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内容梗概

コードクローンはソースコード中に存在する，一致または類似するコード片であり，バグ
の修正漏れを引き起こす原因となる．種々のコードクローン検出ツールが提案されている
が，それぞれが独自の手法を用いて検出を行っている．コードクローンは類似度に応じて
Type1，Type2，Type3，Type4の 4種類に分類されるが，これらの定義は必ずしも厳密で
はなく，特にType3とType4の境界は曖昧である．その結果，ある検出ツールではType3

として検出されたコードクローンが，別の検出ツールでは Type4として扱われるといった
不整合が生じる．また，多くのコードクローン検出ツールは検出のみを行い，どのTypeの
クローンであるかのラベル付けを行わない．このことから，複数のツールの検出結果を単一
のデータセットとして扱えない問題が発生する．
本研究では，これらの問題を解決するために，コードクローン検出後の後処理として統一的

なラベリング手法を提案する．提案手法を用いることで，使用するコードクローン検出ツー
ルに依存することなく，検出されたコードクローンに対して一貫した基準に基づくラベリン
グが可能となる．近年，ソフトウェア工学分野ではコードクローン情報を大規模言語モデル
（LLM）の学習データとして利用する研究が増加しており，本研究で提案するラベリング手法
は，高品質にラベル付けされたコードクローンデータの構築にも寄与する．提案手法の有効
性を評価するため，広く利用されているコードクローンデータセットであるBigCloneBench

に含まれるコードクローンを対象に再ラベリングを行った．そして，BigCloneBenchにお
ける既存のラベリングと提案手法によるラベリングについて被験者実験を実施し，どちらが
コードクローンの定義により適合しているかを比較・分析した．
評価実験の結果，BigCloneBenchで Type4と判定されていたクローンペアを提案手法が

Type3と分類したケースでは，提案手法の方が人間の感覚に近いことが確認された．しか
し，その逆のケースでは既存のラベルの方が支持される傾向にあり，提案手法の判定ルール
をより実態に合わせて細かく調整していく必要性が示唆された．また，被験者によって判断
が分かれた事実は，クローンの境界が曖昧さを示しており，本研究が目的とする一貫したラ
ベリング基準を確立することの重要性を再確認した．

1



主な用語

コードクローン
BigCloneBench

抽象構文木
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1 はじめに

コードクローンとは，プログラムテキスト中の一致または類似するコード片である [42].

コードクローンにバグが含まれているとバグの修正漏れを引き起こす原因になり，ソース
コードの保守性が低下する要因の一つとなる [24]．コードクローンは，構文的な類似度に基
づいてType1，Type2，Type3，Type4の 4種類に分類される [26]．ソースコードの規模が
大きくなると，手動でコードクローンを管理することは困難となる．そのため，コードク
ローンを自動で検出するツールの研究が行われている．
現状では，ソースコード中のコードクローン検出は，単一のツールを用いて行われる．様々

なコードクローン検出ツールが存在するが，それらは，検出する際に用いる中間表現や計算
アルゴリズムが異なる．例えば，NiCad [25]は行単位での検出，CCFinder [15]，NIL [22]

は字句単位での検出を行う．単一のコードクローン検出ツールを用いた検出では，ソース
コードから検出できるコードクローンに偏りが生じる．この課題解決のため，一つのソース
コードに対し複数のコードクローン検出ツールを実行することが考えられる．複数のツール
を利用することで可能な限りコードクローンを検出する．しかし，各ツールは，分類の基準
が異なるため，コードクローンとして検出されたコードに対して異なるラベリングを行う場
合がある．また，コードクローンの検出は行うものの，分類は行わないツールも存在する．
ラベリング結果が異なることや，ラベリングが行われないことは，複数ツールから得られた
クローン検出結果を用いて大規模なコードクローンのデータセットを作成する際に，単一の
データセットとして統合ができないという問題が発生する．
この問題解決のため，本研究では，コードクローン検出後の後処理として統一的なラベリ

ング手法を提案する．提案手法を用いることで，複数の検出ツールから検出されたコードク
ローンに対し，統一されたラベリングを行うことができる．統一的なラベリングが行われた
コードクローンは単一のデータセットに統合が可能となり，コードクローンデータを他の研
究や開発に利用しやすくなる．
また，既存のコードクローンデータセットである BigCloneBench [30]は最大規模のデー

タセットであり，Type3および Type4の分類に行単位の類似度を用いているが，こうした
類似度に基づく分類は解析の単位粒度に結果が左右されるという課題がある．したがって，
本研究では類似度という数値的な判定ではなく，プログラムの論理的な構造を直接反映する
抽象構文木の構造的特徴に基づいた新たなType分類の定義を導入する．これにより，解析
の単位粒度に左右されない，一貫性のある客観的な分類を実現する．
本研究では，提案手法を評価するために被験者実験を行った．被験者実験では，BigCloneBench

に含まれるクローンペアを対象とし，BigCloneBenchによる分類と，提案手法による分類
のどちらが人間の感覚に近いかを調査した．その結果，BigCloneBenchで Type4に分類さ
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れ，提案手法でType3と分類されたクローンペアについては，提案手法による分類の方が，
人間の感覚に近いことがわかり，BigCloneBenchの分類が人間の直感と反するケースが存
在することが確認できた．一方，BigCloneBenchで Type3に分類され，提案手法で Type4

と分類されたクローンペアについては，BigCloneBenchの分類の方が，人間の感覚に近い
ことがわかり，分類の定義について修正を行う必要性が示唆された．定義の修正を行うこと
で，人間の感覚により近い分類が可能となる．また，被験者ごとの傾向から，Type3および
Type4のコードクローンの分類の定義の曖昧さが示唆され，本研究の目的である，統一的な
ラベリング手法の必要性が改めて確認された．
以降，2章では，本研究で用いる技術について述べる．3章では，本研究の動機について

述べる．4章では，提案手法の詳細について述べる．5章では，評価実験の詳細について述
べ，6章でその結果と考察を述べる．7章では，妥当性の脅威を述べ，8章では，まとめと今
後の課題について述べる．
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2 準備

2.1 コードクローン

コードクローンとは，プログラムテキスト中の一致または類似するコード片である [42].

