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Abstract

As a popular programming language in modern software development, Python boasts an exten-

sive open-source codebase on GitHub. Code reuse is common across these vast repositories. This

study leverages open-source Python projects from GitHub and applies automated testing tech-

niques to discover functionally equivalent method pairs. The research involved collecting and

processing methods from 5.1k Python projects on GitHub. Due to the lack of type checking in

Python, grouping methods present specific challenges. To address this, we performed detailed

type inference on the methods and grouped them based on the inferred types, providing a struc-

tured and comprehensive foundation for further analysis. Automated test generation techniques

were applied to create unit tests for each method. These methods were executed against one an-

other within their respective groups to identify candidate method pairs that produced identical

outputs given the same inputs. Finally, through manual checking, we identified 130 functionally

equivalent method pairs and 731 functionally non-equivalent method pairs. These method pairs

were compiled into a comprehensive dataset, which served as the basis for further analysis. The

dataset enabled a detailed examination of performance differences among the functionally equiv-

alent pairs. Additionally, it was used to evaluate the ability of large language models (LLMs)

to recognize functional equivalence, focusing on both their accuracy and the challenges they face

when handling diverse implementations. The results highlight the potential of LLMs in identifying

functionally equivalent methods and point to areas where further advancements can be made.
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1 Introduction

With the evolution of programming languages, modern languages have become increasingly rich

and complex in their syntactical features, particularly dynamic languages like Python. Python, a

popular programming language, is widely embraced by developers worldwide due to its concise

and readable syntax and powerful standard library. It has a vast codebase and active user com-

munities on platforms like GitHub. Python supports multiple programming paradigms, including

object-oriented, functional, and imperative programming. This versatility enables the implemen-

tation of identical functionality through different approaches, depending on developers ’coding

preferences.

The open-source community provides a vast array of software projects containing rich and di-

verse code resources. It’s common to find methods within these codebases that, while functionally

equivalent, are implemented in different ways. Collecting such functionally equivalent code snip-

pets is highly valuable for software engineering research. These snippets can be utilized to create

datasets of equivalent methods, which can, in turn, drive advancements in areas like code optimiza-

tion, refactoring, and test generation. However, identifying and collecting functionally equivalent

methods remains a complex challenge due to the variations in their structure.

Many existing code clone detection tools rely on identifying repetitions in code snippets to de-

tect clones, such as the token-based SourcererCC [18] and the tree-based DECKARD [9]. These

tools are generally effective at identifying syntactically similar code fragments, such as directly

copied-and-pasted code or code with minor changes in variable names. However, they often strug-

gle to detect functionally equivalent but structurally different codes. This is because these tools

primarily focus on superficial code similarities and overlook functionality. Therefore, there is an

urgent need to develop new techniques and tools capable of identifying functionally equivalent

code pairs rather than just syntactically similar fragments.

This study ’s primary goal is to collect functionally equivalent method pairs from open-source

projects. Functionally equivalent methods, referred to as FE methods, are defined as pairs of meth-

ods that return the same output given the same input (parameters). The key idea of this research

is to use Pynguin [11] to automatically generate test cases for the extracted methods, followed by

mutual execution to identify methods that exhibit identical behavior under the generated test cases.

Subsequently, we manually check all potential FE method pairs to identify the valid FE method

pairs. This study selects the ManyTypes4Py [12]dataset as the target for detecting FE method

pairs in Python. ManyTypes4Py contains approximately 5.1K type-checked Python repositories,

comprising around 1.5 million methods. From this dataset, we extract methods and perform type
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inference, followed by grouping based on the type inference results. Test cases are then automat-

ically generated, and mutual execution is conducted within each group. Ultimately, we obtained

7415 candidate FE method pairs and manually checked a part of them.

Subsequently, we constructed a meticulously reviewed dataset, which contains 130 functionally

equivalent method pairs and 731 functionally non-equivalent method pairs. In this dataset, we con-

ducted an in-depth performance analysis of the functionally equivalent method pairs, categorizing

the main performance differences into three types.

We also used this dataset to evaluate the functional equivalence recognition ability of large lan-

guage models (LLMs). In the experiment, we selected GPT-4 as the test model to validate its

ability to recognize functionally equivalent method pairs. The results indicated that GPT-4 could

identify some method pairs that were implemented differently but functionally equivalent, high-

lighting the significant potential of large language models in this task. Despite some challenges,

especially for method pairs with substantial structural differences, GPT-4 demonstrated consider-

able potential and prospects in functional equivalence recognition.

4



2 Background

2.1 Definition of FE Methods

FE methods refer to methods that may differ in implementation but are equivalent in function-

ality. FE methods are characterized by producing identical outputs when provided with identical

inputs. Although their code structures may vary, such as using different algorithms, data struc-

tures, or coding styles, they ultimately achieve the same functionality. The concept of functional

equivalence is especially important in code optimization, refactoring, and clone detection, as iden-

tifying FE methods can help developers understand potential redundant code or opportunities for

improvement within a codebase.

Code clone detection is typically categorized into four types based on similarity and structural

differences:

Type-1 Clones: Identical code fragments, except for variations in whitespace, comments, or

identifier names.

Type-2 Clones: Code fragments that are largely similar but may include changes in identifiers,

such as variable names or function names, and some code formatting modifications.

Type-3 Clones: Structurally similar code with some differences in code fragments or logic mod-

ifications.

Type-4 Clones: Code fragments that have the same functionality but different implementations,

also known as semantic clones. These clones are not based on superficial code similarity

but rather on the behavior or functionality of the code.

Traditional code clone detection tools primarily focus on detecting Type-1 and Type-2 Clones,

which depend on code structure and syntax similarity. These tools identify clones by searching

for similar code fragments, but their limitation lies in their inability to effectively detect code

fragments that are functionally identical but structurally different.

