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Abstract

Code clones degrade software maintainability, making their efficient detection crucial.
However, detection is challenging, especially for Type-4 semantic clones (code fragments
that are syntactically different but functionally equivalent). In the era of Generative
AT (GenAlI), Large Language Model (LLM)-based clone detection has become increas-
ingly important as developers increasingly integrate GenAl into their workflows. Given
that many leading GenAl technologies are closed-source systems, it is essential to under-
stand the factors influencing their behavior to improve such detection methods. In this
study, we investigate the role that identifiers (names assigned to programming elements
such as variables, functions, and classes) play in detecting Type-4 clones. We conducted
controlled experiments to evaluate six LLMs (GPT-4.1, Phi-4, Gemini-2.5-pro, Gemma-
3-27b-it, CodeLlama-7B-Instruct, and CodeGemma-7b-it) using the FEMPDataset. This
dataset contains 2,194 human-written method pairs, including 1,342 functionally equiva-
lent clone pairs and 852 non-clone pairs. We systematically mask different identifier types
(specifically method, argument, and variable names) to assess their impact on detection
performance. Our findings reveal that identifier names significantly influence LLM-based
clone detection decisions. Identifier names are not essential and can even have a negative
impact on detection accuracy. While variable names maintain or slightly improve clone
detection performance, method names often adversely affect it. Furthermore, the lexical
and semantic similarity of method names significantly influences LLM clone detection de-
cisions. In terms of syntactic similarity, method pairs with lower similarity tend to yield
reduced clone detection accuracy. Moreover, low syntactic similarity increases the models’
reliance on identifier names, whereas high syntactic similarity reduces this dependency.
Our insights contribute to a deeper understanding of LLM-based clone detection and pro-

vide practical guidance for designing prompting strategies that account for identifier types



and syntactic similarity, ultimately enhancing the detection of Type-4 clones in software

systems.
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1 Introduction

Code clones often require consistent changes across all instances; inconsistent changes
are known to cause defects [26]. Furthermore, code clones can lead to unpatched vulnera-
bilities and can accumulate as technical debt, ultimately increasing long-term maintenance
costs. Consequently, code clones pose significant challenges for modifying source code and
can significantly impair system maintainability. For these reasons, it is crucial for de-
velopers to efficiently detect code clones and refactor them when necessary. Although
numerous code clone detection tools have been developed over the years [32], overall de-
tection accuracy remains limited, particularly for clones with low syntactic similarity.
Static-analysis-based tools, such as those using lexical analysis and software metrics, have
demonstrated high accuracy for detecting lexically similar code clones [20, 33, 37] and ma-
chine learning-based tools have shown higher accuracy than static-analysis approaches for
detecting code clones with low syntactic similarity [46, 41, 36]. Code clones are typically
classified into four types according to their degree of similarity [34]: Type-1 (clones that
are identical except for formatting differences, such as whitespace and comments), Type-2
(clones that are identical except for differences in identifiers, literals, and data types),
Type-3 (clones that are identical except for differences in identifiers, literals, data types,
and for statements added, modified, or removed), and Type-4 (clones that exhibit little
or no syntactic similarity but remain functionally equivalent).

Detecting Type-4 clones is challenging because significant variations in algorithms, data
structures, and API usage make it difficult to determine program equivalence using struc-
tural representations such as ASTs and PDGs. Moreover, differing identifier names often
render token-based static analysis unreliable for detection. Due to these factors, Type-4
clone detection remains a particularly challenging problem. To address this challenge,
many tools have combined multiple information sources, such as AST's, control flow struc-
tures, and machine learning models.

LLM-based clone detection has attracted significant attention [48, 15]. Trained on mas-
sive text corpora, LLMs have been successfully applied to various software engineering
tasks, including code generation and clone detection [9, 29, 30, 12]. LLMs have demon-
strated high accuracy in detecting code clones with low syntactic similarity, which has been
difficult for previous detection tools to identify [47]. However, most LLMs are primarily
developed for natural language processing and optimized to produce plausible responses

that align with user expectations. Consequently, their internal decision-making processes



(a) Before Masking

int increment(int value) {

return result;

}

1
2 int result = value + 1;
3
|

(b) After Masking

1 int METHOD (int METHODPARAMETERO ) {

2 int VARIABLEO = METHODPARAMETERO + 1;
3 return VARIABLEO ;

4 }

Figure 1: Concept of masking identifiers. “MA mask” masks method and arguments. “MV

mask” masks method and variables. “AV mask” masks method arguments and variables.

are not transparent, making it unclear exactly which features LLMs prioritize when iden-
tifying code clones [48].

To address the challenges of Type-4 clone detection, we quantitatively analyze how iden-
tifier names and syntactic similarity affect LLM-based code clone detection. Given that
input token sequences fundamentally influence LLM behavior, this study investigates the
impact of factors such as identifier names (e.g., method and variable names) and syntactic
similarity on detection performance [43]. Our goal is to derive insights that help mitigate
misclassifications arising from these factors. Specifically, as LLMs are primarily trained on
natural language, they may rely excessively on identifier names, potentially misclassifying
non-clone pairs as clones based on lexical or semantic similarities between these names.
While existing studies have evaluated the impact of identifier names in smaller models
such as GraphCodeBERT, there is still a lack of detailed analysis concerning which spe-
cific identifier types affect detection in larger LLMs and how syntactic similarity interacts
with identifier information.

As shown in Fig. 1, we systematically mask identifiers to understand each identifier’s
impact on LLM-based code clone detection accuracy, specifically considering identifier
names and syntactic similarity. We evaluate six LLMs: GPT-4.1, Phi-4, Gemini-2.5-pro,
Gemma-3-27b-it, CodeLlama-7B-Instruct, and CodeGemma-7b-it. We categorize identi-
fiers into three types—method, argument, and variable names—and mask each type to

investigate its impact on clone detection accuracy. Our investigation is structured around



two main research questions and five sub-questions, yielding the following insights:

RQ1: How do identifiers impact LLM-based clone detection?

RQ1l.a: How does masking identifier names affect the accuracy of LLM-based code

clone detection?

RQ1.b: Among method names, parameter names, and variable names, which type

of identifier has the greatest impact on LLM decisions?

RQ1.c: How do the lexical and semantic similarities of method names affect LLM

decisions in code clone detection?

Results: Identifier names are not essential for Type-4 clone detection and can even
negatively affect performance. Among identifier types, method names particularly
hinder performance and lead to misclassifications, whereas variable names often
maintain or improve detection accuracy. Furthermore, both lexical and semantic

similarity of method names significantly influence LLM decisions.

RQ2: How does syntactic similarity impact LLM-based clone detection?

RQ2.a: How does syntactic similarity affect LLM decisions in code clone detection?

RQ2.b: How do syntactic similarity and identifier names jointly affect LLM-based

code clone detection?

Results: Method pairs with lower syntactic similarity tend to yield reduced clone de-
tection accuracy. Furthermore, low syntactic similarity increases the models’ reliance

on identifier names, whereas high syntactic similarity reduces this dependency.
Our key contributions are as follows:

e A fine-grained empirical analysis of how identifiers and syntactic similarity influence

Type-4 clone detection.

e Understanding of the information that LLMs rely on when making clone detection

decisions.

