
Department of Computer Science, Graduate School of Information Science and Technology,

The University of Osaka. Software Engineering Laboratory. - https://sel.ist.osaka-u.ac.jp

コードクローン検出の後処理としての
統一的ラベリング手法

肥後研究室 M2 清水ささら

コードクローン

ソースコード中の一致，類似したコード片[1]

ソースコードの保守性を下げる要因となる

類似の度合いにより4つに分類される[2]

•Type1：コメント，空白文字の違いを除いて一致する

•Type2：リテラル，型，識別子の違いを除いて一致する

•Type3：文の変更，挿入，削除を除いて一致する

•Type4：構文が異なるが，同じ機能を持つ

[1]井上克郎 , 神谷 年洋 , 楠本真二 . コー ドク ローン 検出 法. コンピュータソフトウェア , Vo l . 1 8, No . 5 , pp. 529–536, 20 01.

[2] C. Roy and J. C ordy. A Surv ey on So ftw are C lone De tecti on Resea rch. S choo l o f C omput ing TR No.20 07 –541, 20 07.

1

コードクローン検出ツール

•- ソースコードに対して単一のクローン検出ツールが用いられる

- 単一のツールでは検出できるクローンに偏りがある

2

課題

•- ラベリングが統一されていないため一つのデータベースに統合ができない

3

提案手法による解決策

•- クローン検出後の統一的なラベリングを行う

4

研究目的と手段

目的：コードクローン検出後の統一的なラベリング

提案手法：抽象構文木(AST)に基づくラベリング

5

抽象構文木(AST)

•ソースコードの構文構造を木構造で表現したデータ構造

6

葉ノード，斜体は値

提案手法：ASTベースのラベリング

•提案手法では以下のように分類を行った

•入力：クローンペアとして検出された2つのコード片

•出力：分類結果

• - Type1：ASTが同一

• - Type2：葉ノードを除いたASTが同一

• - Type3：単文以下のノードを除いたASTが同一

• - Type4：上記以外

7

Type1：ASTが同一

•ASTの形状と値が同一

8

public int add(int a) {
 return a + 10;
}

public int add(int a) {
 return a + 10;
}

A

コードA

コードB

B

Type2：葉ノードを除いたASTが同一

•葉ノードを除いた

•ASTの形状が同一

9

public int add(int a) {
 return a + 10;
}

private int add(int a) {
 return a + 20;
}

コードA

コードB

A B

Type2：葉ノードを除いたASTが同一

•葉ノードを除いた

•ASTの形状が同一

10

public int add(int a) {
 return a + 10;
}

private int add(int a) {
 return a + 20;
}

コードA

コードB

BA

Type3：単文以下のノードを除いたASTが同一

•Javaの構文定義では以下の文が単文として定義される

11

単文 例

式文 x = a + b;
System.out.println(s);

変数宣言文 int count = 0;

return文 return result;

throws文 throw new
IllegalArgumentException();

break文 break;

continue文 continue;

yield文 yield 100;

assert文 assert list != null;

Type3に分類される例

•葉ノード，単文以下の

•ノードを除いたASTが同一

12

public int add(int a) {
 return a + 10;
}

public void add(int a) {
 a = a + 10;
}

コードA

コードB

A

B

Type3に分類される例

•葉ノード，単文以下の

•ノードを除いたASTが同一

13

public int add(int a) {
 return a + 10;
}

public void add(int a) {
 a = a + 10;
}

コードA

コードB

A

B

実装

•AST解析ライブラリであるTree-sitterを利用

•- 多言語対応したAST解析ライブラリ

•- 現在はJavaに対する実装，将来的に他言語への拡張

14

評価実験

•被験者実験

•提案手法のラベリングが人間の感覚とずれているのかを評価

コードクローンの大規模データセットBigCloneBenchを利用

- 既存のコードクローン研究に利用されているため

被験者：大学院博士前期課程の学生6人

15

既存データセット：BigCloneBench

•BigCloneBench(BCB)[3]

•- 大規模なコードクローンデータセット

•- 約800万のクローンペアが存在

•- Type1, Type2, Type3(Strong), Type3(Moderate), Type3(Weak)に分類

•- Type3は一致する行の割合で以下のように分類

• 一致率 0.7~1.0：Strong

• 一致率 0.5~0.7：Moderate

• 一致率 0.0~0.5：Weak

•- 既存の研究ではType3(Weak)をType4として利用

•[3] J . Sv aj lenko , J . F. I sl am, I . Kei van loo , C. K . Roy , a nd M . M . M ia, “T owa rds a big data curat ed benchmark o f i nt er -project code c lones ,” in Int . Co nf .
 on S oft ware Mai nt ena nce and Evol ut ion (IC SME), 2014 .