This research aims to overcome this limitation by using automatic generation techniques to de-

tect functionally equivalent but differently implemented code clones, specifically Type-4 Clones.

Type-4 Clones are particularly challenging, as they do not depend on syntactical similarities but

instead require an analysis of method behavior to establish functional equivalence. Detecting these

clones is crucial for code refactoring and optimization, as it reveals code fragments that are entirely

different in implementation but identical in functionality.
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2.2 Key Idea for Automatically Identifying Candidate FE Method Pairs from FEMPDataset

Previous research in this field has explored techniques such as automatic test case generation

and mutual execution methods. The literature [5] proposed an approach to obtaining a set of FE

methods by mutually executing the generated test cases. Additionally, a dataset of FE method

sets was constructed using Borge ’s dataset [1]. It contains 276 FE method pairs. Similarly, the

FEMPDataset [4], created using similar approaches, consists of 1,342 FE method pairs in Java,

validated by three independent programmers.

In the research on FEMDataset, FE method pairs are automatically collected by leveraging both

the static features (e.g., method signatures) and dynamic behavior (test results) of Java methods.

Static features include return types and parameter types, with methods sharing the same features

grouped together. The EvoSuite tool is then used to generate test cases for methods within the

same group. Test cases generated by automated test generation techniques have the property that

the test cases always succeed. Mutual execution of these test cases is performed to determine

whether the methods exhibit equivalent behavior. If a method can pass the test cases generated for

another method, and vice versa, the two methods are considered functionally equivalent. Finally,

manual checking is conducted to confirm the valid functional equivalence of method pairs, despite

differences in implementation.

The success of the FEMPDataset highlights the effectiveness of utilizing automatic test case

generation tools and mutual execution techniques to identify FE methods. Its success primarily

stems from the ability to verify whether two methods produce identical outputs given the same

inputs.

2.3 The Rapidly Developing Python Language

Python has rapidly developed in recent years, becoming one of the most popular and widely used

programming languages in the world [19]. Its simple and readable syntax, along with its power-

ful features, have made it a go-to language across various industries. In software development,

Python is widely used in fields such as web development, data analysis, artificial intelligence, and

automation testing. According to the TIOBE [7] index and developer surveys conducted by plat-

forms like Stack Overflow, Python has consistently ranked among the top programming languages

and continues to climb, particularly in the fields of data science and artificial intelligence, where

its usage has surged. Its open-source nature has led to contributions from numerous communities

and companies, providing developers with an abundance of tools and resources.

One of the key reasons for Python’s popularity is its relatively low learning curve. The lan-
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guage’s straightforward and intuitive syntax lowers the barriers to entry for programming. Many

universities and educational institutions have chosen Python as the primary language for teaching

programming, especially in fields such as computer science, engineering, and data science. Python

has become the language of choice for students learning to code, and its vast user community and

wealth of online learning resources have greatly facilitated the growth and skill development of

self-learners.

On GitHub, the world’s largest open-source code hosting platform, Python has also achieved

remarkable success. According to GitHub’s annual reports, Python is one of the most popular

programming languages, with many open-source projects and libraries built using Python. De-

velopers can easily access, modify, and optimize these codebases. The open and shared nature

of these resources has fostered innovation and collaboration, contributing to Python’s continued

growth in the tech industry. With strong support from third-party libraries such as NumPy, Pandas,

and TensorFlow, Python has become the leading language in data science, machine learning, and

artificial intelligence, widely used in both enterprise and research projects.

2.4 Type Inference Techniques in Python

Python, as a dynamic language, lacks static type checking when compared to statically-typed

languages like Java and C++. While this characteristic enhances development speed and flexibility,

it also presents challenges for code analysis. In statically-typed languages, the types of variables

and methods are determined at compile-time, which allows code analysis tools to easily check type

consistency, identify potential type errors, and conduct more in-depth static analysis. However, in

Python, the types of variables are determined at runtime and can change during the execution of

the program, making it more difficult for code analysis tools to perform comprehensive static type

inference.

This dynamic nature of Python makes it challenging for static analysis tools to be directly ap-

plied to Python code, particularly when performing tasks such as code clone detection and func-

tional equivalence analysis. Many static analysis tools rely on type information and symbol tables

for inference and optimization, but in Python, due to the absence of type constraints and explicit

type declarations, these tools often fail to deliver the same level of precision. Therefore, ana-

lyzing and optimizing Python code requires more flexible and dynamic approaches, such as type

inference and dynamic execution techniques, to address the challenges posed by its dynamic char-

acteristics.

Despite the challenges posed by Python’s dynamic characteristics, its ecosystem offers robust
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support for addressing these issues. With the continuous development of artificial intelligence

and machine learning technologies, existing Python type inference tools have made significant

progress. These tools combine static analysis with reasoning algorithms to infer the types of

variables and methods within code. For example, tools like Type4Py [13], CodeT5 [25] [22], and

TypeT5 [24], based on deep learning techniques. And on this basis, formal methods and static

analysis are used as supplementary tools [14] [15]. They have shown high accuracy in inferring

basic Python built-in types such as int, str, and list, even though they still face some limitations

in handling complex types. Particularly, TypeT5 uses seq2seq technology and integrates static

analysis as a supporting technique to accurately infer the types in most Python programs, providing

a strong support platform. It is precisely because of the advancements and maturation of these

tools that this study can build upon the FEMPDataset framework and incorporate type inference

techniques, further expanding the study to Python and enhancing the precision and efficiency of

code equivalence analysis.

2.5 Key Idea of This Study

Therefore, based on the research findings from FEMPDataset, this study decides to use Python

as the research language and extend the detection of functionally equivalent method pairs by

adding an additional type inference step. By combining type inference with automatic test case

generation, we can more accurately identify Python method pairs that are functionally equivalent

but structurally different. Especially in the context of Python as a dynamic language, integrating

type inference and automated testing techniques will provide stronger support for detecting func-

tional equivalence. Ultimately, this study will create a dedicated dataset of functionally equivalent

method pairs for Python, which will provide valuable resources and data support for subsequent

research in areas such as code optimization, refactoring, and code review.
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Figure 1: Steps to obtain pairs of functionally equivalent Python methods.