The remainder of this paper is structured as follows: Section 2 describes our dataset
preparation; Section 3 presents the experimental setup; Section 4 explains the evalua-
tion metrics; Section 5 presents the results and answers the research questions; Section 6

discusses our findings and threats to validity; and Section 7 concludes the paper.



2 Dataset Preparation

Our experiments utilize the FEMPDataset, a benchmark specifically designed for Type-4
clone detection. FEMPDataset consists of Java method pairs, where each entry comprises
two methods and a label indicating their functional equivalence. In this context, clone
pairs represent Type-4 clones that implement the same functionality through divergent
algorithmic structures, whereas non-clone pairs consist of methods that are not function-
ally equivalent. The dataset contains 1,342 clone pairs and 852 non-clone pairs, for a total
of 2,194 method pairs. The functional equivalence of clone pairs was validated through
the cross-execution of test cases and manual expert review, ensuring the reliability of the
ground-truth labels. Additionally, since the source code in FEMPDataset contains no
comments, natural language cues are primarily restricted to identifier names.

In our experiments, we apply minimal formatting normalization to the source code to
mitigate the influence of superficial formatting differences. Specifically, we standardize
indentation, convert tab characters to spaces, and normalize line endings as well as re-
dundant blank lines. These preprocessing steps do not modify token sequences, statement
order, or identifier names; therefore, they do not affect program behavior or syntactic

structure. The systematic masking of these identifiers is detailed in Section 3.1.
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Figure 2: Experiment steps

3 Experiment Setup

Fig. 2 shows the design of our controlled empirical evaluation, which compares the
impact of identifier masking on LLM-based code clone detection. Using a fixed set of
method pairs from FEMPDataset, we systematically apply various masking patterns and
evaluate each LLM under identical prompt and inference conditions. This design enables
direct comparison across masking patterns and models while holding non-identifier factors

constant. The overall procedure consists of three stages:

e STEP1 (Masking Data): apply identifier masking patterns to each method pair in
FEMPDataset and obtain masked code pairs for each pattern;

e STEP2 (Inference with LLMs): construct prompts from the original and masked

code pairs and obtain clone/non-clone predictions from each LLM;

e STEP3 (Evaluation): compare LLM outputs with ground-truth labels and compute

performance metrics for each masking pattern.

The goal of this experiment is to answer RQ1 and RQ2 by standardizing inputs and infer-
ence conditions, allowing for a quantitative comparison of performance differences induced
by identifier masking. Specifically, we isolate the contribution of identifier information by
limiting input variation to the presence, absence, and specific patterns of identifier mask-

ing. By keeping the prompt template and LLMs’ decoding settings identical across all



conditions, we can directly attribute performance differences to the masking patterns and

models.

3.1 Step 1: Identifier Masking Strategies

We generate variants of the FEMPDataset in which identifier names are replaced with
placeholder tokens. FEMPDataset is a dataset that collects functionally equivalent method
pairs with different structural implementations. FEMPDataset contains 1,342 clone pairs
and 852 non-clone pairs. We apply masking to three categories of identifiers: Method
names: replaced with “METHOD.” | Method argument names: replaced with “METHOD-
PARAMETERX.”, Variable names: replaced with “VARIABLEX” (where X represents
a sequential integer starting from 0). Masking applies only to identifiers defined within
each method. Identifiers from external libraries are not masked to preserve the semantic
context of API calls, ensuring the code remains representative of real-world usage during
evaluation.

We generate a dataset by masking the specified identifiers. The masking patterns defined
in Table 1 are as follows: “no mask” represents the original data; “MA mask” targets
method and argument names; “MV mask” targets method and local variable names; “AV

mask” targets argument and local variable names; and “all mask” masks all identifier

types.

3.2 Step 2: Prompt Design and LLM Inference

As shown in Fig. 3, we use a single fixed prompt template across all experiments to ensure
consistency and avoid bias from prompt variations. Each prompt exchange with the LLM

consists of a system message and a user message. In the system role, we instruct the model

Table 1: Identifier Name Masking Patterns

Method Method Argument Variable

no mask X X X
MA mask O O X
MV mask O X O
AV mask X O O
all mask O O O

(: Masking applied, x: No masking applied



(a) System message

1 You must respond with only ’Yes’ or ’No’.

(b) User message

I I will now give you the two snippets, and you are to answer the questions
based on the content of the two snippets.

3 Snippet 1:

| int METHOD(int METHODPARAMETERO) {

5 int VARIABLEO = METHODPARAMETERO + 1;
6 return VARIABLEO;

9 Snippet 2:
10 int METHOD(int METHODPARAMETERO) {
11 return METHODPARAMETERO + 1;

14 Please analyze the two code snippets and determine if they are code clones.
Respond with ’yes’ if the code snippets are clones or ’no’ if not.

Figure 3: Example of prompt structure for LLM-based clone detection with masked iden-

tifiers

Note: The system message constrains the output format, while the user message presents the masked

method pair and the question.

to respond only “Yes” or “No.” In the user role, we provide two method snippets and ask
the model to determine if they are code clones. All LLMs are evaluated under identical
inference conditions. We set the temperature to 0.0 to ensure strict reproducibility by
generating deterministic outputs, thereby eliminating variability associated with stochastic
sampling. For each method pair and masking pattern, we perform a single inference pass,
treating the resulting “Yes” or “No” answer directly as the final classification outcome.
We utilize the OpenAl API for GPT-4.1 and the Google Gemini API for Gemini-2.5-pro,
while all other models are sourced from Hugging Face and executed locally using four

NVIDIA RTX A6000 GPUs.
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3.3 Step 3: Analyzing LLM Decisions

To analyze LLM decisions and address the RQs, we quantitatively measure the accuracy
of classification outcomes, the characteristics of identifier names within the two input
methods, and their syntactic similarity. We define the metrics used for these analyses and
explain how they are computed. To evaluate classification accuracy, we categorize the
predictions for each method pair into four standard groups before computing performance
metrics. Each method pair is classified into one of four categories based on the ground

truth and the LLM’s prediction:

TP (True Positive): The number of actual clone pairs classified as clones.

FP (False Positive): The number of non-clone pairs classified as clones.

FN (False Negative): The number of actual clone pairs classified as non-clones.
TN (True Negative): The number of non-clone pairs classified as non-clones.

Performance Metrics: Based on these classifications, we compute three performance

metrics:

Recall: The proportion of actual clone pairs that are correctly identified as code clones.

TP

Recall = m

Precision: The proportion of predicted clone pairs that are actual clone pairs.

TP

Precision = W

F1-score: The harmonic mean of recall and precision.

2 x Recall x Precision

F1- =
seore Recall + Precision

11



4 Evaluation Metrics

These metrics are employed across our research questions: in RQ1l.a to compare per-
formance between masked and preserved identifiers; in RQ1.b to analyze the impact of
individual identifier types (method, argument, and variable names); and in RQ2 to eval-

uate performance variations across different levels of syntactic similarity.

4.1 Code Representation Similarity (RQ1)

To evaluate method name similarity, we compute both lexical and semantic similarity
scores between method names.