コピーとペーストによるプログラミングや，意図的に同一の処理を繰り返して書くことによ
り発生する．複数のコードクローンがソフトウェアプログラム中に存在した場合，あるコー
ドクローン上にバグが見つかると，他のコードクローンにもバグが含まれる可能性が出てく
る．そのため，開発者は，全てのコードクローンを追跡する必要がある．これは，バグの修
正漏れを引き起こす原因になり，ソースコードの保守性が低下する要因の一つとなる [24]．
また，互いにクローン関係であるソースコード片のペアを，クローンペアと呼ぶ．
一般にコードクローンは，構文的な類似度に基づき，以下の 4種類に分類される [26]．

Type1 改行，コメント，空白を除いて一致するコードクローン

Type2 Type1に加えて，リテラル，識別子，型の違いを除いて一致するコードクローン

Type3 Type2に加えて，文の挿入，削除，変更を除いて一致するコードクローン

Type4 構文は異なるが同じ機能を提供するコードクローン

上記のType3，Type4の境界は曖昧であるため，コードクローン検出ツールによって分類
の基準が異なる．

2.2 コードクローン検出ツール

ソースコードの規模が大きくなると，ソースコード中のコードクローンの量も増加するた
め，手動でコードクローンを管理することは困難となる．そのため，ソースコード中から自動
的にコードクローンを検出するツールが研究されている [4, 9, 14, 15, 21, 22, 25, 28, 35, 41]．
行単位で解析を行う手法として代表的な NiCad [25]は，ソースコードの整形と正規化を

行い，行の一致率を見ることでコードクローンの検出を行う．検出だけでなく，Type1から
Type3までのラベリングを行う．
字句単位で解析を行う手法は，ソースコードをトークン列に変換して比較を行う．CCFinder [15]

や iClones [9]，LVMapper [34]は大規模なプロジェクトから高速にクローンを抽出するこ
とに長けているが，出力結果はコードクローンがどこに含まれるかの情報のみであり，どの
Typeに分類されるかのラベリングは行われない．一方で，NIL [22]や SourcererCC [28]は，
字句単位の類似度計算に基づいたラベリングを行う．
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2.4節で述べる抽象構文木を利用する手法として，Deckard [14]が挙げられる．Deckard

はクローンの検出だけでなく，分類に応じたラベリングも行う．
グラフ形式の中間表現を用いる手法は，主にType4クローンの検出を目的とする．Yang

らの手法 [35]，StoneDetector [4]，GroupDroid [21]，CCGraph [41]などがこれに該当する．
これらの手法は，グラフの構造的一致を判定するため，記述形式に依存しない高度な解析が
可能である．一方で，グラフの同型判定アルゴリズムは高い計算コストを伴う点が課題とな
る．また，これらのツールは，機能の等価性に焦点を当てているため，Type1からType3へ
の詳細なラベリングまでは行わない．
それぞれのツールについて表 1に示す．表 1では，コードクローン検出のための手法と，

ツールがコードクローンを検出する際，Type分類のラベルを出力するか否かを示す．コー
ドクローン検出ツールはそれぞれ独自の中間表現 (抽象構文木，グラフ，トークン列など)や
類似度計算アルゴリズムを用いているため，同じソースコードからコードクローンを検出す
る場合でも検出されるコードクローンが異なったり，同じ箇所がコードクローンとして検出
された場合でもその分類が異なったりする．また，コードクローン検出ツールには，検出の
みを行い，分類を行わないツールも存在する．
表 1に示したコードクローン検出ツールの他に，機械学習を用いたコードクローン検出手

法も存在する [5, 8, 19, 20, 27, 38, 40]．

表 1: 既存のコードクローン検出ツール

手法 ツール名/著者名 ラベルの有無
行単位での検出 Nicad [25] あり

字句単位での検出

NIL [22] あり
CCFinder [15] なし
iClones [9] なし
SoucererCC [28] あり
LVMapper [34] なし

抽象構文木を用いた検出 Deckard [14] あり

グラフを用いた検出

Yang [35] なし
StoneDetector [4] なし
GroupDroid [21] なし
CCGraph [41] なし
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2.3 コードクローンのデータセット

既存のコードクローンデータセットを表 2に示す．BigCloneBench [30]は，Javaプロジェ
クトを対象とした大規模なデータセットである．詳細については，2.3.1項で述べる．
近年では，同一の処理を行うものの，構文が大きく異なる Type4に特化したデータセッ

トや，多言語を対象としたデータセットが作成されている．SemanticCloneBench [1] は，
Java, Python, C, C#の 4言語にまたがる 4,000件のクローンペアを提供する．また，GPT-

CloneBench [2]は，近年の大規模言語モデル（LLM）の進展を背景に構築された新しいデー
タセットであり，Java, Python, C#における 3万件以上のクローンペアが含まれる．
特定の言語において高い精度で検証を行うためのデータセットも存在する．FEMPDataset [10,

11]は Javaの機能等価なメソッドペアに焦点を当てており，高精度な解析が求められる研究
で利用されている [13, 29]．一方で，Clone oracle [18]は 66件と小規模ではあるが，C/C++

におけるクローンペアを提供している．

2.3.1 BigCloneBench

本研究で用いる，BigCloneBenchは，コードクローン検出器の性能評価で用いられる Java

の大規模なベンチマークである [30]．複数のソフトウェアプロジェクトから収集した大規模
データセット IJDataset2.0から，特定の機能を実装している可能性のあるソースコードを自
動で特定し，対象の機能を正しく実装しているか否かが手動で判断された．BigCloneBench

に含まれるクローンペアは，いずれもメソッド単位のコード片から構成される．
BigCloneBenchでは，Type1および Type2のコードクローンは，ソースコードの正規化

後テキストの一致を確認することで判定している．一方，Type3および Type4のコードク
ローンは，行単位での構文的類似度に基づいて 0以上 1未満の範囲で，次の 5種類に分類さ
れる．この構文的類似度は，行の一致する割合で求められる．