3 Procedure of Dataset Construction

In this study, the following process is used to construct a dataset of FE method pairs:

STEP-1: Extract Python methods from open-source projects on GitHub and perform an initial

filtering.

STEP-2: Perform type inference on each method and group them accordingly.

STEP-3: Generate test cases for each method.

STEP-4: Mutually execute methods within the same group to identify candidate FE method

pairs.

STEP-5: Manually check each candidate FE method pair to confirm if they are valid FE method

pairs.

Figure 1 provides an overview of the five steps described above. STEP-1 through STEP-4 is

automatically performed by the developed tool, while only Step 5 is executed manually. The

detailed process for each step is as follows:
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3.1 STEP-1

To build the dataset of FE method pairs, we selected the ManyTypes4Py 1 dataset as the basis

for our experiment. This is a Python benchmark dataset for machine learning-based type infer-

ence, containing 5,382 Python projects sourced from GitHub. It offers a diverse collection of

open-source Python projects, covering various types and application scenarios and providing an

abundant sample of methods. A key reason for choosing this dataset is its suitability for type

inference.

From the selected Python projects, we extracted all Python methods. Initially, we used Python’
s Abstract Syntax Tree (AST) module to parse all .py files within the projects. This allowed us

to construct the abstract syntax tree for each file and extract method definitions. We then traversed

these abstract syntax trees to gather method-related information. In total, we obtained 1,500,000

Python methods. For each method, the following information was collected and recorded in a

dataset: method name, (original) source code, normalized source code, the number of statements

and conditional predicates, file path, start line, and end line.

After processing the extracted Python methods, we normalized the source code. This process

involved standardizing all variables, string constants, and code indentation using the ast library.

These steps helped eliminate formatting differences and excluded the impact of different variable

names. Due to the extensive standard library of built-in types in Python, we chose not to normalize

the names of method calls.

Figure 2 shows an example of normalization. Subfigure 2a shows the original method code,

and subfigure 2b shows the code after normalization. During the normalization process, we first

removed the type hints and default values from the method declarations. Next, we renamed all

variables, attribute names, and string literals. For all method calls, only the method itself and its

recursive calls were renamed.

The reason for not renaming other method calls is that Python has many powerful built-in meth-

ods, and renaming all method calls might result in different methods being incorrectly identified

as duplicate code. Additionally, any code that calls user-defined external methods is excluded in

subsequent steps, as it is beyond the scope of this study.

After completing the code normalization, we generated a unique hash value for each normalized

method code. By calculating the hash value of the method code, we could effectively detect and

identify duplicate methods. The primary purpose of this step is to eliminate any potential duplicate

methods in the dataset, ensuring that each method pair in the dataset is unique.

1It was presented in the data showcase of the MSR ’21 conference.
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def get_open_business_day(business, day): 
    "\n    Helper function which returns 'day' dictionary of 
corresponding day for\n given business dictionary. If the day 
is not found, returns None.\n    "
    if (len(business.open_hours) == 0): 

return None
    for open_day in business.open_hours: 

if (open_day.day == day): 
    return open_day

    return None

(a) Original Method

def func(val1, val2):
    if len(val1.attr1) == 0: 

return None
    for val3 in val1.attr1: 

if val3.attr2 == val2: 
    return val3 

    return None

(b) Normalized Method

Figure 2: Example of normalization

Next, we filtered the remaining methods to remove those not meeting our research requirements.

This step ensured that only relevant methods were retained in the dataset. The following types of

methods were excluded:

• Methods with no parameters or return values: These methods cannot be effectively eval-

uated through test cases, as their behavior cannot be adequately judged. Consequently, they

did not provide helpful information for functional equivalence analysis and were excluded.

• Methods with self in their parameters: Methods containing the self parameter are

typically instance methods in object-oriented programming. Since our research focuses

on generating unit tests for standalone methods, instance methods were removed from the

dataset.

• Methods that invoke external classes or methods: To ensure that the methods in our

dataset are self-contained and can be independently analyzed, any method that calls external

classes or methods was filtered out. These methods would fail during automatic test case

generation, so they were removed in advance to better facilitate the detection of FE method
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def crossOff(possible, prime): 
    nextPrime = None
    for i in range(prime, len(possible)): 
        if possible[i] % prime == 0: 
            possible[i] = 0
        if possible[i] and (not nextPrime): 
            nextPrime = possible[i]
    return nextPrime

(a) Original Method

def crossOff(possible: list, prime: int) -> int: 
    nextPrime = None
    for i in range(prime, len(possible)): 
        if possible[i] % prime == 0: 
            possible[i] = 0
        if possible[i] and (not nextPrime): 
            nextPrime = possible[i]
    return nextPrime

(b) Method after type inference

Figure 3: Example of type inference

pairs.

By applying these filtering criteria, we ensured that the remaining methods in the dataset are

better suited for further analysis and the identification of candidate FE method pairs. After com-

pleting these steps, 28,353 methods were retained for subsequent analysis.

3.2 STEP-2

Since Python is a dynamically typed language and lacks static type checking, this poses chal-

lenges for subsequent operations. To improve the effectiveness of automated analysis, it is neces-

sary to perform type inference on methods and group them based on the inferred types. Methods

with explicit type information tend to perform more reliably in automated test case generation,

making type inference essential.