Lezical Similarity (Jaccard Index): The Jaccard index measures lexical similarity by
comparing word sets extracted from method names; specifically, each name is tokenized
into a set of words based on CamelCase or snake_case conventions. The Jaccard index
between two sets A and B is defined as:

ANB
J(A.B) = }AUB}
The resulting value ranges from 0 (no overlap) to 1 (identical sets), where values closer to 1
indicate greater lexical similarity. For example, comparing commonPrefix and getCommon-
Prefix yields the common terms {common, Prefix}, resulting in a high Jaccard index (2/3
~ 0.67).

Semantic Similarity (Cosine Similarity): Cosine similarity measures semantic similarity
by comparing vector representations of method names. Each method name is encoded
into a semantic vector using the codet5p-110m-embedding, as it is pretrained on large-
scale code corpora to capture semantic information from identifiers. The cosine similarity

between two vectors A and B is defined as:

A-B
cos0) = JaTTBI

The similarity ranges from —1 (opposite direction) to 1 (same direction), where values
closer to 1 indicate greater semantic similarity. For example, comparing areEqualDates
and isSameDay yields a Jaccard index of 0.00 but a cosine similarity of 0.73, indicating
high semantic similarity despite having no lexical overlap. Unlike the Jaccard index, cosine
similarity remains high as long as the embeddings represent similar meanings.

These metrics are used in RQ1.c to analyze how method name similarity affects LLM

decisions, specifically examining whether high similarity causes non-clone pairs to be mis-
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classified as clones, and whether low similarity causes clone pairs to be misidentified as
non-clones.

Identifier Uniqueness: To evaluate method name uniqueness, we use word frequency
as a metric to distinguish common words (high frequency) from distinctive words (low
frequency). For each method name, we tokenize it into words and compute each word’s
frequency across the entire dataset. The average frequency of these words serves as a
measure of rarity, with lower averages indicating more distinctive names. This metric
is used in RQ1.c to investigate the sensitivity of LLM decisions to identifier distinctive-
ness, specifically analyzing whether method names containing low-frequency words lead

to misclassifications.

4.2 Syntactic Similarity (RQ2)

To evaluate the syntactic similarity of method pairs, we analyze structural similarity
based on Abstract Syntax Trees (ASTs). We use Tree-based Similarity Edit Distance
(TSED) [38] as a metric. TSED leverages the APTED algorithm to calculate the tree edit

distance between AST structures. The TSED score is calculated as follows:

1)
TSED = max {1 - MaxNodes(G1, G2)’ 0}

where J represents the tree edit distance between two ASTs computed using the APTED
algorithm and MaxNodes(G1, G2) represents the maximum number of nodes among the
two ASTs. TSED normalizes this score to express similarity on a scale from 0 to 1, where
values closer to 1 indicate higher similarity. This metric is used in RQ2.a to evaluate how
syntactic similarity levels affect LLM detection accuracy, and in RQ2.b to analyze the

interaction between syntactic similarity and identifier names.

Preliminary Analysis: Dataset Distribution by TSED Prior to our main analy-
sis, we present the distribution of method pairs across various TSED ranges within the
FEMPDataset. As shown in Table 2, the method pairs are divided into four TSED inter-
vals: [0.00, 0.25), [0.25, 0.50), [0.50, 0.75), and [0.75, 1.00]. In RQ2.a, we calculate Recall,
Precision, and F1l-score for each of the four intervals, while in RQ2.b, we examine two
aggregated ranges. This allows us to evaluate the relationship between syntactic similar-
ity and detection performance. The results indicate that clone pairs tend to have higher

syntactic similarity, whereas non-clone pairs tend to have lower syntactic similarity. This

13



categorization enables the analysis of identifier impact across different levels of structural

resemblance in RQ2.

Table 2: Counts of method pairs by TSED range in FEMPDataset

TSED range
[0.00, 0.25) [0.25, 0.50) [0.50, 0.75) [0.75, 1.00]
Clone 48 268 389 637
Non-clone 100 308 239 205
Overall 148 576 628 842

14



5 Empirical Results

We now present our results.

Table 3: Performance Evaluation Results: All Mask vs. No Mask

(a) Fl-score

Model all mask no mask

GPT-4.1 0.88  0.86(—0.02)
Phi-4 0.84 0.83(—0.01)
Gemini-2.5-pro 0.84 0.84(-+0.00)
Gemma-3 0.75 0.81(+0.06)
CodeLlama 0.74 0.70(—0.04)
CodeGemma 0.24 0.15(—0.09)

(b) Recall

Model all mask  no mask

GPT-4.1 0.88 0.88(-+0.00)
Phi-4 0.84  0.82(—0.02)
Gemini-2.5-pro 0.96 0.96(+0.00)
Gemma-3 0.66 0.79(+0.13)
CodeLlama 0.77  0.66(—0.11)
CodeGemma 0.14 0.08(—0.06)

(c) Precision

Model all mask no mask

GPT-4.1 0.87  0.84(—0.03)
Phi-4 0.85 0.85(-+0.00)
Gemini-2.5-pro 0.76 0.74(—0.02)
Gemma-3 0.88 0.82(—0.06)
CodeLlama 0.71 0.75(+0.04)
CodeGemma 0.92 0.94(-+0.02)

Note: The column all mask is the baseline. For no mask, each value shows the score, and the value in

parentheses indicates the difference from the all-mask score for the same model.
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5.1 RQ1: How do identifiers impact LLM-based clone detection?

We now present the approach and results for RQ1 broken into three sub-research ques-

tions.

RQ1l.a: How does masking identifier names affect the accuracy of LLM-based
code clone detection? To evaluate the impact of identifier names on clone detection
performance, we compare Recall, Precision, and F1l-score under two distinct conditions:
no mask (preserving all identifiers) and all mask (masking all identifiers). Specifically, we
calculate the performance difference (Ascore = scorep, mask — SCOreal mask) to quantify the
extent to which identifier names influence performance. Using all mask as the baseline, an
improvement under no mask suggests a positive influence from identifier names, whereas

a performance decrease indicates a negative influence.

Results As shown in Table 3, identifier names are not essential for Type-4 clone detec-
tion and can even negatively affect performance.

For Recall, only Gemma-3 exhibited a noticeable improvement (ARecall = 40.13) when
identifier names were preserved. In contrast, all other models showed either no change or a
decrease: GPT-4.1 (40.00), Gemini-2.5-pro (+0.00), Phi-4 (—0.02), CodeLlama (—0.11),
and CodeGemma (—0.06). These results indicate that, with the exception of Gemma-3,
preserving identifier names did not enhance the models’ ability to correctly identify true
clone pairs and, in some cases, even reduced it.

For Precision, performance trends varied across models when identifier names were
preserved, with no consistent pattern emerging. Three models showed decreases: GPT-
4.1 (APrecision = —0.03), Gemini-2.5-pro (—0.02), and Gemma-3 (—0.06); in contrast,
three models showed either no change or increases: Phi-4 (+0.00), CodeGemma (+0.02),
and CodeLlama (+0.04). These results indicate that the influence of identifier names on
the ability to reduce false positives is inconsistent across models.

