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内容梗概

ソフトウェア開発において，コピーアンドペースト等によって生じる互いに類似したコー
ド片であるコードクローンは，ソフトウェアの保守性を低下させる要因の一つである．コー
ドクローンに対してバグ修正や機能追加等の編集を行う際は，類似するすべてのコードク
ローンに対して一貫して編集する必要がある．ここでコードクローンを見落としてしまう
と，編集に一貫性が無くなり，不整合が生じる．この不整合は，バグの修正漏れや，不十分
な機能追加による新たなバグを生む原因となる．
このような問題を解決する手法にコードクローンのリファクタリングがある．コードク

ローンを一箇所に集約すると，一貫した編集に失敗するリスクを排除できる．コードクロー
ンのリファクタリングの有効性についてはさまざまな議論がある．ソースコード中に残存し
ているコードクローンに施される編集の少なさを根拠に，コードクローンを積極的にリファ
クタリングする必要はないとする意見もある．リファクタリングされずに残存しているコー
ドクローンや，リファクタリングの直前，直後にのみ注目した研究は複数見られる一方で，
リファクタリングによって集約されたソースコードが経験する編集を長期的に観察した研究
は見られない．
本研究では，コードクローンを集約するリファクタリングの有効性を評価するため，集

約されたコードクローンのその後の編集履歴を追跡し，調査した．GitHubで管理された 77

件のオープンソースプロジェクトのリファクタリング情報を含む SmartSHARKデータセッ
トを対象に調査を行った．メソッドの編集履歴の追跡には，CodeTrackerを用いた．データ
セットから得られた 187件の集約されたコードクローンの編集履歴を対象に分析した結果，
集約されたコードクローンは集約から 1年以内に平均して 0.78回の編集を経験していると
分かった．これは既存研究で報告されている，集約されずに残存したコードクローンの編集
頻度である 0.48回よりも高い数値であった．

主な用語
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1 はじめに

コードクローンとは，ソースコード中の互いに一致あるいは類似したコード片をいう [30]．
コードクローンに対してバグ修正や機能追加などの編集を行う際には，すべてのコードク
ローンに対して一貫した編集を行う必要が生じる [30, 31]．ここでコードクローンを見落と
してしまうと，編集に一貫性が無くなり，不整合が生じる．不整合によって修正したはずの
バグが残存したり，新たなバグを生じさせたりしてしまう．
コードクローンが引き起こす保守性の低下を防ぐ方法に，リファクタリング [6]によるコー

ドクローンの集約がある [31]．コードクローンを集約すると，バグ修正や機能追加の編集は
ただ一箇所を編集するだけで済み，見落としのリスクを回避できる．このリファクタリング
は，見落としのリスクを回避できればできるほど，保守性の問題に対して有効なリファクタ
リングであったといえる．
既存研究では，コードクローンを集約するリファクタリングが実際にどの程度保守性の問

題に有効なのか，様々に議論されている．コードクローンは比較的安定しており，無理に集
約する必要はないと主張する研究も存在する [18]．また，リファクタリングの編集操作自体
に新たなバグを混入させるリスクがあるとの指摘もある [4, 5]．コードクローンを集約する
リファクタリングの有効性を調査する既存研究は複数存在するが，これらは集約されずに残
存しているコードクローンの進化 [13, 18, 21]や，コードクローン集約の直前，直後におけ
る種々のメトリクスの変化 [2]に注目して分析している．一方で，集約されたコードクロー
ンのその後の長期的な変化に注目した分析を行っている研究はみられない．
本研究は，コードクローンを集約するリファクタリングの有効性を，実際のソフトウェア

のソースコード編集履歴を用いて評価する．リファクタリングの有効性は次の 2つの観点か
ら評価した．

• 集約されたコードクローンはどの程度編集されるか．

• 集約によってはじめて必要になる編集はどの程度発生するか．

本研究では，この 2つの観点をResearch Questionsに落とし込み，それぞれ考察した．
本研究の主な貢献は以下の通りである．

• 集約されたコードクローンが集約されていないコードクローンよりも頻繁に編集され
ていると明らかにした．

• コードクローンを集約するリファクタリングに対する評価について，集約後の編集履
歴にも編集するべきとの見方を示した．
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• 集約されたコードクローンが経験する編集のうち約 15%は，コードクローンを集約し
てはじめて必要になった編集だと明らかにした．

以降，2章では，本研究の背景となるコードクローンとリファクタリング，およびリファ
クタリングの具体的な手法について述べる．3章では，関連する既存研究を概観し，本研究
の動機と Research Questionsを提示する．4章では，調査対象としたデータセットと，メ
ソッドの編集履歴を追跡するための調査手法について述べる．5章では，分析によって得ら
れた調査結果を示し，具体例を用いて考察を行う．6章では，本研究の妥当性への脅威につ
いて，7章で結論および今後の課題について述べる．
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2 背景

2.1 コードクローン

ソースコード中の互いに一致あるいは類似したコード片をコードクローンという [30]．コー
ドクローンは，ソフトウェアに対する一貫した編集を困難にし，ソフトウェアの開発及び
保守に悪影響を与える恐れがある [30, 31]．一貫した編集の失敗は，たとえばコードクロー
ンに含まれるバグを修正する場合に発生する．コードクローンにバグが含まれていた場合，
このバグを修正するには，すべてのコードクローンに対して一貫して修正を行う必要があ
る [19]．この場合，修正箇所はソースコード中の複数箇所に散在するため，見落とすおそれ
がある．一部のコードクローンを見落としてしまうと，コードクローン間に不整合が生じ，
バグは残存する．そのため，コードクローンに対する一貫した編集を正しく施すための工夫
が求められる．
Royら [20]は，コードクローンをその類似度によってタイプ 1からタイプ 4の 4種類に