In this study, we used the TypeT5 [24] tool for type inference. TypeT5 is a Transformer-based

model specifically designed for type inference in Python code. It can infer the types of variables

and parameters and return values directly from the source code, particularly excelling when ex-

plicit type hints are absent. Leveraging TypeT5 allows for a better understanding of method type
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@pytest.mark.xfail(strict=True)
def test_case_2():
    int_0 = -1741
    int_1 = 2067
    int_2 = module_0.inv(int_1, int_0) 
    assert int_2 == -1740

(a) Test case with the ‘xfail’ marker

def test_case_0():
    bool_0 = True
    set_0 = {bool_0, bool_0, bool_0}
    module_0.set_add(set_0, set_0)

(b) Test case without assert statements

Figure 4: Example of removed test cases.

information, providing a solid foundation for subsequent test generation and functional equiva-

lence detection.

In the subsequent automated test case generation, we will rely on type hints to generate test

cases. If the type hints for a method include Python non-built-in types, the test case generation will

fail outright. Therefore, before performing inference, developer-provided type hints were initially

processed, with non-built-in type hints being removed. Next, we used the TypeT5 tool to infer the

types of parameters and return values for methods lacking explicit type hints. After completing

the type inference, We rechecked each method’s parameters and return values to ensure they all

belong to Python’s built-in types. Methods that still contain non-built-in types in parameter types

or return value types will be removed. This step ensured that the final retained methods had clear

built-in type information. Ultimately, 21,503 methods were preserved for grouping and the next

step of automated test case generation.

Figure 3 presents an example of type inference. In the original code, the methods lack any type

hints. After applying type inference, as shown in the red-highlighted section of the figure, we

annotate the variable possible as a list, prime as an int, and the return value as an int. Based on

these results, we grouped the methods accordingly. This method is grouped together with other

methods that have parameter types (list, int) and a return type of int.

Following this, we grouped all methods based on their parameters and return types. Only meth-

ods with identical parameters and return types were grouped together. In the end, there were

726 groups, and each group contained at least two methods. In STEP-4, we will perform mutual
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execution within these groups.

3.3 STEP-3

In this step, our primary goal was to generate corresponding test cases for all the methods. We

chose the Pynguin [11] for automatic test case generation. Pynguin is a Python-based automatic

test case generation tool that can produce a comprehensive set of test cases for a given method,

ensuring that all functional aspects of the method are thoroughly tested. By utilizing Pynguin, we

could automatically generate test cases for all methods obtained in the previous steps, ensuring

each method was adequately validated.

After generating the test cases, we performed initial filtering to remove those test cases that con-

tained ‘xfail’ markers or lack of assert statements. In Figure 4, we present a test case marked with

‘xfail’ and another test case lacking an assert statement. The ‘xfail’ marker indicates that the test

case is expected to fail, which generally means that it cannot effectively validate the correctness

of the method, making it unsuitable for functional equivalence analysis. On the other hand, test

cases lacking ‘assert ’statements cannot verify whether the method’s actual output matches the

expected results. They only checked whether the method could run correctly under given inputs,

and therefore, these cases were also excluded. This filtering process aims to ensure that the test

cases effectively validate the behavior of the methods rather than merely executing code without

actual verification.

Next, we conducted coverage testing on the remaining test cases using the coverage component

provided by pytest. The purpose of coverage testing is to assess the extent to which the test cases

cover the method’s code. To ensure the effectiveness and comprehensiveness of the test cases,

we retained only those with 100% coverage. This means that these test cases can cover all code

branches and paths in the method, ensuring no code segments that could impact functionality are

omitted. Test cases with 100% coverage provide the most thorough validation, ensuring that the

functional equivalence analysis in subsequent steps is based on complete and accurate test results.

Ultimately, after this filtering and coverage testing step, we obtained a high-quality set of test

cases, including a total of 6,500 test cases for methods. This step took approximately 40 hours.

These test cases can comprehensively and accurately validate the functional behavior of each

method. We will use these methods and their corresponding test cases for mutual execution in the

next step.
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3.4 STEP-4

In this step, we utilize the high-quality test cases and method information retained from Step-3,

as well as the grouping information from Step-2, to perform mutual execution among methods

within the same group. The primary objective of this step is to validate whether the methods are

functionally equivalent through cross-testing.

The detailed process is as follows:

1. Preparation of Test Cases and Methods:

Suppose we have method A and method B, each with corresponding test cases A and test

cases B. These test cases were rigorously filtered in Step-3 to ensure that they have 100%

coverage, thereby thoroughly assessing the functionality of the methods.

2. Execution of Tests:

First, we execute method A using test cases B. This step aims to evaluate the performance

of method A under the test cases from method B, confirming whether method A can pass

all the tests in test cases B. If method A passes all the tests in test cases B, we proceed to

the next step: executing method B using test cases A. This step is intended to verify the

performance of method B under the test cases from method A.

Through this approach, we conduct cross-testing between methods A and method B to en-

sure that both methods can pass under different test cases.

3. Result Analysis:

If method A passes all tests in test cases B and method B passes all tests in test cases A, it

indicates that methods A and B are likely functionally equivalent under the given test cases.

This result suggests that both methods produce identical outputs for the same inputs and

may be functionally equivalent. Therefore, we mark this pair of methods as candidate FE

method pairs.

Conversely, if any test case fails during the testing process, it indicates a functional dis-

crepancy between methods A and B under the given test cases. In this case, we exclude

this method pair from the candidate FE method pairs to ensure that only method pairs that

consistently perform similarly across all test cases are considered functionally equivalent.

For method pairs marked as candidate FE method pairs, further validation and analysis are re-

quired. Although the preliminary mutual execution provides initial evidence of functional equiv-

alence, the test cases are limited, and this only indicates functional equivalence under specific
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conditions. In practical applications, additional verification steps are necessary to ensure that

these method pairs exhibit consistent behavior across all possible input conditions.

3.5 STEP-5

In this phase, we perform a detailed manual checking of all candidate FE method pairs. The

primary objective of this step is to confirm whether these method pairs indeed exhibit functional

equivalence through human judgment.

After completing the mutual execution step, we obtained a list of candidate FE method pairs.

