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内容梗概

近年，量子プログラムを対象とした自動プログラム修復 (Automated Program Repair:

APR) 手法が提案されている．しかし，既存手法は修正成功率が低い，あるいは生成される

修正内容の理解が難しいといった課題を抱えている．本研究では，大規模言語モデル (Large

Language Model: LLM)がプログラムの修正コードとともに，適用した修正内容の自然言語

による説明を生成する枠組みを構築する．量子プログラムに対する APRにおいて，プロンプ

トに含める文脈情報が性能に与える影響を調査するため，静的情報，動的情報，およびミュー

テーション解析結果の組み合わせが異なる 8種類のプロンプト構成を設計した．静的情報は，

バグを含むコードやバグの説明といった，プログラムを実行することなく得られる情報であ

る．動的情報は，プログラム実行時のエラーメッセージまたはテスト結果のいずれかである．

ミューテーション解析は，プログラムの一部に小さな変更を加えた際の実行結果の変化を評価

する手法であり，スタックトレースなどの単純な実行結果と比べて，より詳細な動的情報を提

供する．実験の結果，動的情報とミューテーション解析結果を組み合わせることで修正成功率

が向上し，本実験では 94.4% を達成した．さらに，ミューテーション解析結果を用いること

で，バグの位置情報に関する記述がより正確かつ網羅的で簡潔になり，生成される説明の品質

が向上することを確認した．これらの結果から，ミューテーション解析は，量子プログラムに

対する LLMベース APRにおいて有用な文脈情報を提供し，修正成功率と説明品質の双方の

向上に寄与することが示された．

主な用語

量子プログラム

自動プログラム修復

ミューテーション解析
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1 はじめに

量子コンピューティングは，量子力学の原理を利用することで，特定の計算課題において古

典計算機を上回る性能を示す可能性が指摘されている [1]．量子コンピュータの計算能力を活

用するためには，量子ビットに対する一連の操作を記述した量子プログラムを記述する必要が

ある．

古典 (非量子)プログラムと同様に，量子プログラムにおいてもデバッグが必要である [2, 3]．

しかし，量子プログラムのデバッグは，量子特有の概念を扱う必要があるため，固有の困難

さを伴う [4, 5, 6]．量子プログラムのデバッグを支援するため，研究者らは量子ソフトウェ

アに特化した自動プログラム修復 (Automated Program Repair: APR) 手法を提案してき

た [7, 8, 9]．APRの目的は，バグを含むプログラムに修正を加え，与えられたテストスイー

ト内のすべてのテストケースを通過させる修正パッチを自動生成することである [10]．Guo

らは，ChatGPT [11] の量子プログラムを修復する能力について調査した [8]．その結果，量

子アルゴリズムの実装を含む複雑なバグに対しては，ChatGPTが修復できた割合は 17%に

とどまることが示された．Tanらおよび Liらは，量子ゲートを修正パッチとして生成し，量

子プログラムに挿入する APR手法を提案した [9, 7]．現在の最先端手法である HornBroは，

ChatGPT ベースの APR 手法と比較して，より多くのバグを修復できることが示されてい

る [9]．しかし，この性能向上は，追加の量子ゲートを挿入することにより，プログラム複雑度

が増大するという代償を伴う．実際，ある事例では，HornBroがバグ修復の過程で最大 249個

の追加ゲートを挿入し，修正後のプログラムの可読性および保守性を低下させることが報告さ

れている [12]．このように，量子プログラムを対象とした既存の APR手法は，(1)修正成功

率が低い，または (2)修正後のプログラムの可読性・保守性が低い，といういずれかの課題を

抱えている．

本研究では，ミューテーション解析から得られる知見を大規模言語モデル (Large Language

Model: LLM)による修復プロセスに組み込むことで，量子プログラムに対する APRの性能

向上を目指す．ミューテーション解析は，プログラムの特定箇所に小さな変更を加えた際に，

その実行結果がどのように変化するかを評価する手法である．量子プログラムに対するミュー

テーション解析では，算術演算子の置換といった古典プログラムにも適用可能なミューテー

ション演算子に加え，量子ゲートの追加や削除といった量子特有のミューテーション演算子を
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組み合わせて用いる [13]．このアプローチは，テスト [13, 14, 15, 16]や欠陥限局 [17]の分野