16

実験用データ：BigCloneBenchの分類結果

BCBでType3，Type4に分類されたクローンが提案手法では異なる分類

17

Type1 Type2 Type3 Type4 合計

Type1 48,116 0 0 0 48,116

Type2 0 4,234 3,649 1 7,884

Type3 0 0 21,286 46,973 68,259

Type4 0 0 85,337 8,403,230 8,488,567

合計 48,116 4,234 110,272 8,450,204 8,612,826

BigCloneBench

提案手法

実験用データ：BigCloneBenchの分類結果

以下のクローンペア100個についてType3/4の判定

- BCBでType3，提案手法でType4

- BCBでType4，提案手法でType3

18

Type1 Type2 Type3 Type4 合計

Type1 48,116 0 0 0 48,116

Type2 0 4,234 3,649 1 7,884

Type3 0 0 21,286 46,973 68,259

Type4 0 0 85,337 8,403,230 8,488,567

合計 48,116 4,234 110,272 8,450,204 8,612,826

BigCloneBench

提案手法

評価結果

•- BCBでType3提案手法でType4は，提案手法が人間の感覚に反する

•- BCBでType4提案手法でType3は，提案手法が人間の感覚に近い

• 人間の感覚に反した分類のコードを確認

• 提案手法Type4，6人全員がType3

• - 制御構造の条件式のみが異なる

• - 仮引数が異なる

19

コード例：提案手法でType4，被験者はType3

while文の条件式が異なる

20

private void writeFile (...) throws IOException {
 ...
 while (read = inFile.read (buf)) > 0 \&\& ! stopped) outFile.write (buf, 0,
read);
 ...
}

private void writeFile (...) throws IOException {
 ...
 while (read = inFile.read (buf)) > 0) outFile.write (buf, 0, read);
 ...
}

まとめ

•- コードクローン検出ツールはラベリングが一致しない

•- 複数のツールの検出結果を単一のデータセットに統合できない

•- 課題解決のため，クローン検出後のラベリング手法を提案

•- 被験者実験を通じて，提案手法を評価した

•今後の課題

•- 提案手法でラベリングされたデータセットでLLMへの学習と精度評価

•- Java以外の言語への拡張

21

Department of Computer Science, Graduate School of Information Science and Technology,

The University of Osaka. Software Engineering Laboratory. - https://sel.ist.osaka-u.ac.jp

付録

BigCloneBenchの問題

•問題点

•- Type3とType4が明確に分類されていない

•- ラベル付が適切でない

•このデータセットを用いた研究結果の妥当性が危うくなる

•- 特に機械学習の学習データセットとして用いるには問題がある [4]

•[4] K rinke, Jens & Ragkh itw etsagu l , Chaiyo ng . (2025) . How the Misuse of a Dat aset Harme d Semantic Clo ne Det ectio n.

23

BigCloneBenchの分類結果

24

Type1 Type2 Strongly

-Type3

Moderately

-Type3

Weakly

-Type3

Type1 48,116 0 0 0 0

Type2 0 4,234 3,637 12 1

Type3 0 0 7,984 13,302 46,973

Type4 0 0 10,345 74,992 8,403,230

合計 48,116 4,234 21,966 88,306 8,450,204

BigCloneBench

提案手法

	Slide 0: コードクローン検出の後処理としての 統一的ラベリング手法
	Slide 1: コードクローン
	Slide 2: コードクローン検出ツール
	Slide 3: 課題
	Slide 4: 提案手法による解決策
	Slide 5: 研究目的と手段
	Slide 6: 抽象構文木(AST)
	Slide 7: 提案手法：ASTベースのラベリング
	Slide 8: Type1：ASTが同一
	Slide 9: Type2：葉ノードを除いたASTが同一
	Slide 10: Type2：葉ノードを除いたASTが同一
	Slide 11: Type3：単文以下のノードを除いたASTが同一
	Slide 12: Type3に分類される例
	Slide 13: Type3に分類される例
	Slide 14: 実装
	Slide 15: 評価実験
	Slide 16: 既存データセット：BigCloneBench
	Slide 17: 実験用データ：BigCloneBenchの分類結果
	Slide 18: 実験用データ：BigCloneBenchの分類結果
	Slide 19: 評価結果
	Slide 20: コード例：提案手法でType4，被験者はType3
	Slide 21: まとめ
	Slide 22: 付録
	Slide 23: BigCloneBenchの問題
	Slide 24: BigCloneBenchの分類結果