分類した．

タイプ 1. 改行，空白文字，コメント等の違いを除いて一致するコードクローン．

タイプ 2. タイプ 1の違いに加えて，リテラル，型，識別子の違いを除いて一致するコード
クローン．

タイプ 3. タイプ 2の違いに加えて，文の変更，挿入，または削除の違いを許容して一致す
るコードクローン．

タイプ 4. 同様な処理を行うが，構文の異なるコードクローン．

2.2 リファクタリング

ソフトウェアの外部的な振る舞いを変えることなく，内部構造を改善する取り組みをリ
ファクタリングという [6]．リファクタリングは，ソースコードの可読性を向上させ，ソフト
ウェアの保守性を高めるために行われる．コードクローンを集約するリファクタリングは，
一貫した編集の失敗を防ぐために有効である [17]．
コードクローンを集約すると，もともと一貫した編集が必要な編集は，単に集約された

コードクローン 1箇所に対する編集になる．この編集では複数箇所を同時に書き換える必要
がなくなるため，見落としは発生しない．本研究では，この編集を一貫性が必要だった編集
と呼ぶ．
肥後ら [31]は，コードクローンを集約するための様々なリファクタリングパターンを整

理している．この節の残りの部分では，リファクタリングパターンの一つであるメソッドの
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抽出と，リファクタリングの結果ソースコードに導入される集約されたコードクローンにつ
いて述べる．

2.2.1 メソッドの抽出

メソッドの抽出は，既存のメソッドから特定の部分を切り出し，新たなメソッドとして定
義するリファクタリングである [11,24]．主にタイプ 1およびタイプ 2のコードクローンに適
用できる [11]．コードクローンを新たなメソッドに切り出し，既存のコードクローンをこの
新たなメソッドの呼び出しに置き換えて，コードクローンを集約する．本研究では，リファ
クタリングによって追加された，コードクローンを切り出したメソッド定義を，集約された
コードクローンと呼ぶ．

2.2.2 他のリファクタリングパターンによるタイプ 1，タイプ 2コードクローンの集約

肥後ら [31]は，メソッドの抽出以外にもクラスの抽出やメソッドの引き上げなどのリファ
クタリングパターンを挙げている．これらのリファクタリングパターンでも，ソースコード
には集約されたコードクローンが追加される．クラスの抽出は，複数のクラスに共通する処
理を新たなクラスに切り出すリファクタリングパターンである [11, 24]．新たなクラスに含
まれるメソッド定義は，複数のクラスに含まれていた共通した処理を集約しているため，集
約されたコードクローンといえる．メソッドの引き上げは，サブクラス間で重複するメソッ
ドを親クラスへ移動するリファクタリングパターンである [11, 24]．この場合も，親クラス
に追加されたメソッド定義は集約されたコードクローンといえる．

2.2.3 タイプ 3コードクローンの集約

タイプ 3のコードクローンに対しても，コードクローンを集約する手法が提案されている．
この方法の一つに，テンプレートメソッドを用いる方法がある [31]．テンプレートメソッド
を用いる手法は，共通の親クラスを持つコードクローンのペアに対して適用できる．コード
クローンを集約するメソッドを親クラスに追加し，コードクローンの共通部分は親クラスに
引き上げ，異なる処理はそれぞれの子クラスに記述する．堀田ら [32]は，プログラム依存
グラフを用いてテンプレートメソッドを作成する手法を提案している．
この他にも，メソッドの抽出リファクタリングをタイプ 3のコードクローンに拡張する方

法が提案されている．メソッドの抽出リファクタリングはタイプ 1およびタイプ 2のコード
クローンに含まれる差異をパラメータに抽出する [27, 31]．タイプ 3のコードクローンに含
まれる文単位の差異を，ラムダ式を用いてパラメータに抽出する方法が提案されている [27]．
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2.2.4 コードクローンの予防

ソフトウェアの保守性を高く保つために，コードクローンの発生を未然に防ぐ，あるいは
発生した直後に解消するのも有効である．
Yoshidaら [29]は，開発者がメソッドの抽出リファクタリングを行う際，同時にリファク

タリングすべきコードクローンを推薦する手法を提案している．開発者が手動でコードク
ローンを集約する場合，他のコードクローンの存在に気づかず，見落とされたコードクロー
ンが集約されずに残存してしまう場合がある．Yoshidaらの提案する手法は，開発者の編集
操作を監視し，メソッドの抽出が行われた時点で即座に関連するコードクローンを提示する．
この手法により，開発者はコードクローンを見落とさずにリファクタリングできる．また，
AlOmarら [3]は，IDE上でのコピーアンドペースト操作を監視し，コードクローンが発生
した直後にメソッドの抽出リファクタリングを推薦する手法を提案している．この手法によ
り，開発者は意識せずともコードクローンの発生を未然に防止できる．
これらのようなツールを用いて，あるいは手動で同様な操作を行って即座にコードクロー

ンを集約した場合，コードクローンは発生しない．
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3 研究の動機と目的

コードクローンの編集頻度やコードクローンを集約するリファクタリングの有効性につ
いて，実際のデータに基づいて言及する既存研究は複数存在する．Hottaら [13]やKrinke

ら [18]は，オープンソースプロジェクトのソースコードの編集履歴を調査し，コードクロー
ンと非コードクローンの編集頻度をそれぞれ異なる方法で比較している．この調査は，コー
ドクローンは非コードクローンと比較して編集頻度はより低かったと報告しておりコードク
ローンの保守コストは高くないと結論付けている．Sahaら [21]は，6件のオープンソース
プロジェクトでコードクローンに施された編集を調査している．この実験データに基づき筆
者が算出したところ，タイプ 1およびタイプ 2のコードクローンは平均して 0.48回の編集を
経験している．また，AlOmarら [2]は，開発者がコードクローンの除去を意図して行った
リファクタリングの前後で，ソフトウェアの品質メトリクスがどのように変化するか調査し
ている．この調査によれば，リファクタリングの前後で改善したメトリクスもある一方で，
悪化したメトリクスも存在していた．リファクタリングの有効性は単一のメトリクスによっ
て単純に評価できないと結論付けられている．
これらの研究は，コードクローンを集約するリファクタリングの有効性を強く肯定しては