For Fl-score, only Gemma-3 (AF1-score = +0.06) showed improvement when identifier
names were preserved, and Gemini-2.5-pro (4+0.00) showed no change. All other models
showed decreases: GPT-4.1 (AF1-score = —0.02), Phi-4 (—0.01), CodeLlama (—0.04),
and CodeGemma (—0.09). These results indicate that preserving identifier names fails
to enhance overall detection performance for most models and often leads to a slight

degradation.
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RQ1.b: Among method names, parameter names, and variable names, which
type of identifier has the greatest impact on LLM decisions? To evaluate the
individual impact of each identifier type, we employed all mask (in which all identi-
fiers are removed) as the baseline. We then compared this baseline with three mask-
ing patterns designed to isolate specific identifier categories: MA mask (variable names
only), MV mask (method argument names only), and AV mask (method names only).
For Recall, Precision, and Fl-score, we computed performance differences (difference =
score(AV / MV / MA mask)—score(all mask)) in order to assess the impact of each iden-

tifier type on clone detection performance.

Results Asshown in Table 4, variable names generally preserve or slightly enhance clone
detection performance, whereas method names often adversely affect it.

For the MA mask (variable names only), Recall showed increases in three models: Phi-4
(ARecall = 40.04), Gemma-3 (40.07), and CodeLlama (+0.04), with most other models
showing no change or slight decreases. Precision showed only small changes across all mod-
els: GPT-4.1 (APrecision = —0.02), Gemini-2.5-pro (40.00), and CodeLlama (+0.02).
For F1-score, most models showed no change or increases: GPT-4.1 (AF1-score = +0.00),
Gemini-2.5-pro (+0.00), Phi-4 (+0.02), Gemma-3 (40.04), and CodeLlama (+0.01), with
only CodeGemma (—0.01) showing a slight decrease. These results indicate that variable
names improve overall classification performance by increasing recall while maintaining
precision, suggesting they help mitigate false negatives without introducing additional
false positives.

For the MV mask (method argument names only), Recall showed mixed results with
no consistent trend: increases in Gemma-3 (ARecall = +0.10) and GPT-4.1 (+0.02),
but decreases in CodeLlama (—0.08) and CodeGemma (—0.03). Precision showed small
changes across all models: GPT-4.1 (APrecision = —0.02), Gemma-3 (—0.03), and CodeL-
lama (+0.02). For Fl-score, results varied across models with increases in Gemma-3
(AF1-score = +0.05) and Gemini-2.5-pro (+0.01), but decreases in GPT-4.1 (—0.01),
CodeLlama (—0.03), and CodeGemma (—0.05). These results indicate that method ar-
gument names show inconsistent effects across models, with no unified trend in recall,
precision, or overall detection performance.

For the AV mask (method names only), Recall showed decreases in Phi-4 (ARecall =
—0.04), CodeLlama (—0.10), and CodeGemma (—0.02), no change in GPT-4.1 (40.00) and

Gemini-2.5-pro (+0.00), and an increase in Gemma-3 (+0.07). Precision showed decreases

17



in multiple models: GPT-4.1 (APrecision = —0.04), Phi-4 (—0.02), and Gemma-3 (—0.06).
For Fl-score, four of six models showed decreases: GPT-4.1 (AF1-score = —0.02), Phi-

Table 4: Performance Evaluation Results: All Mask vs. MA Mask, MV Mask, AV Mask

(a) Fl-score

Model all mask ~ MA mask MV mask AV mask

GPT-4.1 0.88 0.88(-++0.00) 0.87(—0.01) 0.86(—0.02)
Phi-4 0.84 0.86(+0.02) 0.85(40.01) 0.81(—0.03)
Gemini-2.5-pro 0.84 0.84(+0.00)  0.85(40.01) 0.84(+0.00)
Gemma-3 0.75 0.79(+0.04)  0.80(+0.05) 0.77(+0.02)
CodeLlama 0.74 0.75(+0.01)  0.71(—0.03) 0.70(—0.04)
CodeGemma 0.24 0.23(—0.01) 0.19(—0.05) 0.21(—0.03)

(b) Recall

Model all mask  MA mask MYV mask AV mask

GPT-4.1 0.88 0.88(++0.00) 0.90(+0.02) 0.88(+0.00)
Phi-4 0.84 0.88(+0.04) 0.85(+0.01) 0.80(—0.04)
Gemini-2.5-pro 0.96 0.96(-+0.00)  0.96(+0.00) 0.96(+0.00)
Gemma-3 0.66 0.73(+0.07)  0.76(+0.10) 0.73(40.07)
CodeLlama 0.77 0.81(+0.04) 0.69(—0.08) 0.67(—0.10)
CodeGemma 0.14 0.13(—0.01) 0.11(—0.03) 0.12(—0.02)

(¢) Precision

Model all mask ~ MA mask MV mask AV mask

GPT-4.1 0.87 0.87(-+0.00)  0.85(—0.02) 0.83(—0.04)
Phi-4 0.85 0.84(—0.01) 0.84(—0.01) 0.83(—0.02)
Gemini-2.5-pro 0.76 0.75(—0.01) 0.76(+0.00) 0.75(—0.01)
Gemma-3 0.88 0.86(—0.02) 0.85(—0.03) 0.82(—0.06)
CodeLlama 0.71 0.71(+0.00)  0.73(+0.02) 0.73(+0.02)
CodeGemma 0.92 0.94(+0.02)  0.90(—0.02) 0.94(+0.02)

Note: The column all mask is the baseline. For MA/MV /AV mask, each value shows the score, and the

value in parentheses indicates the difference from the all-mask score for the same model.

18



4 (—0.03), CodeLlama (—0.04), and CodeGemma (—0.03), with Gemini-2.5-pro showing
no change and only Gemma-3 showing improvement (+0.02). These results indicate that
method names consistently degrade detection performance across both recall and precision,

representing the most negative impact among all identifier types.

RQ1l.c: How do the lexical and semantic similarities of method names affect
LLM decisions in code clone detection? To investigate how method names influence
clone detection, we analyze GPT-4.1 and Phi-4 by comparing their predictions under
all mask (baseline with all identifiers removed) and AV mask (with only method names
preserved).

First, we classify prediction changes from all mask to AV mask into four patterns:
maintained correct (predictions remain correct), changed to incorrect (predictions become
wrong), maintained incorrect (predictions remain wrong), and changed to correct (predic-
tions are corrected by method names). As shown in Table 5, we record the number of
method pairs for each pattern. In particular, the number of pairs that were incorrectly
classified as clones is greater than the number of pairs that were correctly classified as non-
clones, indicating that the LLM is misclassifying non-clone pairs as clone pairs, leading to
performance degradation.

Second, for each of the eight patterns (four change types for clone pairs and four for non-

clone pairs), we compute three similarity metrics—Jaccard index (lexical similarity), cosine

Table 5: Number of method pairs for each judgment change from all mask to AV mask

(GPT-4.1 and Phi-4).

Judgment Change Number of pairs
Pair Type Change Type
(all mask—AV mask) GPT-4.1 Phi-4
Maintained correct TP—TP 1,142 1,047
Changed to incorrect TP—FN 41 84
Clone
Maintained incorrect FN—FN 117 185
Changed to correct FN—-TP 42 26
Maintained correct TN—TN 583 583
Changed to incorrect TN—FP 94 62
Non-clone
Maintained incorrect FP—FP 141 165
Changed to correct FP—TN 34 42
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Figure 4: Heatmaps showing the Averaged Jaccard Index for judgment changes from all
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Figure 5: Heatmaps showing the Averaged Cosine Similarity for judgment changes from

all mask to AV mask.

similarity (semantic similarity), and word frequency—to characterize method names. We

then analyze how these metrics relate to prediction changes.