Strongly-Type3 0.7以上 1.0未満

表 2: 既存のコードクローンのデータセット

データセット名 言語 データ数
BigCloneBench [30] Java 8,612,826

Clone oracle [18] C/C++ 66

SemanticCloneBench [1] Java,Python,C,C# 4,000

GPTCloneBench [2] Java,Python,C# 37,149

FEMPDataset [10, 11] Java 1,342
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Moderately-Type3 0.5以上 0.7未満

Weakly-Type3 0.0以上 0.5未満

コードクローンの研究において，Weakly-Type3クローンは Type4クローンとして用い
られている [3, 19, 20, 23, 33, 37, 39]．また，機械学習を用いたコードクローン検出手法に
おいて，BigCloneBenchは学習データとして用いられている [19, 20, 33, 37, 38]．しかし，
BigCloneBenchは分類が不正確で，Type4コードクローンとして扱うには不適切であるこ
とが指摘されている [16, 17]. BigCloneBenchをType4クローンの検出性能評価に用いる場
合，誤った分類の影響で結果の妥当性が脅されるため，Type4クローンの検出を目標とする，
機械学習を用いたコードクローン検出の評価結果に対する信頼性が低下する [16, 17, 36]．
BigCloneBenchに含まれるそれぞれのTypeに分類されたクローンペアの数は表 3に示す

通りである．

2.4 抽象構文木 (AST)

ASTとはソースコードの構文構造を木構造で表現したデータ構造である．図 1に Java

で書かれたソースコード例とそれに対応する ASTを示す．ASTにおいて，各頂点 (ノー
ド)はプログラムを構成する構文要素を表し，各辺はそれら要素間の論理的な親子関係や入
れ子構造を表す．図 1の例では，method declarationノードに，五つの子ノードが存在す
る (modifiers, integral type, identifier, formal parameters, block)．これら五つのノードは，
method declarationノードを親として持つ．この親子関係に基づき，ASTは階層的な構造
を持つ．
以下にASTに関する用語を示す．

根ノード 親を持たないノードを指す [7]．図 1では赤く示されたmethod declarationノー
ドである．

葉ノード 子を持たないノードを指す [7]．図 1では緑で示されたノードである．斜体で示さ
れているのがそのノードの持つ値である．

本研究では，AST解析ライブラリとしてTree-sitter 1を用いた．既存の Java言語を対象

表 3: BigCloneBenchに含まれるコードクローンの分類

Type1 Type2 Strongly-Type3 Moderately-Type3 Weakly-Type3 合計
48,116 4,234 21,966 88,306 8,450,204 8,612,826

1https://github.com/tree-sitter/tree-sitter
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method_declaration

modifiers: public

formal_parameters

integral_type: int

identifier: ret

block

formal_parameter

integral_type: int

identifier: a

return_statement

identifier: a

public int ret(int a) {
return a

}

図 1: ソースコード例と対応するAST

とした研究では，AST生成に Eclipse JDT2 が広く利用されている [6, 31]. JDTは Java言
語専用の解析基盤であるのに対し，Tree-sitterは多言語共通のインターフェースを提供して
いる．本研究では，Java言語を対象としているが，将来的に他言語への拡張を考えており，
他言語への拡張性が高いことから Tree-sitterを選択した．

2https://github.com/eclipse-jdt/eclipse.jdt.core
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図 2: コードクローン検出の現状

3 本研究の動機

本章では，既存のコードクローン検出手法の問題点，および既存のデータセットのラベリ
ング基準の不明瞭さという二つの観点から，本研究の動機について述べる．

3.1 既存のコードクローン検出手法の問題点

ソースコードに含まれるコードクローンを検出するため，現在では様々なコードクロー
ン検出ツールが存在する．現状では，それらのツールは様々なソースコードに対して単一
で用いられており，コードクローンの検出を行っている (図 2)．各コードクローン検出ツー
ルは，異なるアルゴリズムを利用してコードクローン検出を行う．例えば，CCFinder [15]，
NIL [22]は，字句単位の比較を行うことで検出を行う．Nicad [25]は行単位の比較を行うこ
とで検出を行う．これは，識別子の正規化やコードの整形といった前処理を適用した後の各
行を比較することでコードクローンを検出する．しかし，単一のコードクローン検出ツール
を用いた検出では，偏りがあり，対象ソースコード中に存在する全てのコードクローンを検
出できるわけではない．
検出されるコードクローンの偏りを軽減するため，複数の検出ツールを対象ソースコード

に実行することが考えられる (図 3)．複数のツールを実行することで可能な限り多様なコー
ドクローンの検出を試みる．しかし，各ツールにおけるコードクローン分類の基準が異なる
ため，検出後にどの Typeに分類されるかのラベリング結果が統一されない問題が起こる．
例えば，ある関数Aとある関数 Bがツール 1によってType3として検出された場合に，別
のツール 2では，Type4として検出される場合がある．また，コードクローンの大規模デー
タベース作成の際にも，この問題が発生する．ツールごとにラベリング結果が異なるため，
データの統合ができない．さらには，コードクローンの検出は行うものの，ラベリングを行
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図 3: コードクローン検出の問題

CCF
inde
r

NiCad

NIL

ラベルなし

⾏単位の検出
に基づくラベル

字句単位の検出
に基づくラベル

クローンデータ
(CCFinder)

クローンデータ
(NiCad)

クローンデータ
(NIL)

ソースコード
統合された
クローンデータ

統⼀された
ラベル

クローンデータ
(CCFinder)

クローンデータ
(NiCad)

クローンデータ
(NIL)

提案⼿法による
ラベリング

提案⼿法による
ラベリング

提案⼿法による
ラベリング

統⼀された
ラベル

統⼀された
ラベル

データベースに統合

データベースに統合

デー
タベ
ース
に統
合

統⼀された
ラベル

図 4: 提案手法による解決策

わないツールも存在する．そのため，複数のクローン検出結果をそのラベリングも含めて単
一のデータセットとして扱うことはできない．
この問題を解決するため，提案手法では，コードクローン検出の後処理としての統一的な