Each pair was selected based on the cross-testing results, where both methods passed all tests in

each other’s test cases. Although this result provides preliminary evidence of functional equiva-

lence, further validation is required to confirm this equivalence.

For candidate method pairs identified as functionally non-equivalent during manual checking,

we created new test cases to highlight their functional differences. We designed test inputs that

could potentially cause the two methods to produce different results and executed these newly

created test cases on both methods. If the methods produce different outputs for the same test

case, it indicates that their behavior diverges under certain conditions, thereby demonstrating a

functional difference between them.

Finally, we record those method pairs that are confirmed to be valid FE method pairs and use

these pairs to construct a dataset.
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4 Dataset

In this section, we describe the dataset we constructed. The dataset is built using source code

from ManyTypes4Py [3], which includes approximately 5.1k open-source Python projects. From

these, we extracted a total of 1,500,000 methods to build our dataset. In STEP-1, based on research

requirements, we retained 28,356 methods for type inference. In STEP-2, these methods were

grouped into 726 categories according to the results of the type inference. After filtering out groups

with only one method, we proceeded with the subsequent steps. In STEP-3, we used Pynguin to

generate test cases for the remaining methods automatically. After processing the test cases and

removing those with ’xfail’ markers and those without assert statements, we rechecked that the

coverage of the test cases was 100%. Ultimately, we had 2,434 methods and their corresponding

test cases that met the requirements for mutual execution. These were divided into 129 groups,

with the largest group containing 528 methods. In STEP-4, we identified a total of 7,415 potential

FE method pairs. These pairs were then subjected to manual checking. We manually checked 750

candidate FE method pairs and identified 130 valid FE method pairs.

The number of candidate FE method pairs obtained in STEP-4 is quite large. Due to the lim-

itations of automatically generated test cases, it is challenging to detect functional differences in

methods that involve string manipulations. This also applies to methods that return boolean values,

as it is difficult to capture edge cases with a limited number of test cases. This introduces some

challenges for manual checking.

To address this, we adopted the following approach to extract a subset of candidate FE method

pairs for manual checking: For each method pair, if neither method has been inspected in any

previous pair, the pair is selected for checking. The current pair is skipped if either method has

already been included in a previously inspected pair. After this filtering process, the number of

method pairs requiring checking was reduced to 750. We spent approximately 10 hours manually

checking these pairs, ultimately identifying 130 valid FE method pairs.
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Table 1: Schema for the methods Table

Column Name Data Type Description

signature STRING Method signature

name STRING Method name

rtext BLOB Raw text of the method

ntext BLOB Normalized text of the method

size INT Lines of code

branches INT Number of branches

hash BLOB Hash of ntext

path STRING File path of the method

start INT Start line of the method

end INT End line of the method

repo STRING Project repository name

revision STRING not used in this dataset

compilable INT The methods used in STEP-4

tests INT not used in this dataset

Target ESTest BLOB Automatically generated test cases

Target Tesecase BLOB The test cases used in STEP-4

groupID INT Group identifier for the method

id INTEGER Method ID

In the end, We constructed the dataset and published it on GitHub. The dataset consists of three

tables: methods, pairs, and verifiedpairs. The methods table records all relevant in-

formation about each method, including the original method, its normalized version, the number

of lines in the method, the test cases generated for the method, and the method’s grouping infor-

mation (see Table 1). The pairs table contains all the candidate equivalent method pairs obtained

in STEP-4. Each method pair is linked to the corresponding original methods in the methods ta-

ble based on the pair’s information. Additionally, every candidate method pair has a unique ID.

The verifiedpairs table records the IDs of the method pairs that have been manually verified as

functionally equivalent.

Figure 5 shows an example of FE method pairs identified in STEP-5. Both methods calculate

the sum of all integers from s to e-1 but differ in their implementation.

The sum1d method uses a for loop to iterate over all integers from s to e-1, with range (s,
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def sum1d(s:int, e:int) -> int: 
    c = 0 
    for i in range(s, e): 

c += i
    return c

(a) Method sum1d

def while_count(s:int, e:int) -> int: 
    i = s 
    c = 0 
    while i < e: 

c += i
i += 1 

    return c

(b) Method while count

Figure 5: Example of FE method pairs.

e) generating a sequence of integers from s to e-1. The for loop automatically iterates through

this sequence.

In contrast, the while count method uses a while loop for accumulation. The while loop

requires manual updating of the loop variable i and checking the loop condition i < e. Here, i

starts from s, and i is incremented by 1 in each iteration.

Figure 6 shows an example of functionally non-equivalent method pairs identified in STEP-5.

Both methods are designed to calculate the greatest common divisor (GCD) of two integers using

the same algorithm―the Euclidean algorithm. However, differences in specific implementation

details lead to divergent outputs for some inputs.

The gcd method is a classical implementation of the Euclidean algorithm, which iteratively

swaps (a, b) in a while loop under the condition a is not equal to 0 until a becomes 0, at which

point it returns b. The mutated gcd method also implements the Euclidean algorithm but adds

an if statement at the start to ensure that a is always greater than or equal to b. If a is less than b,

the values of a and b are swapped. The swapping continues inside the while loop until b equals

0, at which point it returns a.