Results We analyze how method name characteristics influence prediction changes when
method names are added to the baseline (all mask — AV mask) from two perspectives:
method name similarity and word frequency.

We present our analysis from two complementary perspectives: method-name similarity
(as measured by cosine similarity and Jaccard index) and method-name uniqueness (as
captured by the word-frequency metric).

For method name similarity, as shown in Figs. 4 and 5, low similarity in clone pairs
causes correct predictions to become incorrect, while high similarity in non-clone pairs
causes misclassification as clones.

First, for clone pairs, we examine whether dissimilar method names lead to incorrect pre-
dictions by comparing pairs whose predictions changed from correct to incorrect (TP—FN)

with pairs that maintained correct predictions (TP—TP). In terms of Jaccard index, the
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average lexical similarity for pairs that became misclassified (TP—FN: GPT-4.1 = 0.33,
Phi-4 = 0.32) is substantially lower than that for pairs that remained correctly classified
(TP—TP: GPT-4.1 = 0.48, Phi-4 = 0.50). Cosine similarity shows the same pattern, with
pairs that became misclassified showing lower semantic similarity than those that remained
correctly classified. This indicates that when clone pairs have dissimilar method names,
correct predictions tend to be overturned, leading to incorrect predictions. In contrast, we
examine whether similar method names help correct misclassifications by comparing pairs
whose predictions changed from incorrect to correct (FN—TP) with pairs that remained
misclassified (FN—FN). However, no clear trend was observed in terms of either Jaccard
index or cosine similarity between these two groups.

Second, for non-clone pairs, we examine whether similar method names lead to incor-
rect predictions by comparing pairs whose predictions changed from correct to incorrect
(TN—FP) with pairs that maintained correct predictions (TN—TN). In terms of Jac-
card index, the average lexical similarity for pairs that became misclassified (TN—FP:
GPT-4.1 = 0.34, Phi-4 = 0.34) is higher than that for pairs that remained correctly classi-
fied (TN—TN: GPT-4.1 = 0.27, Phi-4 = 0.27). Cosine similarity shows the same pattern,
with pairs that became misclassified showing higher semantic similarity than those that re-
mained correctly classified. This indicates that when non-clone pairs have similar method
names, correct predictions tend to be overturned, leading to incorrect predictions. In
contrast, we examine whether dissimilar method names help correct misclassifications by
comparing pairs whose predictions changed from incorrect to correct (FP—TN) with pairs
that remained misclassified (FP—FP). In terms of Jaccard index, pairs that became cor-
rectly classified (FP—TN: GPT-4.1 = 0.30, Phi-4 = 0.31) show lower lexical similarity
than pairs that remained misclassified (FP—FP: GPT-4.1 = 0.44, Phi-4 = 0.45). This
indicates that dissimilar method names help correct misclassifications for non-clone pairs.

For method name uniqueness, as shown in Fig. 6, while some trends are observed re-
garding distinctive (low-frequency) words, no consistent pattern emerges indicating that
uniqueness strongly influences clone detection.

First, for clone pairs, we examine whether distinctive (low-frequency) method names
lead to incorrect predictions by comparing pairs whose predictions changed from correct to
incorrect (TP—FN) with pairs that maintained correct predictions (TP—TP). However,
no consistent pattern was observed in the average word frequency between these two
groups. In contrast, we examine whether distinctive (low-frequency) method names help

correct misclassifications by comparing pairs whose predictions changed from incorrect to
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Figure 6: Heatmaps showing the Averaged Word Frequency for judgment changes from
all mask to AV mask.

correct (FN—TP) with pairs that remained misclassified (FN—FN). The average word
frequency for pairs that became correctly classified (FN—TP: GPT-4.1 = 106.80, Phi-
4 = 100.79) is lower (more distinctive) than that for pairs that remained misclassified
(FN—FN: GPT-4.1 = 129.56, Phi-4 = 135.71). This suggests that distinctive method
names may help correct misclassifications for clone pairs.

Second, for non-clone pairs, we examine whether distinctive (low-frequency) method
names lead to incorrect predictions by comparing pairs whose predictions changed from
correct to incorrect (TN—FP) with pairs that maintained correct predictions (TN—TN).
The average word frequency for pairs that became misclassified (TN—FP: GPT-4.1 =
67.05, Phi-4 = 88.93) is lower (more distinctive) than that for pairs that remained correctly
classified (TN—TN: GPT-4.1 = 102.87, Phi-4 = 99.23). This indicates that when non-
clone pairs have distinctive method names, correct predictions tend to be overturned, lead-
ing to incorrect predictions. In contrast, we examine whether distinctive (low-frequency)
method names help correct misclassifications by comparing pairs whose predictions changed
from incorrect to correct (FP—TN) with pairs that remained misclassified (FP—FP).
However, no consistent pattern was observed in the average word frequency between these
two groups.

Based on these results, we can draw the following conclusion for RQ1.
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Answer to RQ1

We break our answer into three sub-questions

e (RQl.a) Identifier names are not essential for Type-4 clone detection and may

even have a negative impact.

e (RQL.b) Variable names maintain or slightly improve clone detection perfor-

mance. Method names may adversely affect clone detection performance.

e (RQ1.c) The lexical and semantic similarity of method names has a significant
influence on clone detection using LLMs. Low method name similarity leads to
incorrect predictions in non-clone pairs and LLMs’ performance degradation

in clone detection.

5.2 RQ2: How does syntactic similarity impact LLM-based clone detection?

We now present the approach and results for RQ2 broken into two sub-research ques-

tions.

RQ2.a: How does syntactic similarity affect LLM decisions in code clone de-
tection?” We evaluate clone detection performance based solely on syntactic structure
using the all mask pattern, in which all identifiers are masked. To observe performance
differences across varying degrees of syntactic similarity, we divided the 0—1 range of TSED
into four equal-width intervals (0.00-0.25, 0.25-0.50, 0.50-0.75, and 0.75-1.00). The num-
ber of clone and non-clone pairs in each interval is presented in Table 2. For each TSED
interval, we compared the LLMs predictions with the ground-truth labels and computed

precision, recall, and F'1-score.

Results As shown in Fig. 7, syntactic similarity significantly affects clone detection
performance, with lower TSED values (lower syntactic similarity) consistently leading to
reduced detection accuracy across all models.

A similar trend was observed for recall and precision: method pairs with lower TSED
values generally exhibited lower recall and precision. Specifically, for low-TSED pairs,
the drop in recall was more pronounced than the drop in precision. For example, in
GPT-4.1, the precision difference between the TSED ranges 0.00-0.25 and 0.75-1.00 is
approximately 0.13, while the recall difference is about 0.19. These findings indicate that
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clone pairs with low syntactic similarity tend to be more difficult for LLMs to detect. In

particular, many low-similarity clone pairs are missed, indicating that correctly identifying
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such pairs is difficult for current LLMs.