ラベリングを行う (図 4)．これにより，複数ツールから検出されたコードクローンに一貫し
た分類に基づいたラベリングを行うことができる．統一的なラベリングを行うことで，それ
ぞれのツールの検出結果を単一のデータセットに統合することが可能となる．これにより，
コードクローン情報の質が向上し，コードクローンデータを他の研究や開発に利用しやすく
なる．例えば，LLMの学習用データとしての利用が挙げられ，LLMベースの超高精度なク
ローン検出の実現が見込まれる．
提案手法を用いて，ソースコード中のコードクローンの検出を行うわけでなく，コード

クローン検出後のラベリングを行ったのは，実行時間の問題からである．対象関数の数を n

13



とした場合，提案手法の実行回数は n2となる．提案手法では，抽象構文木を用いて分類を
行っており，二つの木を比較すること自体が非常に重い処理である．全ての関数のペアを比
較して結果を得ることは時間的に現実的ではない．また，提案手法は入力をクローンペアと
想定しているため，一定以上の差異がある場合にType4として判定している．そのため，提
案手法はクローンペアではない関数のペアが与えられた場合にそれがクローンペアではない
のか，もしくは Type4クローンなのかが判定できない．これらのことから，提案手法では
コードクローン検出後に限定した統一的なラベリングを行う．

3.2 既存データセットにおけるラベリングの問題点

BigCloneBench [30]は，既存のコードクローンデータセットの中で最大規模のデータセッ
トである．BigCloneBenchでは，Type1および Type2のコードクローンは，ソースコード
の正規化後テキストの一致を確認することで判定している．一方，Type3および Type4の
コードクローンは，行単位での構文的類似度に基づいて 0以上 1未満の範囲で，3種類に分
類される．この構文的類似度は，行の一致する割合で求められる．具体的には，行単位の類
似度が 0.7以上 1.0未満のペアを Strongly-Type3，0.0以上 0.5未満のペアをWeakly-Type3

と定義している．
しかし，類似度という数値指標に基づく分類は，解析の単位粒度に結果が大きく左右される．

そこで本研究では，行単位の類似度による分類結果が，字句という異なる単位を用いた場合に
どの程度変動するかを調査した．具体的には，BigCloneBenchに含まれる Strongly-Type3，
Moderately-Type3，Weakly-Type3のコードクローンについて，字句単位で比較を行い，一
致率を計算した．字句単位の類似度算出にあたっては，二つのトークン列間における最長共
通部分系列 (LCS: Longest Common Subsequence) [12, 32]を用いた．LCSは，トークンの
出現順序を維持したまま，共通して現れる最長の系列を特定する手法である．単純な語彙の
集合比較とは異なり，ソースコードの論理的な記述順序を反映した類似度を計測できるた
め，本分析の指標として採用した．具体的には，クローンペアの各トークン列を S1, S2とし
たとき，以下の式により類似度 SimLCS を算出した．

SimLCS(S1, S2) =
|LCS(S1, S2)|
max(|S1|, |S2|)

算出結果を図 5に示す．解析の結果，行単位の分類と字句レベルの類似度の間には顕著な
乖離が確認された．例えば，Strongly-Type3に分類されていたクローンペアについて，字
句単位の類似度が閾値である 0.7より小さくなるペアが存在し．また，Weakly-Type3につ
いても，字句単位の類似度が閾値である 0.5より大きくなるペアが存在した．
以上の知見は，行単位や字句単位の類似度に基づく分類基準が単位粒度に依存して一貫性

がないことを示唆しており，類似度を用いない新たな分類基準が必要であることを示す．し
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図 5: 字句単位の類似度における行一致率の分布
注： 赤い破線は，BigCloneBenchにおけるWeakly-Type3とModerately-Type3の閾値である 0.5と，

Moderately-Type3と Strongly-Type3の閾値である 0.7を表している

たがって，本研究では類似度という数値的な閾値判定に依存せず，ASTの構造的特徴に基
づいた新たなType分類の定義を導入する．ASTに基づいた分類基準を設けることで，解析
の単位粒度に結果が左右されることなく，プログラムの論理的な構造に根ざした客観的な分
類が可能となる．
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method_declaration

modifiers: public

formal_parameters

integral_type: int

identifier: add

block

formal_parameter

integral_type: int

identifier: a

return_statement

binary_expression

identifier: a

decimal_integer_literal: 10

+

method_declaration

modifiers: public

formal_parameters

integral_type: int

identifier: add

block

formal_parameter

integral_type: int

identifier: a

return_statement

binary_expression

identifier: a

decimal_integer_literal: 10

+

public int add(int a) {
return a + 10;

}

public int add(int a) {
return a + 10;

}

図 6: Type1の例

4 提案手法

本章では，本研究で提案するコードクローン検出の後処理としての統一的なラベリング手
法について述べる．提案手法では，クローンペアを入力し，そのクローンペアがどの Type

に分類されるかのラベルを出力とする．

4.1 分類基準

本研究ではASTに基づいて新たな分類基準を定義した．定義は以下の通りである．すで
にコードクローンとして検出されたコードが対象で，与えられたクローンペアをそれぞれ
ASTに変換し，二つのASTの差に応じて分類を行う．

Type1 ASTが完全一致するコードクローン

Type2 葉ノードを除いてASTが一致するコードクローン

Type3 葉ノードに加え，単文以下のノードを除いてASTが一致するコードクローン

Type4 上記に分類されないコードクローン
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method_declaration

modifiers: public

formal_parameters

integral_type: int

identifier: add

block

formal_parameter

integral_type: int

identifier: a

return_statement

binary_expression

identifier: a

decimal_integer_literal: 10

+

method_declaration

modifiers: private
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integral_type: int

identifier: add

block

formal_parameter

integral_type: int

identifier: a

return_statement

binary_expression

identifier: a

decimal_integer_literal: 20

+

public int add(int a) {
return a + 10;

}

private int add(int a) {
return a + 20;