いない．しかしこれらの研究は，コードクローンを集約した後のソースコードに実際に起き
た編集には関知していない．コードクローンの問題点は，一貫した編集を困難にすることで
ある．コードクローンを集約するリファクタリングの有効性を明らかにするためには，集約
されたコードクローンがその後実際に経験する，一貫性が必要だった編集の調査が重要であ
る．本研究は，コードクローンを集約するリファクタリングの有効性を，リファクタリング
後のソースコード編集履歴を用いて明らかにする．

3.1 Research Questions

この目的を達成するため，以下に示す 2つのResearch Questions(RQ)を設定した．

RQ1. 集約されたコードクローンはどの程度編集されるか．
既存研究では，コードクローンは一般的に安定していると報告されている．リファク
タリングによって集約されたコードクローンも同様に安定しているのかを調査する．
また，既存研究で報告されている編集回数と比較する．

RQ2. 集約によってはじめて必要になる編集はどの程度発生するか．
コードクローンを集約するリファクタリングは，ソースコードに新たなメソッドを
追加する．この追加によって，コードクローンを集約せずにそのまま残しておけば
発生しなかった編集が発生している可能性がある．このような，集約によってはじ
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めて必要になる編集は，ソフトウェアの保守に追加のコストをもたらす．集約によっ
てはじめて必要になる編集がどの程度発生しているか調査する．

次の章では，本研究の調査手法について詳細に述べる．
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SmartSHARK
データセット

ステップ1
リファクタリングの絞り込み

コードクローンを集約する
リファクタリング

ステップ2
編集履歴の追跡

コードクローンを集約する
リファクタリングの編集履歴

図 1: 調査手法の概観

4 調査手法

本研究では，集約されたコードクローンがその後のソフトウェア進化の過程でどのように
編集されていくか調査した．本章では，具体的な調査手法と使用した調査対象のデータセッ
トについて述べる．

4.1 調査手法の概観

調査手法の概観を図 1に示す．図中の SmartSHARKデータセットと CodeTrackerは後
述する．本研究の調査手法は，2つのステップに分けられる．

ステップ 1. リファクタリングの絞り込み：調査対象のデータセットから，コードクローン
を集約するリファクタリングを絞り込む．

ステップ 2. 編集履歴の追跡： 集約されたコードクローンの編集履歴を追跡する．

本章の残りの部分では，使用したデータセットと各ステップの詳細を説明する．

4.2 SmartSHARKデータセット

集約されたコードクローンのソフトウェア進化の過程を調査するため，ソフトウェア進化
の過程に関する様々な情報を格納したデータセットである SmartSHARK [23]を使用する．
データセットの規模は以下の通りである．

• プロジェクト数：77件

• 総コミット数：366,322件

• 総リファクタリング数：703,260件

データセットに含まれるすべてのプロジェクトは gitでバージョン管理されている．デー
タセットにはリファクタリング検出ツールの RefactoringMiner [25, 26]および RefDiff [22]
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によって検出されたリファクタリングの情報も含まれている．リファクタリングの情報は，
リファクタリングが施されたコミットとリファクタリングの種別の情報を含む．リファクタ
リングの種別とは，メソッドの抽出や移動等のリファクタリングの種類を表す文字列であ
る．このリファクタリング検出で用いられている RefactoringMinerは適合率 99.6%，再現
率 94%でリファクタリングを検出できるツールであり [25]，SmartSHARKデータセットで
はこの検出結果を使用するにあたり，正確な検出結果と評している [23]．
SmartSHARKデータセットには，コードクローンの集約以外のリファクタリングも含ま

れている．次の節で述べるステップ 1でコードクローンを集約するリファクタリングを取り
出す．

4.3 リファクタリングの絞り込み

このステップでは，調査対象の SmartSHARKデータセットに含まれるリファクタリング
から，コードクローンを集約するリファクタリングのみを取り出す．
まず，コードクローン，即ちソースコードの重複を取り除こうとするコミットで行われた

リファクタリングに注目する．リファクタリング情報は、施されたリファクタリングの種別
の情報のほか，その編集が行われたコミットの情報，特にコミットメッセージが含まれてい
る．コミットメッセージに “duplicat*”という文字列が含まれているコミットで行われたリ
ファクタリングに絞り込んだ．さらに，より確実にコードクローンを集約するリファクタリ
ングを絞り込むため，検出されたリファクタリングの種別にも注目した．リファクタリング
の種別がメソッドの抽出かクラスの抽出であるリファクタリングに絞り込んだ．これらの絞
り込みによって，最終的に調査対象のコードクローンを集約するリファクタリングを 345件
得た．

4.4 編集履歴の追跡

このステップでは，コードクローンを集約したリファクタリングから，集約されたコード
クローンの編集履歴を得る．
バージョン管理システムを用いるとファイル単位の編集履歴が得られる．Gitであれば git

logコマンドを用いてファイルの編集履歴を容易に得られる．しかし，メソッドの編集履歴
を正確に得るのは困難である．Horaらによると，大規模な Javaシステムのメソッドの編
集のうち，10%から 21%で git logコマンドやDiffツールによる編集履歴の取得が困難であ
る [12]．編集履歴の取得を困難にする編集の例として，メソッドのリネーム [12, 16]や移
動 [10,12]，抽出 [12]およびインライン化 [7,12]が挙げられる．取得が困難な編集は，その
前後でメソッドの編集履歴を分断してしまう [7,12]．このような編集があってもできるだけ
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編集履歴の分断を起こさない手法が複数提案されている [8–10,15]．本研究では，メソッド
の編集履歴を得るために，CodeTracker [15]を使用する．
CodeTracker [15]は，リファクタリング検出ツールのRefactoringMiner [1,25,26]を拡張