In particular, Gemma-3, CodeLlama, and CodeGemma struggled to detect low-similarity
method pairs compared with high-similarity ones. The F1l-scores showed a difference of
about 0.4 between the 0.00-0.25 and 0.75-1.00 TSED ranges, with the low-TSED range
performing substantially worse. In contrast, Gemini-2.5-pro maintained consistently high

detection performance even in the lowest TSED range, indicating greater robustness to

variations in syntactic similarity.
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RQ2.b: How do syntactic similarity and identifier names jointly affect LLM-
based code clone detection? We analyze the combined effect of syntactic similar-
ity (TSED) and identifier masking patterns on LLMs’ clone detection decisions. Based
on their TSED values, method pairs are classified into two groups: Low-TSED, repre-
senting pairs exhibiting large syntactic differences, and High-TSED, representing pairs
exhibiting small syntactic differences. For each group, we compute the performance
difference between the all mask baseline and other masking patterns (differenceA =
score(masking pattern) — score(all mask)) for Recall, Precision, and F1-score to evaluate
how identifier types affect detection performance at different levels of syntactic similarity.
We compare the performance differences between Low-TSED and High-TSED across all

24 model-masking pattern combinations (6 models x 4 masking patterns).

Results As shown in Fig. 8, identifier names have a substantially greater impact on
clone detection performance when syntactic similarity is low compared to when it is high.

For Fl-score, 13 out of 24 combinations (54%) show stronger identifier influences in
Low-TSED than in High-TSED, while 6 combinations (25%) show the opposite, and 5
combinations (21%) show equal influences. In Low-TSED, MA mask (variable names)
tends to improve performance (e.g., Phi-4: AF1-score = +0.04, Gemma-3: +0.07), while
AV mask (method names) tends to decrease it (e.g., Phi-4: AF1l-score = —0.05, CodeL-
lama: —0.05), aligning with RQ1.b.

For Recall, this pattern is even stronger: 15 out of 24 combinations (62%) show stronger
influences in Low-TSED, while only 6 combinations (25%) show stronger influences in
High-TSED. For Precision, a similar pattern is observed: 14 out of 24 combinations (58%)
show stronger influences in Low-TSED, while only 6 combinations (25%) show stronger
influences in High-TSED.

These results indicate that when syntactic similarity is low, identifier names have sub-
stantial impact on clone detection performance and the choice of identifier type becomes
critical, but when syntactic similarity is high, identifier information provides limited ad-
ditional value regardless of type.

Based on these results, we can draw the following conclusion for RQ2.
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Figure 8: Heatmaps showing the relationship between syntactic similarity (TSED) and
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identifier masking patterns for F1-score, Precision, and Recall.

Note: The values are the performance differencesA of each masking pattern from the all-mask baseline.
The masking patterns are abbreviated as no (no mask), AV (AV mask), MV (MV mask), and MA (MA

mask).
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Answer to RQ2

We summarize the answers to RQs by two sub-research questions:

e (RQ2.a) - Method pairs with lower syntactic similarity (TSED) tend to show

reduced clone detection accuracy.

e (RQ2.b) - Low syntactic similarity increases the impact of identifier names on

clone detection, while high syntactic similarity reduces it.
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6 Discussion

Building on the findings of RQ1 and RQ2, we discuss LLMs’ dependence on identifiers

and the influence of syntactic similarity on their clone detection performance.

6.1 Dependency of LLMs on Identifiers in Clone Detection

Based on the findings of RQ1 (RQl.a-RQ1.c), we confirmed that identifiers (method
names, argument names, and variable names) affect the clone detection decisions of LLMs.
For method names in particular, several models showed indications of performance decline
when method names were retained, with modest decreases in F1-score observed under the
AV mask pattern. This suggests that, for the models evaluated in this study, method
names did not consistently provide beneficial information for clone detection.

In contrast, for variable names, we did not observe any substantial performance degra-
dation when they were retained instead of masked. Several models, including Phi-4,
Gemma-3, and CodeLlama, even showed improvements in recall and F1l-score, suggest-
ing that variable names may provide useful auxiliary signals for clone classification.

These findings indicate that LLMs rely on identifiers as part of their process of making
decisions. However, the manner in which identifiers contribute appears to differ substan-
tially depending on their type. Because method names often contain words describing
functionality, non-clone pairs whose method names are lexically or semantically similar
may be misclassified as clones. By contrast, variable names tend to provide localized cues
about the operational details within a method and are therefore less likely than method
names to induce misclassifications.

It is important to note that these interpretations are based solely on observed model
behavior, as we do not directly analyze how identifiers influence the internal represen-
tations of LLMs. Nevertheless, within the scope of this study, retaining method names
rarely improved clone detection, while retaining variable names generally maintained or
improved performance. Therefore, from a practical perspective, masking method names

may serve as an effective strategy for improving detection accuracy.

6.2 Influence of Syntactic Similarity in Clone Detection

Based on the results of RQ2.a, we confirmed that low syntactic similarity method pairs
were consistently difficult to detect across all models. This trend aligns with the well-

known challenges of Type-4 clone detection. It suggests that differences in structural
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information can also reduce detection accuracy in LLM-based clone detection.
Furthermore, the results of RQ2.b indicate that the influence of identifiers becomes more
pronounced when syntactic similarity is low. These observations suggest that when struc-
tural cues are weak, LLMs tend to rely more heavily on identifier information. In contrast,
when TSED is high, the performance differences between masking and non-masking con-
ditions are small. This implies that, when structural information is strong, LLLMs may be
able to make decisions without depending excessively on identifiers. Although the magni-
tude of these effects varies across models, the overall pattern is consistent. For pairs with
low syntactic similarity, how identifier information is handled has a substantial impact on

detection accuracy.

6.3 Differences in LLM Behavior

A comparison of the six models evaluated in this study reveals that, although there are
commonalities in how identifiers influence performance, each model also exhibits distinct
behavior. First, in many models (GPT-4.1, Phi-4, CodelLlama, and CodeGemma), re-
taining method names under the AV mask led to a decrease in Fl-score, indicating that
method names often contribute to misclassifications. However, this trend did not apply
uniformly across all models. In the case of Gemma-3, retaining method names improved
both Recall and F1-score, making it one of the few models for which method names pro-
vided a beneficial signal. This suggests that the impact of identifiers on clone detection
depends on the characteristics of a model * s learned internal representations. In con-
trast, no model showed a substantial decrease in performance when variable names were
retained. For several models, such as Phi-4 and Gemma-3, Recall even improved. These
results indicate that variable names may serve as localized cues about a method ’ s internal
behavior. They can be particularly helpful as supplementary information for method pairs
with low syntactic similarity.

Gemini-2.5-pro exhibited the smallest performance variation across masking conditions,
showing stable performance without relying heavily on either structural or identifier in-
formation. By contrast, CodeLlama and CodeGemma showed large drops in Recall in
Low-TSED ranges. This suggests that these models struggle when the structural infor-
mation in the code is weak. Overall, although there are model-dependent differences in
how identifiers affect detection, variable names rarely introduce negative effects and often
provide modest benefits. In contrast, method names tend to degrade performance in many

models, although exceptions such as Gemma-3-27B-it exist. These findings indicate that
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the handling of identifiers should be tailored to the characteristics of each model.
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7 Threats to Validity

Limitations This study has several limitations concerning the interpretation of its re-
sults and the scope of the analysis. First, the influence of identifiers and structural in-
formation on LLM judgments cannot be completely separated. Although we attempted
to disentangle these effects through masking schemes and AST-based similarity metrics,
LLMs process identifiers and structural features simultaneously as token sequences. There-
fore, there are inherent limitations in evaluating them as independent factors. Second, the
internal representations and reasoning processes of LLMs are not directly observable. As
a result, we cannot causally explain the specific internal mechanisms that give rise to
the observed performance differences. Finally, the vocabulary distribution of identifiers
depends on the dataset. Thus, the trends observed in this study, such as frequent words
providing weaker cues and rare words increasing misclassification risk, may be partially
influenced by lexical biases specific to the dataset. These effects may not reflect universal
properties of LLMs.
We now discuss threats to the validity of this study.

