [6], the Python files contained

in it are parsed on a per-application basis. Our research objects are unrelated code snippets, and

many of them are only short fragments, lacking syntactic features that can be used as metrics. This

makes our findings less generalizable and perhaps not applicable beyond the Q&A site.

33

6 Conclusion

In this study, we want to investigate the effect of Python version upgrades on the compilability of

Python code snippets on Stack Overflow. By analyzing the compilability of Python code snippets

on Stack Overflow for different Python versions, We found that Python version upgrades had an

impact on the compilability of Python code snippets on Stack Overflow, as evidenced by: 1)about

40% of the Python code snippets on Stack Overflow whose compilability changed with the Python

version in this study are uncompilable for Python 3. 2) The release of new Python version inhibits

Stack Overflow users ’response to older versions. 3) The trend of code snippets responding to

newer versions increases over time. Based on our findings, we offer the following suggestions: 1)

An automated tool can be built to help users identify the Python language version of code snippets

in Stack Overflow posts. 2) We recommend that Stack Overflow users provide information about

the Python version used to write the code snippet when attaching code snippets to illustrate their

questions or give answers. 3）Users searching Stack Overflow for the required code snippet should

also pay more attention to the information about the Python version in the posts.

There are two possible directions for future work. First, we want to investigate factors that

affect the compilability of code snippets on Stack Overflow due to Python version upgrades. For

example, the syntax usage of specific Python versions. In addition, we would like to investigate

the reasons for the failure of the code snippets filtered out in this study that are not compilable for

all Python versions.

34

Acknowledgement

Over the course of my researching and writing this paper, I would like to express my thanks to

all those who have helped me.

First of all, I would like to thank my supervisor, Professor Katsuro Inoue, who gives me the

opportunity to study and work in Software Engineering Laboratory, and provided important sug-

gestions and guidance to my research.

I would like express my gratitude to Assistant Professor Tetsuya Kanda. His guidance helped

me in all the time of research and writing of my thesis. He is a very learned and responsible

teacher. After every day ’s tiring and busy work of his own, he still devoted his considerate care

and immense vigor to the supervision of my writing thesis, including his suggestions on wording,

his help in forming the structure, and the efforts to the refinement of my ideas in my thesis.

I want to thank Associate Professor Makoto Matsushita. He gave me a lot of valuable comments

and suggestions on my research.

I am grateful to Kazumasa Shimari, Shi Qiu, for their valuable comments and suggestions in

my research. Without their help, it would not have been possible for me to complete my thesis.

I also would like to thank Mrs. Mizuho Karube, who helped me a lot with my life in Japan.

Without her help, I would not have been able to concentrate on study and research.

I would like to thank all the members in Inoue laboratory for creating such an excellent research

environment with their passion and creativity.

Finally, I would like to give my heartfelt thanks to my parents, for their endless love and care

for me. Whatever I need and wherever I go, they are always there supporting me without any

requirement in return. I love them.

35

References

[1] Durham Abric, Oliver E. Clark, Matthew Caminiti, Keheliya Gallaba, and Shane McIntosh.

Can duplicate questions on stack overflow benefit the software development community?

In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),

pages 230–234, 2019.

[2] L. An, O. Mlouki, F. Khomh, and G. Antoniol. Stack overflow: A code laundering plat-

form? In 2017 IEEE 24th International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 283–293, Los Alamitos, CA, USA, feb 2017. IEEE Com-

puter Society.

[3] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. Sotorrent: Recon-

structing and analyzing the evolution of stack overflow posts. MSR ’18, New York, NY,

USA, 2018. Association for Computing Machinery.

[4] Sebastian Baltes, Christoph Treude, and Stephan Diehl. Sotorrent: Studying the origin,

evolution, and usage of stack overflow code snippets. In 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR), pages 191–194, 2019.

[5] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin Acar, Michael

Backes, and Sascha Fahl. Stack overflow considered harmful? the impact of copy amp;paste

on android application security. In 2017 IEEE Symposium on Security and Privacy (SP),

pages 121–136, 2017.

[6] Brian A. Malloy and James F. Power. Quantifying the transition from python 2 to 3: An

empirical study of python applications. In Proceedings of the 11th ACM/IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement, ESEM ’17, page

314–323. IEEE Press, 2017.

[7] Saraj Singh Manes and Olga Baysal. How often and what stackoverflow posts do developers

reference in their github projects? In 2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR), pages 235–239, 2019.

[8] Saraj Singh Manes and Olga Baysal. Studying the change histories of stack overflow and

github snippets. In 2021 IEEE/ACM 18th International Conference on Mining Software

Repositories (MSR), pages 283–294, 2021.

36

[9] Kotaro Nishimura. Investigating the validity of code snippets containing the java api posted

on stack overflow. https://sel.ist.osaka-u.ac.jp/lab-db/Bthesis/

contents.en/169.html.

[10] Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe Bianco, and Rocco

Oliveto. Toxic code snippets on stack overflow. IEEE Transactions on Software Engineer-

ing, 47(3):560–581, 2021.

[11] Akond Rahman, Effat Farhana, and Nasif Imtiaz. Snakes in paradise?: Insecure python-

related coding practices in stack overflow. In 2019 IEEE/ACM 16th International Conference

on Mining Software Repositories (MSR), pages 200–204, 2019.

[12] Abhishek Soni and Sarah Nadi. Analyzing comment-induced updates on stack overflow.

In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),

pages 220–224, 2019.

[13] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. Karami Motlagh. An em-

pirical study of c++ vulnerabilities in crowd-sourced code examples. IEEE Transactions on

Software Engineering, (01):1–1, sep 5555.

[14] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. How do developers

utilize source code from stack overflow? Empirical Software Engineering, 24, 04 2019.

[15] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, Ying Zou, and Ahmed E. Hassan. An

empirical study of obsolete answers on stack overflow. IEEE Transactions on Software En-

gineering, 47(4):850–862, 2021.

37