したツールである．編集履歴を取得するメソッド位置は次の情報から表される．以降，これ
らの情報の組をメソッド位置と呼ぶ．

• リポジトリのURL

• 時点を表すコミット

• メソッドを含むファイルのパス

• メソッドの開始行

CodeTrackerは，編集履歴を調べるメソッドの位置と，編集履歴の開始位置となるコミッ
トを入力にとり，与えられたメソッドの編集履歴を得る．出力は編集のリストとして表され
る編集履歴である．編集は次の情報から表される．以降，これらの情報の組を編集と呼ぶ．

• 編集が施されたコミット

• 編集前のメソッド位置の情報

• 編集後のメソッド位置の情報

• 編集の種別のリスト

編集の種別とは，RefactoringMinerが検出するリファクタリングの種別に単なるメソッド
本体の変更を表す “Body Change”を加えた，編集の種類を表す値である．RefactoringMiner

が検出するリファクタリングの種別は現在 100種類を超える [1, 25, 26]．全種別の紹介は省
略するが，たとえばメソッドのリネームは “Rename”、メソッドを定義するクラスの変更は
“Container Change”と分類される．同一の編集内で複数種類のリファクタリング，あるい
はメソッド本体の変更が同時に検出される場合がある．編集の種別のリストには，検出され
たすべての編集の種別が格納される．
RefactoringMinerは，メソッドのリネームやメソッドの移動など，複雑なリファクタリ

ングも検出できる [26]．CodeTrackerは，RefactoringMinerが検出したリファクタリング情
報を用いて，リファクタリングによって分断されたメソッドの編集履歴をつなぎ合わせてメ
ソッドの編集履歴を構築する．本研究では CodeTrackerを，集約されたコードクローンの
編集履歴を追跡するために使用する．
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時間

集約されたコードクローンの編集履歴

コードクローンリファクタリング

(省略)

(省略)

新しいコミットにおける
集約されたコードクローン

コミット1 2 3 4 5 6

図 2: コードクローンと編集履歴の概要図

集約されたコードクローンと，その編集履歴，最新のコミットにおける集約されたコー
ドクローンの概要を図 2に示す．図中の左から右に向かって時間が経過しており，黒丸が各
コミットを表す．黒い囲みはメソッドを表し，桃色の小さな囲みはコードクローン，桃色の
横線はコードクローンを集約したメソッドの呼び出しを表す．この図ではコミット 1までに
コードクローンが既に発生しており，コミット 2でコードクローンを集約するリファクタリ
ングが行われている．さらに，コミット 3からコミット 5にかけて，集約されたコードク
ローンに何らかの編集がされている．コミット 6はコミット 5より新しい，集約されたコー
ドクローンを含むコミットを表す．
この図において，SmartSHARKデータセットに含まれるリファクタリングの情報は橙色

の囲みで示されたコードクローンリファクタリングにあたる．しかし，CodeTrackerに入力
するのは，図中で赤く示した，新しいコミットにおける集約されたコードクローンおよびコ
ミット 2である．CodeTrackerはより新しいコミットから過去方向に編集履歴を調べるツー
ルであるが，新しいコミットにおける調査対象のメソッド位置，即ち集約されたコードク
ローンの情報は SmartSHARKデータセットには含まれない．
CodeTrackerに入力するメソッド位置の情報を取得するため，集約直後のメソッド位置の

情報から，可能な限り新しいコミットにおけるメソッド位置を推定する．この推定が正しい
か確認するには，メソッド位置の情報をCodeTrackerに入力して，メソッドの編集履歴に集
約直後のメソッドが含まれるか確認すればよい．見落としなく目的の編集履歴を得るには，
全メソッドの編集履歴を得るのが最も単純な方法である．進化の過程でメソッドが削除され
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集約されたコードクローン

コードクローンを集約する
リファクタリング

…

候補メソッドと
リファクタリング

ステップ2-1
候補メソッドの
絞り込み

編集履歴と
リファクタリング

ステップ2-2
CodeTrackerによる
編集履歴の取得

編集履歴を取得できなければ，
他の候補メソッドを⽤いてやり直す．

図 3: メソッドの絞り込み手順

ている可能性もあるため，全コミットの全メソッドで編集履歴を取得すれば，見落としなく
編集履歴が得られる．しかし，CodeTrackerは 200個のメソッドの編集履歴を得るために約
20分を要する [15]．全メソッドの編集履歴の取得を，コードクローンの集約以降の全コミッ
トを対象に実行するのは現実的ではない．
編集履歴の取得に要するコストを抑えるため，次節に述べる条件に当てはまるメソッドに

絞り込んで編集履歴を得た．また，調査対象のコミットは 1年ごとに 1つのコミットを取り
出して調査した．次節以降，絞り込んで得たメソッドを指して候補メソッドと呼ぶ．

4.5 メソッドの絞り込み

図 3にメソッドの絞り込みの手順を示す．ステップ 2はさらに次の 2つのステップに分け
られる．

ステップ 2-1. 候補メソッドの絞り込み

ステップ 2-2. CodeTrackerによる編集履歴の取得

編集履歴の取得を試みる候補メソッドを絞り込むにあたり，CodeMapper を使用した．
CodeMapper [14]は，コミット間でメソッド等のコード領域を追跡する言語非依存のツール
である．このツールは，メソッド位置の情報と追跡するコミットを入力にとり，追跡するコ
ミット内のメソッドの位置を出力する．追跡するコミット内でメソッドが見つからなかった
場合は，見つからなかったと出力する．このツールは追跡するコミット内で対象のメソッド
を含むファイルを特定するモジュールと，そのファイル内で対応するメソッドを特定するモ
ジュールからなる．本研究では，前者のファイルを特定するモジュールを使用した．
続いて，メソッドの絞り込みの手順をステップごとに説明する．
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4.5.1 候補メソッドの絞り込み

まず，CodeTrackerの入力に与えるメソッドの候補を，コミットごとにヒューリスティッ
クを用いて絞り込む．メソッドのパラメータが変更されるケースと，メソッドを含むファイ
ルが移動するケースを考慮してヒューリスティックを次の通り定めた．