Internal Validity In this study, we employed a masking approach that replaces iden-
tifier names with predefined tokens: method names with “METHOD” | method argument
names with “METHODPARAMETERX”, and variable names with “VARIABLEX”. How-
ever, our masking strategy is not the only possible one. Prior studies have used alternative
techniques, such as replacing identifiers with random strings or shuffling identifier names.
Therefore, the results of this study depend on the specific token-replacement strategy
used, and different masking methods may lead to different outcomes. Furthermore, our
analysis focuses on method name similarity. However, the overall structure and syntactic
similarity of the methods could also influence classification outcomes. As shown in RQ2.b,
pairs with low syntactic similarity rely strongly on identifier names, making it difficult to
completely disentangle the effect of identifiers from other factors.

FEMPDataset is a high-quality benchmark in which functional equivalence is verified
through mutual execution of test cases and subsequently reviewed by three experts. How-
ever, the dataset mainly consists of relatively simple Java methods for which such tests can
be automatically generated. As a result, it may not fully capture the diversity found in
real-world code. Future work should evaluate the models on more complex, multi-layered

systems to confirm whether the identified trends hold true. Consequently, our conclusions
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are inherently tied to the characteristics of this dataset and may not fully reflect how

LLMs behave on complex and diverse real-world codebases.

External Validity This study focuses on a specific dataset of Java code pairs and tar-
gets Type-4 clones with functional equivalence. Therefore, our findings may not be directly
generalizable to other programming languages (C++, Python, JavaScript, etc.), different
domains, or datasets of different scales. Our evaluation is limited to six models available as
of June 2025: GPT-4.1, Phi-4, Gemini-2.5-pro, Gemma-3-27b-it, CodeLlama-7B-Instruct,
and CodeGemma-7b-it. The degree to which LLMs rely on identifier information varies
depending on their architectures and training data, and is likely to change further as
the technology continues to advance. In particular, earlier domain-specific models such
as CodeLlama-7B-Instruct and CodeGemma-7b-it exhibited lower detection performance
compared with the more recent general-purpose models. Accordingly, the conclusions
drawn in this study are constrained by the capabilities of the specific models available at
the time of evaluation. Moreover, the prompts used for inference followed a single fixed
format: a message in the system role specifying the answer format and a message in the
user role containing the method pair and the classification request. LLMs’ performance
is known to be highly sensitive to prompt formulation. Alternative prompt structures or
instruction styles may yield different outcomes. Moreover, the use of techniques such as

chain-of-thought prompting [44] or few-shot prompting [7] may also yield different results.
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8 Related Work

In this section, we describe related work of this study.

8.1 Challenges for Code Clone Detectors

A code clone is defined as a code fragment that is identical or similar to another fragment
[32]. A pair of code fragments forming a code clone is called a clone pair. It is well known
that large-scale software systems contain a substantial number of code clones. Roy et
al.[32] investigated numerous industrial projects and reported that approximately 20-30%
of the code in these systems consists of clones. Similarly, Juergens et al.[19] found that
commercial systems also contain a significant amount of cloned code. There are various
reasons why code clones are created. Clones are often introduced through copy-and-
paste practices, where developers duplicate existing code and apply local modifications
[22, 32, 24]. This is often considered a pragmatic choice because reusing and modifying
existing code requires less implementation effort. Clones may also arise when similar
functionality is reimplemented independently within a large system [45, 32, 24]. In such
cases, developers fail to locate reusable code, for example because of insufficient code
search capabilities. As a result, they reimplement the same functionality, which leads to
unintentional cloning.

Whether clones are harmful remains a subject of discussion. It has been reported that
clones may be introduced intentionally to improve performance or maintainability in cer-
tain contexts [22, 32]. However, numerous studies have shown that clones can adversely
affect system quality and maintainability. Because clones often require consistent modifi-
cation, inconsistent updates can lead to defects caused by missed or partial changes [26].
Clones have also been shown to increase the likelihood of leaving vulnerabilities untreated
[23]. Several empirical studies on commercial and open-source systems report real cases in
which clones contributed to system failures [19]. Even when defects do not appear imme-
diately, clones accumulate as long-term technical debt [8]. As a result, maintenance costs
increase because developers must modify multiple locations when changes are required.

Many studies on code clone detection have primarily relied on lexical or syntactic sim-
ilarity to extract clones. Static analysis approaches based on tokenization and lexical
normalization are fast and perform well at detecting Type-1 and Type-2 clones. Represen-
tative tools include CCFinder [20], NiCad [33], NIL [28], and SourcererCC [37]. However,

because these approaches rely heavily on token-sequence matching, their accuracy de-
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grades substantially for Type-4 clones, where control structures or the order of statements
differ. To capture code structure more directly, approaches based on abstract syntax trees
(ASTs) have been proposed. Representative tools include Deckard [18]. They use subtree
structures to capture structural similarities beyond lexical differences. However, detecting
code that implements the same functionality using entirely different syntactic structures
or control constructs remains challenging.

Subsequently, machine learning—based methods tailored to Type-4 clone detection, such
as Oreo [36], ASTNN [46], and GMN [41] have been proposed. These methods treat ASTs
and code metrics as features and have demonstrated high accuracy in detecting Type-
4 clones. Because Type-4 clones are syntactically different yet functionally equivalent,
static-analysis tools using lexical or syntactic similarity often struggle to detect them.
Therefore, the detection of Type-4 clones requires the capability to capture semantic

equivalence beyond surface-level lexical and syntactic similarities.

8.2 Code Clone Detection with LLMs

Research on models for semantic understanding of source code has advanced rapidly
since the advent of the Transformer architecture [40]. Transformer-based models can cap-
ture long-range dependencies through self-attention. They can also represent programs as
embeddings. Leveraging these properties, numerous large-scale pretrained models special-
ized for code, or trained jointly on code and natural language, have been proposed. Rep-
resentative code-specific models include CodeBERT [11], CodeT5 [42], and PLBART [2].
All of these models are built on Transformer architectures and acquire capabilities for
code understanding and generation through pretraining on large corpora of source code
and natural language. Subsequently, general-purpose large language models (LLMs), with
substantially expanded pretraining scales and data diversity, have emerged and been ap-
plied to code understanding tasks. LLMs such as GPT-4 [30] and Gemini [12] have been
trained on text corpora containing substantial amounts of code and are capable of han-
dling a variety of tasks, including clone detection. In addition, many LLMs that can
run locally have been proposed, including Gemma-3 [13], Phi-4 [1], CodeLlama [35], and
CodeGemma [10].