}

図 7: Type2の例

Type1～3の分類基準について詳細を述べる．
Type1では葉ノードの持つ値を含むAST全体が完全に一致する (図 6)．ASTの木の形状

と，斜体で示された値が完全に同一である場合，Type1と判断される．
Type2では葉ノードを除いたASTが一致する．本手法において，演算子は葉ノードとし

て扱わない．この理由は，計算処理の種類を厳密に区別するためである．Type2のコードク
ローンは識別子やリテラルの置換を許容するが，演算子の変更は計算手順そのものの変容を
意味する．例えば，a+ b と a× b はASTの形状は同一であるが，計算アルゴリズムとして
は異なり，演算子が他の葉ノードと同様に除かれ比較されると，これらは同一の Type2ク
ローンとして判定されてしまう．したがって，本手法では演算子を識別子やリテラル値と区
別して扱い葉ノードから除いた．図 7に示した例では，赤く示した部分がソースコード上で
異なる部分である．葉ノードとして除かれるノードを灰色で，比較対象として残るノードを
黒で示している．黒く示されたノードを持つASTの形状が同一であるため，Type2と判断
される．
Type3では単文以下のノードを除いたASTが一致する．Javaにおいて，単文として定義

される文を表 4に示す．図 8に示した例では，葉ノードに加え，return statementノード，
expression statementノードが単文にあたるため，これらのノード以下のノードが除かれる．
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method_declaration

modifiers: public

formal_parameters

integral_type: int

identifier: add

block

formal_parameter

integral_type: int

identifier: a

return_statement

binary_expression

identifier: a

decimal_integer_literal: 10

+

method_declaration

modifiers: public

formal_parameters

void_type: void

identifier: add

block

formal_parameter

integral_type: int

identifier: a

expression_statement

public int add(int a) {
return a + 10;

}

public void add(int a) {
a = a + 10;

}

assignment_expression

identifier: a

binary_expression

=

identifier: a

decimal_integer_literal: 10

+

図 8: Type3の例

黒く示されたノードを持つASTの形状が同一であるため，Type3と判断される．

表 4: Javaにおいて単文として定義される文の例

単文 例

式文
x = a + b;

System.out.println(s);

変数宣言文 int count = 0;

return文 return result;

throw文 throw new IllegalArgumentException();

break文 break;

continue文 continue;

yield文 yield 100;

assert文 assert list != null;
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local_variable_declaration

parenthesized_expression

binary_expression

identifier: i

>

while_statement

identifier : n

expression_statement

expression_statement

block

for (int i = 0; i < n; i++) {
System.out.println(i);

}

int i = 0;
while (i > n) {

System.out.println(i);
i++;

}

integral_type: int

variable_declarator

identifier: i

=

local_variable_declaration

decimal_integer_literal : 0

for_statement

binary_expression

identifier: i

<

identifier : n

update_expression

identifier: i

++

expression_statement

block

図 9: 制御構造を持つコードの例

提案手法の分類定義における if文，while文，for文等の制御構造を持つソースコードの扱
いについて述べる．図 9に同じ機能を持つ Javaプログラムと対応する ASTを示す．簡単
のため，一部のノードを省略している．この二つのコードでは，同じ処理を行うものの，一
方はwhile文を，他方は for文を用いて処理を行っている．ASTにおいて，葉ノードおよび
単文以下のノードとして除かれるノードを灰色で示す．黒く示すノードを持つASTの形状
が異なるため，Type4に分類される．ここで，while文および for文の条件式内の文につい
て，単文として扱われないため，葉ノード以外のノードは除かれることなくASTの形状の
比較が行われる．
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5 評価実験

本章では，評価実験について述べる．本実験は，BigCloneBenchが行単位での構文的類似
度に基づいて分類した場合と，提案手法で分類した場合のどちらがより人間の感覚に近いの
かを評価することを目的としている．特に，分類の基準が明確でない Type3および Type4

のコードクローンを対象とした．

5.1 実験対象データセット

実験対象データセットとしてBigCloneBenchを用いた．コードクローンの研究において，
Strongly-Type3はType3クローンとして，Weakly-Type3クローンはType4クローンとし
て用いられている [3, 19, 20, 23, 33, 37, 39]．提案手法を用いて BigCloneBenchに含まれ
るクローンペアに対して分類を行った．分類には，AppleM3チップ (8コアCPU)，メモリ
24GBのMacBookAirを使用した．Javaのバージョンは 25.0.1を利用した．提案手法を用
いて BigCloneBench内のクローンペアの分類を行った結果を表 5に示す．分類に要した総
時間は 35時間 49分であった．

5.2 実験手順

被験者はコンピュータサイエンスを専攻する博士前期課程の大学院生 6人であり，いずれ
も Javaを用いたプログラミングの経験がある．以下のいずれかの基準を満たすクローンペ
アを本研究の調査対象とした．ペアを構成する二つのメソッドの合計トークン数が少ない順
にそれぞれ 50個，合計 100個のクローンペアを対象とした．同一のメソッドが複数のペア
に含まれる場合は，そのうち一組のみを抽出対象とした．

表 5: 提案手法による BigCloneBenchの分類結果

BigCloneBench

Type1 Type2
Strongly-

Type3

Moderately-

Type3

Weakly-

Type3
合計

提案手法

Type1 48,116 0 0 0 0 48,116

Type2 0 4,234 3,637 12 1 7,884

Type3 0 0 7,984 13,302 46,973 68,259

Type4 0 0 10,345 74,992 8,403,230 8,488,567

合計 48,116 4,234 21,966 88,306 8,450,204 8,612,826

20



• BigCloneBenchでStrongly-Type3に分類されるクローンペアのうち提案手法でType4

と分類されたクローンペア

• BigCloneBenchでWeakly-Type3に分類されるクローンペアのうち提案手法でType3

と分類されたクローンペア

被験者には，事前に，2.1節に記述したコードクローン分類の定義を提示し，100個のク
ローンペアがどちらに分類されるべきかを判断してもらった．また，判断に迷った場合にそ
の理由と最終的な判断の理由についても回答してもらった．
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図 10: 評価実験の結果：被験者の判断の割合
注： Stronglyは，BigCloneBenchによって Strongly-Type3と分類されるクローンペアのうち提案手法で