1. 集約されたコードクローンと同じファイル内にある，シグネチャが集約直後のメソッ
ドと完全に一致するメソッド

2. 集約されたコードクローンと同じファイル内にある，パラメータを除くシグネチャが
集約直後のメソッドと一致するメソッド

3. CodeMapperが提案するファイル内にある，シグネチャが集約直後のメソッドと完全
に一致するメソッド

4. CodeMapperが提案するファイル内にある，パラメータを除くシグネチャが集約直後
のメソッドと一致するメソッド

これらの条件のいずれかを満たすメソッドを CodeTrackerの入力に与えるメソッドの候
補とした．複数の候補が存在する場合，より先に示した条件を満たすメソッドをより有力な
候補とした．得られる編集履歴の長さを可能な限り長くするため，異なるコミットのメソッ
ドの場合，より新しいコミットから取り出したメソッドをより有力な候補とした．

4.5.2 CodeTrackerによる編集履歴の取得

このステップでは，先のステップで得られたリスト内のメソッド候補を順にCodeTracker

に与え，編集履歴を取得する．得られた編集履歴に，コードクローンを集約するリファクタ
リングが含まれていれば，目的の編集履歴が得られたとした．目的の編集履歴が得られたら
その時点で調査を終了する．目的の編集履歴が得られなければ次に有力な候補でこのステッ
プを繰り返す．全ての候補を試しても目的の編集履歴が得られなかった場合は，編集履歴の
取得に失敗したとして処理を終了する．

4.6 編集履歴に含まれる編集の分類

RQ2で言及したように，得られた編集履歴には，集約によってはじめて必要になる編集
が含まれる．編集履歴に含まれる編集を，集約によらず必要であった編集，即ち先述の一貫
性が必要だった編集と集約によってはじめて必要になる編集に分類する．本研究では，編集
が持つ編集の種別のリストにメソッド本体の変更を表す “Body Change”か，コメントやド
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キュメントの変更を表す “Documentation Change”のいずれかが含まれる編集を，一貫性
が必要だった編集と定義した．
集約によってはじめて必要になる編集の種別の例には，メソッド名の変更を表す “Rename”

がある．コードクローンを集約して作成されたメソッドの名前を変える編集は，編集の種別
のリストに “Rename”を含む．コードクローンを集約しなければ，このメソッドはそもそも
作成されていないため，メソッド名の変更しか行わない編集は集約によってはじめて必要に
なる編集といえる．
次の章では，上述の手順で得られた編集履歴の分析結果について述べる．
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5 調査結果と考察

本章では，調査手法の章で示した手順に沿って得られた編集履歴について述べ，設定した
2つのRQに対する回答を与える．また，具体的な事例を通してコードクローン集約の有効
性を考察する．

5.1 編集履歴の追跡結果

SmartSHARKデータセットに含まれるリファクタリング 703,260件のうち，コードクロー
ンを集約するリファクタリングは 345件であった．これらの 345件で編集履歴の追跡を行っ
た結果を表 1に示す．345件のコードクローン集約リファクタリングのうち，54.2%にあた
る 187件で，その後の編集履歴を追跡できた．追跡に失敗した 158件は，集約から 1年経た
ない間に削除されたか，メソッド名が変わったか，あるいはCodeTrackerで取得できない複
雑な編集が行われていた．
表 2に，検出された編集の種別とその内訳を示す．集約によってはじめて必要になる編

集で最も多く見られた編集の種別は，ソースファイルの移動を表す “Container Change”で
あった．
図 4に，コードクローンの集約からの経過年数ごとに追跡できた編集履歴の数を折れ線グ

ラフで，その経過年数において発生した編集の数を棒グラフで示す．それぞれの具体的な値
は表 3に示している．編集履歴の数はその年数以上，集約されたコードクローンの編集を追
跡している編集履歴の数を表す．また，一貫性が必要だった編集および集約によってはじめ
て必要になる編集は，その年に施された編集の件数を表す．全編集 423件のうち，一貫性が
必要だった編集は 360件であり，全体の約 85%を占める．一方，集約によってはじめて必要
になる編集は全体の約 15%にあたる 63件に留まった．10年以上にわたって追跡できた編集
履歴は全体の約 27%にあたる 51件存在していた．
編集回数の推移を見ると，集約直後の 1年目に最も多くの編集が発生しており，その後減

少する傾向にある．

表 1: 編集履歴の追跡結果．
件数 割合

追跡成功 187 54.2%

候補なし 158 45.8%

合計 345 100.0%

19



0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

150

200

経過年数

編
集
履
歴
の
数

編集履歴の数

0

50

100

150

200

編
集
回
数

一貫性が必要だった編集
集約によってはじめて必要になる編集

図 4: 経過年数ごとの編集履歴の数と編集の数の推移．

5.2 RQ1：集約されたコードクローンの編集頻度

図 4の棒グラフを見ると，0年目の値が最も大きい．これは，集約から 1年以内の編集が
多く検出されたと分かる．しかし，集約からの経過年数が大きくなるにつれ，追跡できた編
集履歴の数も減少している．RQ1に回答するには，編集の頻度，即ちコードクローンあた
りの編集の数を調べる必要がある．
追跡できた編集履歴の数の影響を取り除くため，以降では集約されたコードクローンあた

りの平均編集回数を用いて議論する．集約されたコードクローンあたりの平均編集回数は，
その年における編集回数をその年まで追跡できた編集履歴の数で割って算出する．さらに，
集約されたコードクローンに施された編集の累計を取る．図 5に，集約されたコードクロー
ンあたりの累積平均編集回数を示す．このグラフによると，コードクローンは集約されてか
ら 1年以内に 0.78回の一貫性が必要だった編集を経験する．また，10年経過時点では 1.93

回の編集を経験する．
Sahaら [21]の研究によれば，タイプ 1およびタイプ 2のコードクローンが経験する平均

編集数は 0.48回である．本研究の調査結果は，1年以内の編集のみを集計した時点で既に
この回数を上回っている．10年経過時点の編集の数は約 4.0倍であり，明らかな差が見られ
た．この結果から，開発者が集約したコードクローンは，残存しているコードクローンより
も頻繁に編集される傾向にあるといえる．
したがって，RQ1への回答は以下のようになる．
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図 5: 経過年数ごとの累積の平均編集数．