Research using LLMs has been rapidly expanding, with active work in programming-
related areas such as clone detection [21, 6, 27] and code generation [9, 29]. These models
have been shown to achieve high accuracy in detecting Type-4 clones, which is an area

where conventional methods have struggled [47]. However, it is not well understood what
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types of information LLMs rely on when detecting clones. LLMs are influenced by various
factors, including identifier names, syntactic structures, token-level patterns, and patterns
present in their training data. However, the extent to which each factor contributes
to model predictions remains unclear. In particular, it remains unclear to what extent
identifier names and syntactic structures influence model performance in clone detection.
This lack of transparency in the model’s decision process means that even small differences
in the input code may lead to unexpected variations in predictions.

In our previous work [17], we improved the accuracy of LLM-based code clone de-
tection by fine-tuning models on FEMPDataset. We fine-tuned the following models:
gpt-3.5-turbo, Llama2-Chat-7B, and CodeLlama-7B-Instruct For fine-tuning, we used
the OpenAl API and applied the LoRA [16] and ZeRO [31] techniques. Fine-tuning im-
proved accuracy for all models, with CodeLlama-7B-Instruct (a model specialized for
code processing) showing the largest gain.

Consistent with the studies introduced in Section ?7?, this work shows that LLMs are
effective for Type-4 clone detection and that their accuracy improves with additional
training. It further demonstrates that the magnitude of improvement varies across models,
depending on their underlying characteristics. However, the reasons underlying LLMs ’
ability to detect clones, as well as the specific factors on which their judgments rely, remain
unclear.

One notable study on LLM-based code clone detection is that of Almatrafi et al. [6].
They applied few-shot instruction tuning to GPT-4 and GPT-3.5-turbo models, achieving
higher clone-detection accuracy. They trained on 100 examples from BigCloneBench [39]

and evaluated on 2,000 examples from the same benchmark.

Research on identifiers and syntactic similarity This section discusses studies that
investigate how LLMs are influenced by identifiers and syntactic similarity. Wang et
al. [43] evaluated the impact of anonymizing variable and method names in code search
and code clone detection tasks using the pretrained model GraphCodeBERT [43]. In
their experiments, they created anonymized datasets by replacing or shuffling identifier
names with random strings. The model was then fine-tuned on these datasets, and its
performance was evaluated on both tasks. As a result, the performance in the code search
task dropped significantly after anonymization. For the clone detection task, the F1 score
decreased from 94.87 to 84.76 at most. These findings suggest that while identifier names

are important elements for LLMs, their impact on code clone detection is relatively limited.
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The study by Wang et al. demonstrates that identifier names play a certain beneficial
role in LLM-based clone detection. In this study, we extend this work and evaluate
how identifier names and syntactic structure influence clone detection accuracy in larger
LLMs. We also assess how syntactic structure, beyond identifier names, influences the
clone detection process. By examining these two perspectives, we provide a comprehensive
analysis of the factors that LLMs rely on when making clone detection decisions. Zhang et
al. measured the accuracy of clone detection across Types 1-4 using GPT-3.5 and GPT-4.
Their results indicated a correlation between model accuracy in clone detection and the
degree of code similarity. For highly similar Type-1 clones, both models achieved a recall
of 1.00. However, for the most complex Type-4 clones with less than 50% similarity, both
models performed poorly. GPT-4 achieved a recall of 0.23 and GPT-3.5 achieved only
0.07.

8.3 Datasets for Clone Detection

There are several datasets that are used as benchmarks for clone research.

BigCloneBench BigCloneBench is a code clone detection benchmark created by Sva-
jlenko et al. BigCloneBench extracts clone pairs by grouping methods that implement
one of 45 tasks (e.g., file copying, bubble sort). This benchmark covers clone Type-1 to
Type-4 and is often used to evaluate code clone detection tools. However, its suitability for
training machine learning models is questionable due to potential biases and inconsistent

labels [25].

SemanticCloneBench SemanticCloneBench [3] is a Type-4 clone dataset extracted
from Stack Overflow, a programming Q&A site. Two judges manually verified each clone

pair, and the dataset was assembled from their annotations.

GPTCloneBench GPTCloneBench [4] is a new Type-4 clone dataset created using
gpt-3 based on the SemanticCloneBench dataset. Six judges reviewed the generated pairs,
and the final dataset reflects their consensus. GPTCloneBench substantially extends Se-
manticCloneBench and contains approximately 77,000 samples, making it a promising
candidate for use as training data in machine-learning-based approaches. However, be-
cause this dataset is generated using GPT, prior work has pointed out that such data may

differ from datasets collected from real-world programs and may be easier for LLMs to de-
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tect [5]. Moreover, although the dataset is augmented by generating additional programs
with LLMs trained on real code, there is no guarantee that the generated programs reflect
the characteristics of real-world code. This raises concerns about the suitability of this

dataset for reliably evaluating LLM performance.

FEMPDataset FEMPDataset [14] is a collection of method pairs that are structurally
different but functionally equivalent. This corresponds to Type-4 clones. These method
pairs exhibit little syntactic similarity but perform the same function. The dataset was
constructed in two stages: first by identifying candidate method pairs through cross-
executing test cases, and then by confirming truly equivalent pairs through visual in-
spection. Unlike the three datasets mentioned above, FEMPDataset ensures functional
equivalence by cross-executing test cases and expert review by three specialists. We use
this dataset in our study because each method pair included in FEMPDataset is guaran-

teed to be functionally equivalent.

37



9 Conclusion

In this study, we systematically analyzed the impact of identifier names on the accuracy
of code clone detection using LLMs. By evaluating the performance of six LLMs (GPT-
4.1, Phi-4, Gemini-2.5-pro, Gemma-3-27b-it, CodeLlama-7B-Instruct, and CodeGemma-
7b-it) on a dataset with masked identifiers from FEMPDataset, we obtained the following
findings. For many models, clone detection performance was maintained or even improved
when identifier names were masked. Furthermore, in high-performance models (GPT-4.1,
Phi-4), the lowest performance occurred with the masking pattern that left only method
names unmasked, demonstrating the strong influence of method names on clone detection.
Our detailed analysis of GPT-4.1 and Phi-4 showed that both models rely on the lexical
and semantic similarity of method names. The misclassification of non-clone pairs with
high method name similarity remains a major issue. In contrast, the influence of word
frequency on method name misclassifications was inconsistent and limited.

Regarding syntactic similarity, our analysis revealed that method pairs with lower syn-
tactic similarity are more difficult to detect. In particular, models with fewer parameters
(Gemma-3, CodeLlama, CodeGemma) struggle to detect pairs with low syntactic similar-
ity, with Fl-scores decreasing by approximately 0.4 compared to pairs with high syntactic
similarity. In contrast, Gemini-2.5-pro maintains high detection accuracy even for data
in the lowest syntactic similarity range, demonstrating robustness to syntactic similar-
ity. Our analysis of the relationship between syntactic similarity and identifier names
showed that identifier names have a greater impact on pairs with low syntactic similarity.
In particular, retaining variable names improved performance in multiple models (Phi-4,
Gemma, CodeLlama). This suggests that for pairs with low syntactic similarity, variable
names play a complementary role in providing structural information. On the other hand,
for pairs with high syntactic similarity, the performance difference due to the presence or
absence of identifiers is small, and most models are robust to identifier names. Future
research topics include developing selective masking processes using word frequency and

extending our work to other programming languages.
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