When both input parameters are either positive or negative, the two methods return the same

result regardless of the values of a and b. However, when a and b have opposite signs and a

is greater than b, the results differ in terms of their signs. This discrepancy arises because the

termination condition of the while loop in the two methods depends on different variables gcd
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def gcd(a: int, b: int) -> int: 
    while a != 0:

(a, b) = (b % a, a) 
    return b

(a) Method gcd

def mutated_gcd(a: int, b: int) -> int: 
    if a < b:

(a, b) = (b, a)
    while b != 0:

(a, b) = (b, a % b)
    return a

(b) Method mutated gcd

Figure 6: Example of functionally non-equivalent method pairs.

relies on a. In contrast, mutated gcd relies on b. For instance, with the input (12, -8),

the gcd method returns 4, while the mutated gcd method returns -4. This difference went

undetected in the test cases primarily because the mutated gcd method only checks the relative

magnitude of a and b and does not account for the signs of the numbers.
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5 Performance Evaluation of Functionally Equivalent Methods

In modern software development, functional correctness and execution efficiency are two criti-

cal dimensions for evaluating code quality. Functionally equivalent methods exhibit identical func-

tional behavior and correctness, yet their execution performance often varies due to differences

in implementation. This performance disparity is particularly significant in Python, a relatively

slower language, when handling large-scale data [26]. By evaluating the efficiency of function-

ally equivalent method pairs, developers can gain insights into the performance differences across

various implementations, thereby laying a theoretical foundation for writing more efficient code.

Python ’s simplicity and flexibility attract developers from diverse backgrounds, resulting in

varying programming habits and practices. While professional software engineers may priori-

tize performance-optimized implementations, developers from non-computer science fields, such

as scientists or analysts, often focus more on code readability and ease of implementation. This

diversity leads to multiple implementation approaches for the same functionality, with method

selection often based on personal experience or readily available library support, rather than sys-

tematic performance analysis. Furthermore, in Python’s open-source ecosystem, many codebases

offer multiple implementations of the same functionality [21]. For instance, removing duplicates

from a list can be achieved using a set conversion, iterative loops, or third-party libraries, while

string processing and data structure operations present even more alternatives. These variations

may arise from evolving requirements or updates in library versions. While such flexibility under-

scores Python’s versatility, it also leaves developers without clear criteria for choosing the most

efficient implementation.

Evaluating the performance of functionally equivalent methods provides not only objective ref-

erences for developers from different backgrounds but also valuable insights for tool develop-

ment [2]. For example, the results of performance testing can be integrated into code analysis

tools, enabling them to recommend more efficient code snippets to developers.

Through this study, we have quantified the performance differences among functionally equiva-

lent method pairs across various scenarios and analyzed the underlying causes of these disparities.

These findings help developers better understand the strengths and weaknesses of different imple-

mentations, allowing them to avoid unnecessary performance bottlenecks caused by suboptimal

code choices.
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5.1 Execution Speed Measurement

In the performance evaluation process, the first step is to accurately and reliably measure the

execution time of each method. To ensure the validity and precision of the measurement results,

we employed Python’s built-in performance measurement tool, the timeit [17] module. The

timeit module allows for precise recording of the execution time of code blocks or methods,

eliminating errors caused by external environment factors or system load. This makes it a widely

used tool for performance testing of Python methods.

Specifically, for each method to be evaluated, we used multiple test cases and set the number

of executions for each method to 10,000. This approach helps reduce the impact of incidental

fluctuations or system load by increasing the number of executions, ensuring that the measurement

results are representative. By executing the tests multiple times, we can also avoid errors caused

by occasional system fluctuations or other external factors during testing. During the process, we

recorded the total execution time of each method while executing all test cases.

To ensure better test coverage, we utilized the test cases previously automatically generated by

Pynguin. When performing performance evaluation, we merged the test cases of two methods in

each functional equivalent method pairs into a unified test set, ensuring that both methods were

compared under identical test conditions. This process not only guarantees the diversity of method

executions but also ensures test case coverage.

Throughout the execution, we strictly controlled the testing environment to ensure that each

method ran under the same hardware and software conditions, avoiding environmental differences

that could interfere with execution time. With these measures in place, we were able to obtain

accurate and comparable execution time data, providing a solid foundation for subsequent perfor-

mance comparisons, optimization analysis, and result interpretation.

5.2 Comparison of Method Execution Times

Then we compare the execution time differences between two methods. To quantify the perfor-

mance differences between methods, we calculate the time ratio by using the execution times of

the two methods. Specifically, for each pair of functionally equivalent methods, we use the longer

execution time as the numerator and the shorter execution time as the denominator to compute

their time ratio. This method allows us to visually understand the time differences between two

methods and provides a numerical measure of the difference.

For each pair of methods M1 and M2, we first measure their execution times, denoted as T1 and

T2, respectively. Then, we calculate the time ratio using the following formula:
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Time Ratio =
max(T1, T2)

min(T1, T2)

Here, max(T1, T2) represents the longer execution time, and min(T1, T2) represents the shorter

execution time. This ratio clearly reflects the time difference between the two methods. A ratio

close to 1 indicates that the performance of the two methods is similar, while a larger ratio suggests

a significant performance difference.

Table 2: Execution Time Ratio Distribution

Execution Time Ratio Count Percentage

Greater than 1 and less than 1.5 96 73.85%

Greater than 1.5 and less than 2 20 15.38%

Greater than 2 and less than 5 10 7.69%

Greater than 5 4 3.08%

Total 130 100.00%

In the analysis of performance differences, we calculated the execution time ratio for each pair

of methods and categorized the results based on the magnitude of the ratio. These calculations

provide a clear view of the execution time disparities between different method pairs. Table 2

illustrates the distribution of execution time ratios.

It can be observed that the vast majority of method pairs have execution time ratios between 1

and 1.5, accounting for approximately 73.85%. Additionally, 15.38% of method pairs fall within

the 1.5 to 2 range. Larger performance disparities, represented by ratios greater than 2, are rel-

atively rare, with 7.69% of method pairs falling in the 2 to 5 range and only 3.08% exceeding a

ratio of 5.