RQ1への回答

集約されたコードクローンは，平均して集約から 1年以内に 0.78回，10年以内に 1.93

回の編集を経験する．編集は，特に集約から 1年以内に集中しているが，その後も一
貫性が必要だった編集は発生し続ける．

5.3 RQ2：集約による追加の保守コスト

RQ2では，集約によってはじめて必要になる編集の頻度について調査する．前節で示し
た通り，この編集は全体の約 15%と少数であった．
この編集の内訳をみると，メソッドを含むファイルの位置が変わるContainer Changeと，

メソッドのパラメータが変わるParameter Changeが大半を占める．これらの編集に要する
コストをより抑えるためには，適切なリファクタリング機能を備えたツールの活用が有効で
ある．AlOmarら [2]が指摘するように，リファクタリング自体のコストが低い場合，開発
者はより積極的にコード構造の改善に取り組むことができる．高機能なリファクタリング
ツールを用いれば，リファクタリングの有効性はより高まるといえる．
RQ2への回答は以下のようになる．

RQ2への回答

集約に伴って増加する編集は集約されたコードクローンに対する編集の約 15%を占め
る．また，適切なリファクタリングツールを活用することで，このコストはさらに低
減できる．
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表 2: 検出されたリファクタリングの種別と件数．
分類 編集の種別 件数
一貫性が必要だった編集 Body Change 294

Documentation Change 66

集約によってはじめて必要になる編集 Container Change 86

Parameter Change 83

Modifier Change 12

Return Type Change 7

Exception Change 6

Annotation Change 4

Moved 1

Rename 1
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表 3: 経過年数ごとの編集履歴の数と編集の数．
経過年数 編集履歴の数 一貫性が必要だった編集 集約によってはじめて必要になる編集

0 187 146 43

1 160 35 11

2 139 35 16

3 132 21 7

4 125 14 3

5 121 12 3

6 106 6 10

7 103 11 7

8 87 2 3

9 58 7 3

10 51 3 2

11 41 6 2

12 26 1 0

13 24 0 0

14 19 5 2

15 16 2 0

16 8 0 0

17 3 0 0

18 2 1 0

19 2 0 0

20 2 0 0

21 2 1 0

22 2 0 0

合計 187 360 63
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5.4 具体例を用いたリファクタリングの有効性の考察

本節では，調査で得られた編集履歴の具体例を用いて，リファクタリングの有効性を考察
する．表 4に，取り上げる例の一覧を示す．それぞれの例を実際のソースコードとともに説
明する．

5.4.1 集約後にバグが混入し，その後修正された例

コードクローンの集約が，実際に一貫性のない編集が発生するリスクを回避した例を示
す．コードクローンとこれを含むプロジェクトの情報は次の通りである．

• リポジトリ：apache/activemq

• クラス：org.apache.activemq.broker.region.cursors.AbstractStoreCursor

• メソッド：setLastCachedId

集約されたコードクローンの編集履歴を表 5に示す．集約から約 2.7年後にバグが混入す
る編集が行われ，バグは混入から約 1年後に修正された．
この例で用いる図中では簡単のため，変数名とメソッド名を簡略化し，キャスト演算子を

用いたキャストを取り除いている．図 6は集約直後のメソッドであり，図 7はバグが混入す
る直前のメソッドである．集約から 1年以内にメソッド本体が大きく変更されている．
図 8はバグが混入したメソッドである．13行目の ifは，本来 else ifとすべきである

が書き損じたものである．この問題を修正した後のメソッドを図 9に示す．elseが書き加
えられ，8行目から始まる，else節をもつ 1文の if文に修正されている．最後のコミット
である c1e7dbdコミットは，コミットメッセージにバグ報告のリンクを含んでいた．このバ
グ報告は上に示した通りの症状を報告していたため，これらの編集をそれぞれバグ混入およ
びバグ修正の編集とこの実験では判断した．
このバグは，混入してから修正されるまでに約 1年の期間を要している．また，コードク

ローンの集約からバグが修正されるまでに 3年以上の期間が空いている．しかし，集約に

表 4: 本節で紹介する具体例．
プロジェクト名 追跡年数 概要
activemq 11.4年 集約後にバグが混入し，その後修正

された例．
activemq 11.9年 アクセス修飾子が編集された例．
calcite 12.0年 ドキュメントのみ編集された例．
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よって修正する必要のある行は 1行のみになっていたため，修正漏れのリスクは排除できて
いた．コードクローンの集約は，前の編集から次の編集までの期間が空くほど有効だと考え
られる．
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表 5: 集約されたコードクローンの編集履歴
コミット ID 経過日数 (経過年数) 図番号 概要
54e2e3b 0日 (0.0年) 図 6 コードクローンを集約したコミ

ット．
140ce1b 38日 (0.1年) なし ロジックの編集．
97c127d 40日 (0.1年) なし ロジックの編集．
b40dc4c 292日 (0.8年) 図 7 バグが混入する直前のコミッ

ト．
a0ba0bf 977日 (2.7年) 図 8 ifを誤って追加したコミット．
c1e7dbd 1348日 (3.7年) 図 9 ifから else ifに修正したコ

ミット．
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1 private void setLastCachedId(MessageId candidate) {
2 if (lastCachedId == null) {
3 lastCachedId = candidate;
4 } else if (candidate.getSequence() > lastCachedId.getSequence()) {
5 lastCachedId = candidate;
6 }
7 }

図 6: 集約直後のメソッド（54e2e3b）．

1 - private void setLastCachedId(MessageId candidate) {
2 + private void setLastCachedId(final int index, MessageId candidate) {
3 + MessageId lastCacheId = lastCachedIds[index];
4 if (lastCacheId == null) {
5 - } else if (candidate.getSequence() > lastCachedId.getSequence()) {
6 - lastCachedId = candidate;
7 + lastCachedIds[index] = candidate;
8 + } else {
9 + Object lastCacheSequence = lastCacheId.getSequence();