Type4と分類されたクローンペアを示し，Weaklyは，BigCloneBenchによってWeakly-Type3と分類される
クローンペアのうち提案手法で Type3と分類されたクローンペアを示す．

6 実験結果と考察

本章では評価実験の結果とそれに対する考察を述べる．

6.1 実験結果

結果を図 10に示す．BigCloneBenchで Strongly-Type3に分類されるクローンペアのう
ち提案手法でType4と分類されたクローンペアは，28.3%がType4と判断され，提案手法に
よる分類が人間の感覚に反するという結果になった．一方，Weakly-Type3に分類されるク
ローンペアのうち提案手法で Type3と分類されたクローンペアは，71.0%が Type3と判断
され，提案手法による分類が人間の感覚に近いという結果になった．また，全体的にType3

と判断されたクローンペアの数が多かった．
提案手法の判定と一致した被験者数ごとのクローンペア分布を図 11に，その具体的な内

訳となるペア数を表 6に示す．図 11における分布の詳細は，表 6の数値に対応している．
Strongly-Type3に分類されるクローンペアのうち提案手法でType4と分類されたクローン
ペアは，分布の偏りから，判断に迷いが少ないことがわかる．一方，Weakly-Type3に分類
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図 11: 評価実験の結果：被験者の分布
注： Stronglyは，BigCloneBenchによって Strongly-Type3と分類されるクローンペアのうち提案手法で

Type4と分類されたクローンペアを示し，Weaklyは，BigCloneBenchによってWeakly-Type3と分類される
クローンペアのうち提案手法で Type3と分類されたクローンペアを示す．

されるクローンペアのうち提案手法でType3と分類されたクローンペアは，BigCloneBench
の分類を選んだのが 3人，提案手法の分類を選んだのが 3人である場合，つまり意見が割れ
たクローンペアが多く存在することから，判断の迷いがあったと考える．
Strongly-Type3に分類されるクローンペアのうち提案手法でType4と分類されたクロー

ンペア，Weakly-Type3に分類されるクローンペアのうち提案手法でType3と分類されたク

表 6: 提案手法と一致する判断を行った人数の分布

0人 1人 2人 3人 4人 5人 6人
Strongly 3 22 14 9 2 0 0

Weakly 0 2 0 15 8 16 9
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ローンペア，それぞれについて，被験者による判断と提案手法による分類が一致した場合，
異なった場合のコードを確認した．以降に詳細を述べる．

6.1.1 Strongly-Type3に分類されるクローンペアのうち提案手法でType4と分類され
たクローンペア

本項では，BigCloneBenchによって Strongly-Type3と分類されたものの，提案手法では
Type4と判定されたクローンペアについて詳細を述べる．実験の結果，提案手法の分類は
人間の感覚に反するという結果になった．表 6に示されているように，被験者 6人のうち，
6人全員が Type4と判断したクローンペアは存在せず，最大で 4人が Type4と判断したク
ローンペアは，50ペア中 2ペアに留まった．一方で，被験者全員がType3と判断したクロー
ンペアは 3ペア存在した．それぞれのクローンペアについて例を示して詳細を述べる．
ソースコード 1: 被験者 6人中 4人が提案手法と同じ Type4と判断したクローンペアの例

1 public static final void randomShuffle (int [] v, Random r) {

2 while (-- n > 0) {

3 int k = r.nextInt (n + 1);

4 int temp = v [n];

5 v [n] = v [k];

6 v [k] = temp;

7 }

8 }

1 public static synchronized void shuffle (int [] anArray) {

2 int n = anArray.length;

3 for (int i = n - 1; i >= 1; i --) {

4 int j = randomSource.nextInt (i + 1);

5 int temp = anArray [j];

6 anArray [j] = anArray [i];

7 anArray [i] = temp;

8 }

9 }

ソースコード 1は被験者 6人中 4人が提案手法と同じ Type4と判断したクローンペアで
ある．このクローンペアでは，一方が while文，他方が for文という異なる制御構造を含ん
でいるため，ASTの構造的差異に基づき，提案手法ではType4と判定された．この例のよ
うに制御構造そのものが異なるクローンペアに対しては，提案手法による分類が被験者の主
観評価に近いことが確認された．
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ソースコード 2: 被験者全員が提案手法とは異なるType3と判断したクローンペアの例 (while

文の条件式の違い)

1 private void writeFile (FileInputStream inFile , FileOutputStream

outFile) throws IOException {

2 byte [] buf = new byte [2048];

3 int read;

4 while ((read = inFile.read (buf)) > 0 && !
stopped) outFile.write (buf , 0, read);

5

6 inFile.close ();

7 }

1 private void writeFile (FileInputStream inFile , FileOutputStream

outFile) throws IOException {

2 byte [] buf = new byte [2048];

3 int read;

4 while ((read = inFile.read (buf)) > 0) outFile.write (buf , 0, read);

5

6 inFile.close ();

7 }

次に，被験者全員が提案手法と異なるType3と判断したクローンペアを示す．ソースコー
ド 2は，赤く示された while文の条件式においてASTに差異が生じたため，提案手法では
Type4と判断された．しかし，被験者の判断では，条件式のみの変更は，文の変更に相当し，
Type3の定義の範疇に収まるとしてType3と判断していた．現在の定義では，while文，if

文，for文等の制御構造において，条件式内の文は単文に含まれない．そのため，内包され
る条件式のAST構造が異なる場合は一律にType4と判定される．単文として定義される文
に制御構造内の条件式を含めることで，より人間の直感に近い分類が可能になる．
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ソースコード 3: 被験者全員が提案手法と異なる Type3と判断したクローンペアの例 (仮引
数の違い)

1 public static final void copy (InputStream is, OutputStream
os) throws IOException {

2 try {

3 IOUtils.copy (is, os);

4 } finally {

5 IOUtils.closeQuietly (is);

6 IOUtils.closeQuietly (os);

7 }

8 }

1 public static void readFile (FOUserAgent ua, String uri, OutputStream
output) throws IOException {