5.3 Analysis of Performance Differences

Building on the execution time analysis, we further utilized Python’s performance profiling tool,

cProfile [16], to conduct a detailed performance analysis of each method pair. By examining

the function call patterns within the methods, we gained a clearer understanding of which opera-

tions had a decisive impact on performance differences. Based on the results of our analysis, we

identified three primary factors contributing to these performance disparities:

1. Generator expressions or list comprehensions
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def method1(n: int) -> bool:
    return not any((n // i == n / i for i in range(n - 1, 1, -1)))

(a) Method 1

def method2(x: int) -> bool:
    for i in range(2, int(x ** 0.5)):
        if x % i == 0:
            return False
    return True

(b) Method 2

Figure 7: Examples of differences in Generator expressions

Generator expressions and list comprehensions are unique Python syntax features. When

dealing with large-scale data, the lazy evaluation of generators can improve efficiency. How-

ever, for smaller problems, both approaches introduce some additional overhead compared

to using a direct for-loop, as they inherently involve function calls.

For example, in the case shown in Figure 7, both methods are used to check whether a

number is prime. Method 1 employs a generator expression, while Method 2 opts for a

direct for-loop. During this process, Method 1 incurs multiple function calls, including

the call to the built-in any function. These additional function calls result in a significant

performance difference between the two methods.

2. Excessive calls to built-in functions

def method1(char: str) -> bool:
    return char.isascii() and char.isalpha()

(a) Method 1

def method2(input_str: str) -> bool:
    flag = [False] * 26
    for char in input_str:
        if char.islower():
            flag[ord(char) - 97] = True
        elif char.isupper():
            flag[ord(char) - 65] = True
    return all(flag)

(b) Method 2

Figure 8: Examples of differences in built-in function call
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Frequent calls to built-in functions within a method can lead to significant performance dif-

ferences. Built-in functions often involve additional checks and computations, especially

when handling complex data or performing multiple operations. Repeatedly calling a built-

in function not only incurs the overhead of method calls but also directly affects the perfor-

mance of the entire method, as the efficiency of the function itself plays a crucial role.

In the example shown in Figure 8, Method 1 calls ‘isascii()’ and ‘isalpha()’ only once.

In contrast, Method 2 repeatedly calls ‘islower()’ and ‘isupper()’ within a loop, resulting

in a significant increase in the overhead of function calls. This is the main cause of the

performance difference between the two methods.

3. Differences in algorithm or calculation details

Different methods may employ entirely distinct algorithms or computational logic. Even

when functionally equivalent, differences in algorithmic complexity. Additionally, some

methods may share the same computational goals but use different calculation processes,

which can also impact execution efficiency.

def f1(b: int, e: int, m: int) -> int:
    if e == 0:
        return 1
    t = f1(b, e // 2, m) ** 2 % m
    if e & 1:
        t = t * b % m
    return t

(a) Method 1

def f2(x: int, n: int, m: int) -> int:
    res: int = 1
    if n > 0:
        res = f2(x, int(n / 2), m)
        if n % 2 == 0:
            res = res * res % m
        else:
            res = res * res % m * x % m
    return res

(b) Method 2

Figure 9: Examples of differences in computational details

25



We can refer to the example shown in Figure 9. The two methods are functionally equiv-

alent, as they both implement modular exponentiation, which computes the result of be

mod m (where b is the base, e is the exponent, and m is the modulus). However, there are

certain differences in the calculation details that lead to performance discrepancies. Method

1 uses Python’s power operator for squaring, which involves an implicit function call. In

contrast, Method 2 directly multiplies the variable by itself.
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6 Accuracy Evaluation of Large Language Models

In recent years, with the rapid development of natural language processing technologies, partic-

ularly the significant achievements of large language models (LLMs) in various domains, artificial

intelligence has shown tremendous potential in code analysis, automated programming, and pro-

gram comprehension. State-of-the-art LLMs, such as GPT-4, have demonstrated outstanding per-

formance in a wide range of programming tasks, especially in code generation [6], bug fixing [8],

code summarization [20], and code explanation [3]. These models possess the ability to under-

stand and generate code, aiding developers in writing and debugging programs more efficiently.

However, despite the impressive accomplishments of LLMs in code handling, their performance

in more complex code analysis tasks, particularly their ability to recognize functional equivalence

between code snippets, still warrants deeper investigation. This is especially true for dynamic

languages like Python. The challenge lies in correctly identifying functionally equivalent methods

that may differ in implementation. Such capabilities are of significant practical value in fields like

code optimization, refactoring, and code review.

By evaluating the performance of LLMs in recognizing functionally equivalent pairs, we not

only gain a deeper understanding of their capabilities in handling complex programming tasks

but also provide theoretical support for their applications in program comprehension, automated

refactoring, and code optimization. If LLMs can accurately recognize functionally equivalent

pairs, they will have far-reaching implications. Developers could leverage LLMs to automate

code reviews and refactoring processes, saving considerable manual inspection time and improv-

ing code quality. In the educational field, the ability of LLMs to determine equivalence could

make computer programming instruction more efficient, especially in automated code reviews and

programming exercises, helping students identify and understand potential issues in their code in

real-time. For automated tools, integrating LLMs into code optimization and static analysis tools

would enhance their functionality, thus better supporting development teams in decision-making

during software maintenance and upgrades.

6.1 Model Selection

This study selected the GPT-4o model as the subject of investigation. GPT-4o is one of the most

advanced language models currently available, excelling in tasks such as code generation, bug

fixing, and code explanation. It exhibits exceptional capabilities in natural language processing

and understanding programming tasks. The reasons for selecting GPT-4o are as follows:

• Performance Superiority: GPT-4o has demonstrated outstanding performance across a
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wide range of programming tasks. Its multimodal understanding capabilities make it highly

effective in handling complex code analysis problems.

• Scalability: GPT-4o supports multiple languages and tasks, showing strong adaptability,

especially for dynamic languages like Python.

• Contextual Understanding of Code: Compared to other language models, GPT-4o has a

stronger ability to capture the semantics and logic of code, making it suitable for tasks such

as identifying functional equivalence.

• Zero-Shot Learning Capability: GPT-4o has demonstrated remarkable reasoning ability

under zero-shot conditions, enabling it to perform complex tasks without requiring addi-

tional fine-tuning.