10 + Object candidateSequence = candidate.getSequence();
11 + if (lastCacheSequence == null) {
12 + lastCachedIds[index] = candidate;
13 + } else if (candidateSequence != null &&
14 + candidateSequence > lastCacheSequence) {
15 + lastCachedIds[index] = candidate;
16 + }
17 }
18 }

図 7: バグ混入前のメソッド（b40dc4c）．

1 private void setLastCachedId(final int index, MessageId candidate) {
2 MessageId lastCacheId = lastCachedIds[index];
3 if (lastCacheId == null) {
4 lastCachedIds[index] = candidate;
5 } else {
6 Object lastCacheSequence = lastCacheId.getFutureOrSequenceLong();
7 Object candidateSequence = candidate.getFutureOrSequenceLong();
8 if (lastCacheSequence == null) {
9 lastCachedIds[index] = candidate;

10 } else if (candidateSequence != null &&
11 candidateSequence > lastCacheSequence) {
12 lastCachedIds[index] = candidate;
13 + } if (LOG.isTraceEnabled()) {
14 + LOG.trace("no set last cached...");
15 }
16 }
17 }

図 8: バグが混入した直後のメソッド（a0ba0bf）．
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1 private void setLastCachedId(final int index, MessageId candidate) {
2 MessageId lastCacheId = lastCachedIds[index];
3 if (lastCacheId == null) {
4 lastCachedIds[index] = candidate;
5 } else {
6 Object lastCacheSequence = lastCacheId.getFutureOrSequenceLong();
7 Object candidateSequence = candidate.getFutureOrSequenceLong();
8 if (lastCacheSequence == null) {
9 lastCachedIds[index] = candidate;

10 } else if (candidateSequence != null &&
11 candidateSequence > lastCacheSequence) {
12 lastCachedIds[index] = candidate;
13 - } if (LOG.isTraceEnabled()) {
14 + } else if (LOG.isTraceEnabled()) {
15 LOG.trace("no set last cached...");
16 }
17 }
18 }

図 9: バグが修正された直後のメソッド（c1e7dbd）．
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5.4.2 アクセス修飾子が編集された例

コードクローンの集約によって追加の保守コストがかかってしまった例を示す．この例で
は，アクセス修飾子が編集されている．コードクローンとこれを含むプロジェクトの情報は
次の通りである．

• リポジトリ：apache/activemq

• クラス：org.apache.activemq.store.kahadb.KahaDBStore

• メソッド：recoverRolledBackAcks

表 6に，このメソッドの編集履歴を示す．

表 6: 集約されたコードクローンの編集履歴 (recoverRolledBackAcks)

コミット ID 経過日数 (経過年数) 図番号 概要
cfe099d 0日 (0.0年) 図 10 コードクローンを集約したコミ

ット．
ed5edb0 2031日 (5.6年) なし パラメータ追加とロジックの編

集．
e6cec27 3988日 (10.9年) 図 11 リファクタリング．
b7184b4 4326日 (11.9年) 図 12 アクセス修飾子の編集．

集約後にアクセス修飾子が編集された例を示す．アクセス修飾子の編集は，表 2における
編集の種別では “Modifier Change”にあたる．この編集は，集約によってはじめて必要にな
る編集に分類される．
この例で用いる図中では簡単のため，メソッド本体を省略する．図 10に示すように，集約

直後ではこのメソッドのアクセス修飾子は protectedであった．しかし，10年以上が経過
した後の図 12の編集で，アクセス修飾子が削除され，外部のパッケージには公開されない
package privateに編集された．さらに，プロジェクト内に限定して調べた限りでは，こ
のメソッドが子クラスで呼び出された形跡は見られなかった．
この例では，コードクローンを集約して追加したメソッドのアクセス修飾子を，集約時に

少し広めに設定してしまったものと考えられる．コードクローンを集約して追加されたメ
ソッドのアクセス修飾子は，可能な限り狭く設定しておくべきだといえる．
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1 protected int recoverRolledBackAcks(StoredDestination sd, Transaction tx, int
maxReturned, MessageRecoveryListener listener) throws Exception {

2 ...
3 }

図 10: 集約直後のメソッド．

1 - protected int recoverRolledBackAcks(StoredDestination sd, Transaction tx,
int maxReturned, MessageRecoveryListener listener) throws Exception {

2 + protected int recoverRolledBackAcks(String recoveredTxStateMapKey,
StoredDestination sd, Transaction tx, int maxReturned,
MessageRecoveryListener listener) throws Exception {

3 ...
4 }

図 11: アクセス修飾子変更前のメソッド．

1 - protected int recoverRolledBackAcks(String recoveredTxStateMapKey,
StoredDestination sd, Transaction tx, int maxReturned,
MessageRecoveryListener listener) throws Exception {

2 + int recoverRolledBackAcks(String recoveredTxStateMapKey,
StoredDestination sd, Transaction tx, int maxReturned,
MessageRecoveryListener listener) throws Exception {

3 ...
4 }

図 12: アクセス修飾子変更後のメソッド．
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5.4.3 ドキュメントのみ編集された例

Documentation Changeのみの編集があった例を示す．コードクローンとこれを含むプロ
ジェクトの情報は次の通りである．

• リポジトリ：apache/calcite

• クラス：org.apache.calcite.util.Util

• メソッド：firstDuplicate

表 7に，このメソッドの編集履歴を示す．

表 7: 集約されたコードクローンの編集履歴 (firstDuplicate)

コミット ID 経過日数 (経過年数) 図番号 概要
6bd6e8e 0日 (0.0年) 図 13 コードクローンを集約したコミ

ット．
a611d64 302日 (0.8年) なし ソースファイルの移動．
a0ba73c 302日 (0.8年) なし ソースファイルの移動およびロ

ジックの編集．
4ae0298 725日 (2.0年) なし リファクタリング．
ecf4d6d 748日 (2.1年) なし ロジックの編集．
ce2ae64 2386日 (6.5年) 図 14 ドキュメントのみの編集．
850f0f4 2424日 (6.6年) なし リファクタリング．