2 InputStream in = getURLInputStream (ua , uri);

3 try {

4 IOUtils.copy (in, output);

5 } finally {

6 IOUtils.closeQuietly (in);

7 }

8 }

ソースコード 3は，メソッドの仮引数が異なっていたため，ASTに差異が生じ，提案手
法ではType4と判断された．しかし，被験者は，仮引数の違いもType3における文の変更
の一部であると判断した．引数の数や順序の変更についても，条件式と同様に，単文として
定義される文に仮引数を含めることで，より人間の直感に近い分類が可能になる．

6.1.2 Weakly-Type3に分類されるクローンペアのうち提案手法で Type3と分類され
たクローンペア

本項では，BigCloneBenchでWeakly-Type3に分類されるペアのうち，提案手法によって
Type3と判定されたケースについて述べる．実験の結果，提案手法の分類が人間の感覚に近
いという結果になった．具体的には，被験者 6人全員が Type3と判断したペアが 9ペア存
在した．一方で，被験者全員がType4と判断したペアは存在せず，最大で 5人がType4と
判断したペアが 50ペア中 2ペア確認された．以下にその詳細を述べる．
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ソースコード 4: 被験者全員が提案手法と同じ Type3と判断したクローンペアの例

1 private byte [] generateHash (String s) throws

NoSuchAlgorithmException {

2 MessageDigest md = MessageDigest.getInstance ("MD5");

3 md.update (s.getBytes ());

4 return md.digest ();

5 }

1 private static byte [] finalizeStringHash (String loginHash) throws

NoSuchAlgorithmException {

2 MessageDigest md5Hasher;

3 md5Hasher = MessageDigest.getInstance ("MD5");

4 md5Hasher.update (loginHash.getBytes ());

5 md5Hasher.update (LOGIN_FINAL_SALT);

6 return md5Hasher.digest ();

7 }

ソースコード 4は，被験者全員が提案手法と同じType3と判断したクローンペアである．
このクローンペアでは，互いに共通する文を多く含んでおり，被験者はその内容の類似性か
ら Type3と判断したと考えられる．しかし，BigCloneBenchではWeakly-Type3として扱
われ，人間の感覚と反する．このように，BigCloneBenchの分類が人間の直感と反するケー
スが存在することが確認できた．これは，BigCloneBench の分類基準である行単位の類似
度という指標ではなく，ASTを用いることで，プログラムの論理的な骨組みを直接評価で
きることが，人間の感覚に近い判定に寄与したと言える．提案手法の分類基準が，既存の類
似度に基づくよりもコードクローンの実態をより正確に反映できる可能性を示している．
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ソースコード 5: 被験者 6人中 5人が提案手法と異なるType4と判断したクローンペアの例

1 private void javaToHtml (File source , File destination) throws

IOException {

2 Reader reader = new FileReader (source);

3 Writer writer = new FileWriter (destination);

4 JavaUtils.writeJava (reader , writer);

5 writer.flush ();

6 writer.close ();

7 }

1 public static void copy (InputStream stream , OutputStream ostream)

throws IOException {

2 IOUtils.copy (stream , ostream , false);

3 }

一方，ソースコード 5は，被験者 6人のうち 5人が提案手法と異なる Type4と判断した
クローンペアである．このクローンペアでは，機能は同一であるが，構文的に異なるとして
被験者は Type4と判断していた．提案手法は，それぞれのメソッド以下の文を全て単文と
して扱ったために，単文以下のノードを除いた後のASTの形状が同一となり，Type3と判
断され，人間の判断との乖離が発生していた．

6.2 考察

6.3 提案手法の分類定義

6.1.1項の結果から，提案手法の厳密な構造比較はType4の特定に寄与する一方で，人間
が，2.1節に示した Type3の定義として許容する範囲のコードクローンを Type4と判定す
る可能性が示唆された．これらの知見に基づき，特定の構文要素に対する判定基準を柔軟に
調整することが，今後の精度向上における重要な課題である．
6.1.2項の例に対し，提案手法がType3と判定した要因は，単文以下のノードを除いた後

のASTの形状が同一であったためである．しかし，極端な例として，メソッド本体が一つ
の単文のみで構成されるコードと，大量の単文を含むコードであっても，それらが同じ制御
構造の中に配置されていれば，本手法ではASTが同一であると見なされ，Type3に分類さ
れてしまう．実験の結果，このような規模の著しい乖離がある場合に Type3と分類するこ
とは，人間の直感から離れる原因になると示唆された．したがって，単文以下のノードを除
く際，何らかの制約を設ける必要があると考えられる．具体的な改善策として，次の 2点が
考えられる．
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• 単文の数による量的制約：追加，削除または変更されたとする単文の数に閾値を設け，
ソースコード全体の文の量が著しく異なる場合には，Type3判定しないように制限す
る方法である．例えば，挿入された文の数が元の構造に対して一定の割合を超える場
合，それを Type3ではなく Type4と判定する．

• 文の種類や文脈に応じたフィルタリング：ソースコード中の全ての単文を一律に取り
除くのではなく，文の内部構造 (例：メソッド呼び出しの有無)に応じて，その単文を
除くか，保持するかを判定する方法である．変更を許容する要素を文脈に応じて動的
に選択することで，単なる変数への代入といった軽微な実装の差異は除き，外部ライ
ブラリの呼び出しを伴うような重要なコードの変更を保持することが可能となる．

これらの変更により，より人間の直感に近い分類が可能になると考えられる．

6.3.1 被験者ごとの傾向

本実験における被験者ごとの傾向を調査するため，回答の分析を行なった．被験者ごとの
Type3と判断したペア数を表 7に，被験者間の回答の一致率を表 8に示す．
表 8の被験者間の一致率に基づき，被験者を二つのグループに分類した．具体的には，P1，

P2，P3からなるグループAと P4，P5，P6からなるグループ Bである．グループA内で
は，P1とP2の間で 70%以上の一致率が確認され，P3もP1およびP2とそれぞれ 60%以上

表 7: 被験者ごとの Type3と判断したペア数 (100ペア中)