By selecting GPT-4o, this study aims to leverage its state-of-the-art capabilities to evaluate its

performance in identifying functionally equivalent method pairs, thereby providing insights into

the potential of language models in complex programming tasks.

6.2 Prompt Design

This study employs a zero-shot prompt to evaluate GPT-4o’s ability to recognize functionally

equivalent code pairs. We chose a zero-shot prompt [10] as the basis for our prompting ap-

proach.Under a zero-shot setting, the model relies solely on its pre-trained knowledge to make

judgments about the input code pairs without requiring additional fine-tuning. The prompt is de-

signed to be concise and clear, ensuring that the model understands the task requirements and that

the experiment remains consistent and reproducible.

The core components of the prompt are as follows:

• Task Description: Provide a definition of functional equivalence and briefly explain the

objective of the task.

• Input Format: Present the raw code of two Python methods.

• Output Requirement: The model is required to answer only “Yes” or “No”.

The template for the prompt used in the experiment is as Firgue9.

In the experiment, {Method 1} and {Method 2} are replaced with two Python code snippets

from the dataset. This prompt design is straightforward and directs the model to focus on the task

of equivalence judgment while providing a foundation for analyzing its results.
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Imagine you are an experienced so2ware developer. Your task is to analyze the 
func=onality of the following two methods and determine whether they are func=onally 
equivalent.

Func=onally equivalent methods refer to methods that may differ in implementa=on but 
are equivalent in func=onality. Func=onally equivalent methods are characterized by 
producing iden=cal outputs when provided with iden=cal inputs.

Here are the source code of two methods:
Method 1:
```python
{Method_1}
```
Method 2:
```python
{Method_2}
```
Are these two methods func=onally equivalent? Please respond with either "Yes" or "No".

Figure 10: Template of prompt

6.3 Evaluation Results

In this subsection, we present the evaluation results of GPT-4o on the task of recognizing func-

tional equivalence between Python methods using the manually verified method pairs in the third

table of our dataset. The dataset includes 130 functionally equivalent method pairs and 621 func-

tionally non-equivalent method pairs. To assess the model ’s performance, following [23] ,we

used three evaluation metrics: Precision, Recall, Accuracy.

• Precision: The proportion of true positive predictions among all positive predictions.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

• Recall: The proportion of true positive predictions among all actual positive instances.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

• Accuracy: The proportion of correct predictions among all predictions.

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Samples
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The test results for all method pairs are as follows:

Pair Type Actual Count Predicted as Equivalent Predicted as Non-Equivalent

Equivalent 130 100 (TP) 30 (FN)

Non-Equivalent 621 84 (FP) 537 (TN)

Total 751 184 567

Using the above results, the metrics were computed as follows:

• Precision:

Precision =
100

100 + 84
= 0.543 (54.3%)

• Recall:

Recall =
100

100 + 30
= 0.769 (76.9%)

• Accuracy:

Accuracy =
100 + 537

130 + 621
=

637

751
= 0.848 (84.8%)

The results indicate that GPT-4o achieves high accuracy (84.8%) in distinguishing function-

ally equivalent and non-equivalent methods. While the recall of 76.9% suggests that the model

successfully identifies most equivalent pairs, the relatively lower precision of 54.3% highlights

a tendency to misclassify non-equivalent pairs as equivalent. This imbalance warrants further

investigation and refinement of the prompt design or model behavior for enhanced precision in

real-world applications.
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7 Related work

This research is inspired by the FEMPdataset study [4]. In FEMPdataset’s work, a dataset of

1,342 FE method pairs in Java was constructed by automatically generating test cases and mutual

execution. This paper primarily extends that approach to Python, with several key differences

outlined below.

• The IJADataset used in FEMPdataset contains approximately 314 million lines of code,

from which 23 million methods were extracted. In contrast, this study uses the Many-

Types4Py database, extracting 1.5 million methods. Additionally, the size of the constructed

datasets differs: FEMPdataset includes 1,342 FE method pairs, whereas the dataset in this

paper contains 130 FE method pairs.

• In FEMPdataset, Java method types were directly used for grouping. However, since Python

lacks static type checking, this study uses TypeT5 for type inference to facilitate the group-

ing and mutual execution process.

• In FEMPdataset, test execution was skipped when fewer than five test cases were generated.

In this study, no such limitation was imposed. Due to differences in the test case generation

tools, this study checked test case coverage, retaining only those test cases with 100% branch

coverage.

• During the final manual checking phase, FEMPdataset’s candidate functionally equivalent

pairs were evaluated independently by three individuals. In this study, I conducted the visual

checking alone. However, for pairs deemed non-equivalent, I generated new test cases to

demonstrate their functional differences.
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8 Conclusion

In this study, we extracted Python methods from open-source projects and automatically gen-

erated test cases for them. These generated test cases were then mutually executed to identify

candidate functionally equivalent method pairs. We manually checked a subset of these candi-

date FE method pairs. Ultimately, from all candidate functionally equivalent pairs, a total of 731

pairs were selected for manual verification, of which 130 pairs were confirmed to be functionally

equivalent.

We then conducted performance difference tests on the functionally equivalent method pairs in

the dataset and performed an in-depth analysis of the main factors contributing to these differences.

Additionally, we leveraged this dataset to evaluate the ability of large language models (LLMs) in

identifying functionally equivalent method pairs. The experimental results showed that GPT-4 was

able to recognize some method pairs with different implementations but functionally equivalent,

highlighting the significant potential of large language models in this task.

Currently, one of the primary challenges of this research is the large number of candidate func-

tionally equivalent method pairs. Manual checking of all these pairs is impractical. This issue

primarily arises from the low quality of the automatically generated test cases. To address this, we

plan to develop a better filtering process for the test cases to reduce the number of method pairs

requiring manual checking. Enhancing the quality of the test cases will be crucial in improving

the efficiency and accuracy of identifying functionally equivalent method pairs.
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