この例で用いる図中では簡単のため，メソッド本体の一部を省略する．図 14の編集では，
メソッド本体には変更がなく，既存の実装の意図を説明するコメントが追加されている．この
編集は，表 2における編集の種別ではコメントやドキュメントの変更を表す “Documentation

Change”に分類される．また，このコミットでは同メソッドに他の編集を施しておらず，他
の編集の種別には該当しない．
仮にコードクローンを集約していなかった場合，どのコードクローンを見ても同じコメン

トを確認できるようにするには，全コードクローンで同様のコメントを付加する必要がある．
更に，すべてのコードクローンについて，一貫してコメントを更新し続ける必要がある．実
際のソースコードの更新に伴ってコメントを更新するのはプログラム理解を助けるために重
要である [28]．実際のソースコードとコメントの間の不整合はプログラム理解を妨げるとい
われている [28]．タイプ 1およびタイプ 2のコードクローンは型名や識別子名等を除いたプ
ログラムの構造が一致しているため，処理の実装自体はほとんどの場合同一であろうと考え
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られる．同一の実装に付加するコメントは同様に同一であるべきと考えられるため，本研究
では “Documentation Change”も一貫性が必要だった編集として扱った．
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1 public static <E> int firstDuplicate(List<E> list) {
2 final int size = list.size();
3 if (size < 2) {
4 // Lists of size 0 and 1 are always distinct.
5 ...
6 return -1;
7 }
8 final Map<E, Object> set = new HashMap<E, Object>(size);
9 for (E e : list) {

10 if (set.put(e, "") != null) {
11 return set.size();
12 }
13 }
14 return -1;
15 }

図 13: 集約直後のメソッド．

1 public static <E> int firstDuplicate(List<E> list) {
2 final int size = list.size();
3 if (size < 2) {
4 // Lists of size 0 and 1 are always distinct.
5 ...
6 return -1;
7 }
8 + // we use HashMap here, because it is more efficient than HashSet.
9 final Map<E, Object> set = new HashMap<E, Object>(size);

10 for (E e : list) {
11 if (set.put(e, "") != null) {
12 return set.size();
13 }
14 }
15 return -1;
16 }

図 14: コメントが追加されたメソッド．
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6 妥当性への脅威

本研究の妥当性への脅威について，内的妥当性と外的妥当性の観点から述べる．

6.1 内的妥当性への脅威

6.1.1 編集履歴追跡ツールの精度

本研究では，リファクタリングの検出にRefactoringMiner [1,25,26]を，メソッドの編集
履歴の追跡に CodeTracker [15]を使用した．RefactoringMinerの適合率は 99.6%，再現率
は 94%と高精度であるものの，検出結果が常に正しいとは限らない．本研究で使用したツー
ルの精度は，調査結果の妥当性に影響を与える可能性がある．

6.1.2 見落とされた編集履歴による調査結果の偏り

本研究では，調査対象とした 345件の集約されたコードクローンのうち，45.8%にあたる
158件の集約されたコードクローンで，メソッドの編集履歴を追跡できなかった．追跡に失
敗する原因のうち，研究の妥当性に影響を及ぼす原因には，4章で述べたメソッドの絞り込
みのステップにおける，絞り込みの条件や CodeMapperの精度が挙げられる．これらの原
因による追跡失敗が，分析結果に偏りを生じさせている可能性がある．

6.2 外的妥当性への脅威

6.2.1 データセットの偏り

本研究では，SmartSHARKデータセットに含まれる 77件のオープンソースプロジェク
トを調査対象とした．別のオープンソースプロジェクトを対象に同様の調査をすると，本研
究の報告とは異なる傾向が得られる可能性がある．
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7 おわりに

本研究では，リファクタリングによって集約されたコードクローンの編集履歴を用いて，
リファクタリングの有効性を調査した．集約されたコードクローンの編集履歴を用いるた
め，CodeTracker [15]を用いた．調査の結果，集約されたコードクローンは集約から 1年以
内に平均して 0.78回の編集を経験していると判明した．この数値は既存研究で報告されて
いる残存したコードクローンの編集頻度である 0.48回よりも高い．
コードクローンを集約してはじめて必要になる編集は全体の約 15%であった．具体的な事

例から，集約されたコードクローンが長期間にわたって保守され，バグ修正や機能追加など
の一貫性が必要だった編集が適切に管理されている様子が観察された．また，コードクロー
ンを集約して追加されたメソッドのアクセス修飾子は可能な限り小さく設定しておくべきと
の考察を得た．
以上の結果から，コードクローンの集約は，特に将来の編集が予想されるコードクローン

に対して実施されており，実際に集約が行われた例の多くにおいては，このリファクタリン
グがソフトウェアの保守性向上に寄与していると結論付けられる．
今後の課題は次の 2つが挙げられる．

• 追跡に失敗したケースについての分析と手法の改善

• 本研究の結果を基にしたコードクローンの自動リファクタリング手法の開発

本研究の調査では，345件のコードクローンリファクタリングのうち，約 46%にあたる
158件で編集履歴の追跡に失敗した．追跡に失敗したケースには，集約直後にメソッドが削
除されたケースや，メソッド名やクラス構造が大幅に変化するなどの複雑な編集があった
ケースが考えられる．より多くのケースについて調査するため，追跡に失敗したケースを分
析し，追跡手法を改善したい．
本研究の結果と既存研究を比較すると，コードクローンは，将来活発に編集されるだろう

コードクローンに限ってリファクタリングするべきだと考えられる．本研究で得られた知見
を基に，コードクローンの特徴から将来の編集頻度の高さを予測し，集約すべき適切なコー
ドクローンを提示する自動リファクタリング推奨手法の開発に取り組みたい．
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