P1 P2 P3 P4 P5 P6

ペア数 75 66 53 78 82 74

表 8: 被験者間における実験回答の一致率

P1 P2 P3 P4 P5 P6

P1 – 75% 64% 55% 63% 57%

P2 75% – 63% 46% 52% 54%

P3 64% 63% – 39% 45% 51%

P4 55% 46% 39% – 78% 76%

P5 63% 52% 45% 78% – 74%

P6 57% 54% 51% 76% 74% –

注：セルの背景色は、一致率が 70%以上のものを濃色、60%以上のもの
を淡色で示している。
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の一致率を示した．対してグループ Bでは，P4から P6の全被験者間でそれぞれ 70%以上
の高い一致率を記録した．これら二つのグループについて回答の判断理由を分析した結果，
両者の間でクローン判定の基準が明確に異なることが判明した．具体的には，処理機能の同
一性を重視する立場と，評価の際に構文構造の差異を重視する立場の違いである．グループ
Aは，2.1節のType4の定義に基づき，同一の処理を行う場合にType4と判断し，行わない
場合に Type3と判断していた．一方，グループ Bは，2.1節の Type3の定義に基づき，ク
ローンペア間で異なる部分が，文の挿入，削除，変更に留まる場合にはType3と判断し，そ
れ以上の構文の変更が見られる場合に Type4と判断していた．このような被験者間におけ
る判断基準の不一致が，同一のクローンペアに対して異なる分類が行われる要因になったと
考えられる．以上の結果は，コードクローンにおけるType3とType4の定義の曖昧さを示
唆しており，本研究が目的とする統一的なラベリング手法の必要性が改めて確認された．
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7 妥当性への脅威

本章では，本研究における内部妥当性，外部妥当性，結論妥当性への脅威について述べる．

7.1 内部妥当性

内部妥当性への脅威としては，提案手法の実装および解析基盤として採用したTree-sitter

の精度が挙げられる．パーサによる構文解析に誤りが含まれる場合，正しくラベリングが行
われない可能性がある．これに対し，本研究では解析対象の各文に対し，生成された AST

ノードが意図した構文要素と一致しているかを事前にテストを用いて検証し，実装の正確性
を確認している．
また，評価実験における被験者の主観性も脅威となり得る．考察で述べた通り，被験者の

判断基準が，構文の変更を重視する立場と機能の同一性を重視する立場の二つに類別される
ことが確認された．実験前の教示においてコードクローンの定義を説明しているが，被験者
個人の経験や直感に起因する判断のブレを完全に排除することは困難である．この影響を軽
減するため，本研究では被験者間の回答一致率を算出し，主観による偏りを定量的に評価し
ている．

7.2 外部妥当性

外部妥当性への脅威は，結果の汎用性に関するものである．本研究では評価対象を Java

言語に限定しており，他のプログラミング言語（Python や C++ 等）における有効性は未
検証である．しかし，採用した Tree-sitter は多言語対応の解析基盤であり，他言語への拡
張は比較的容易であると考えられる．Java以外の言語への拡張と，拡張した提案手法の評
価は今後の課題である．
また，サンプリングにおいてトークン数の合計が少ないペアを優先的に抽出したため，

大規模なメソッドにおける精度については更なる検証が必要である．さらに，本研究では
BigCloneBenchのみを評価対象としたが，特定のドメインや特定の開発手法（テストコード等）
におけるクローン特性が，本手法の分類精度に影響を与える可能性がある．BigCloneBench

以外のデータセットを用いた提案手法の評価や，クローン特性による影響の調査は今後の課
題である．

7.3 結論妥当性

結論妥当性への脅威として，評価実験におけるサンプルサイズが挙げられる．被験者 6名
という規模は，統計的に十分な一般性を担保しているとは言い難い．得られた知見（グルー
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プ分けや判断傾向）が開発者全体の一般的な傾向を代表していると断定するには，今後，よ
り多くの被験者を対象とした大規模な調査による検証が必要である．
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8 おわりに

本研究では，複数のコードクローン検出ツールから得られる結果を統合し，一貫性のある
データセットを構築するため，コードクローン検出の後処理としての統一的ラベリング手法
の提案を行なった．
提案手法の妥当性を評価するために実施した被験者実験では，以下の知見が得られた．
既存の行単位の類似度ではType4と判定されていたクローンペアに対し，提案手法がType3

と判定したケースでは，人間の感覚も Type3を支持する傾向にあった．一方で，提案手法
が Type4と判定したクローンペアを人間が Type3と見なすケースも確認された．
以上の結果から，類似度という単一の指標に頼るのではなく，構造的なアプローチによっ

て統一的なラベルを付与する本手法の有用性が確認された．同時に，人間の感覚により近づ
けるためには，分類定義のさらなる見直しが必要であるという結論に至った．また，被験者
ごとの傾向から，本研究が目的とする統一的なラベリング手法の必要性が改めて確認された．
今後の展望として，次の三つが考えられる．
一つ目は，提案手法における分類基準の最適化である．実験で明らかになった人間との感

覚のズレを解消するため，文の種類や文脈に応じた動的なフィルタリングを導入することが
考えられる．
二つ目は，提案手法を用いて統一的なラベリングが行われたデータセットの作成である．

複数の既存検出ツールから得られた結果に対し，本手法を用いて統一的なラベリングを行う
ことで，ノイズの少ない高品質なデータセットの整備が可能となる．このようなデータセッ
トを LLMの学習データとして活用し，クローン情報の付与が LLMのコード生成精度や理
解能力の向上にどの程度寄与するかを詳細に検証することが考えられる．
三つ目は，Java以外のプログラミング言語への提案手法の拡張である．本研究で採用した

解析ライブラリであるTree-sitterは多言語共通のインターフェースを提供しており，Python
やC++といった他言語への適用が容易であるという特長を持つ．したがって，今後は対象
言語を拡大し，異なる言語仕様においても本研究と同様のラベリング精度および一貫性が得
られるかについて，評価実験を通じて手法の汎用性を実証していく必要がある．
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被験者実験の参加や普段の日常生活において，様々な場面で助けられました．心より深く感
謝申し上げます．
最後に，長年にわたり私の学業を温かく見守り，多大なる支援を賜りました家族に深く感

謝いたします．
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