において有効性が示されている．本研究の実験では，まず各プログラムに対してミューテー

ション解析を適用する．その後，バグを含む量子プログラム，そのスタックトレース，および

ミューテーション解析結果を LLMへの入力として与え，修正後のコードとともに，適用した

修正内容の自然言語による説明を生成させる．修正コードと併せて自然言語による説明を生成

することで，修正後のコードだけでは把握しにくい修正の意図や根拠を，開発者が理解しやす

くなる．本研究では，ミューテーション解析結果が，スタックトレースのような単純な実行結

果よりも詳細な動的情報を提供することにより，修正成功率の向上に寄与するとともに，より

充実した説明の生成を可能にするという仮説を立てる．また，適切なミューテーション演算子

を選択することが，量子プログラムの修正成功率に影響を与えるのではないかと考えた．本研

究の研究課題は以下の通りである．

RQ1 (修正成功率) ミューテーション解析結果は量子プログラム APRの修正成功率にどのよ

うな影響を与えるのか

RQ2 (修正成功率) ミューテーション演算子の違いは量子プログラム APRの修正成功率にど

のような影響を与えるのか

RQ3 (説明性) ミューテーション解析結果は量子プログラム APRの説明性にどのような影響

を与えるのか

本研究の実験では，Bugs4Q データセット [18]に含まれる 18件の実世界のバグを含む量子

プログラムを対象とした．これらのプログラムはすべて，量子プログラミングで広く利用され

ているライブラリである Qiskit [19]を用いて Python で記述されている．実験全体を通して，

プログラム修復の実行においては最先端の LLMである GPT-5 [20]を基盤モデルとして用い

た．ミューテーション解析には，量子プログラム向けに設計されたミューテーションテストフ

レームワークである QMutPy [13]を使用した．異なる文脈情報が修復性能に与える影響を分

析するため，8種類のプロンプト構成を比較した．本研究の主な貢献は以下のとおりである．

• ミューテーション解析が，量子プログラムに対する LLMベース APRにおいて有効な

情報源となり得ることを示す，初の実証的知見を提示した．

• 動的実行情報とミューテーション解析結果の双方をプロンプトに組み込むことで，修正

成功率が向上することを明らかにした．
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• 量子ミューテーション演算子，もしくは古典ミューテーション演算子のいずれかではな

く，これら両方を利用したミューテーション解析結果を用いることが，修正成功率を高

めることを明らかにした．

• ミューテーション解析結果を活用することで，バグの位置に関する説明がより正確かつ

網羅的で簡潔になり，LLMが生成する説明の品質が向上することを示した．
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2 背景

2.1 量子コンピューティング

量子コンピューティングは，特定の計算課題において古典 (非量子)の計算機を上回る性能を

発揮する可能性があることから，大きな注目を集めている [1]．想定される応用分野には，暗

号 [21]，化学シミュレーション [22]，機械学習 [23]などが含まれる．量子コンピュータの計算

能力を活用するためには，開発者は量子ビット (qubit)に対する一連の操作を記述した量子プ

ログラムを作成する必要がある．ここで，各操作は量子ゲートと呼ばれる．

古典プログラムと同様に，量子プログラムにおいてもその正しさを保証するためにデバッグ

が必要である [2, 3]．しかし，量子プログラムのデバッグは，重ね合わせやエンタングルメン

トといった量子特有の概念を扱う必要があるため，固有の困難さを伴う [4, 5, 6]．実際，これ

らの概念は，量子特有の技術的負債 [24, 25]やコードスメル [12]といった，従来とは異なるソ

フトウェア工学上の課題を引き起こすことが指摘されている．

2.2 ミューテーション解析

プログラムに対して，算術演算子の置換といった小規模な構文的変更を加える操作をミュー

テーションと呼び，その変更が適用されたプログラムをミュータントと呼ぶ．ミューテー

ション解析は，多数のミュータントを体系的に生成し，それらに対するテスト実行結果の変

化を分析することで，テストスイートの有効性やプログラムの振る舞いを評価する手法であ

る [26]．量子プログラムに対するミューテーション解析では，算術演算子の置換といった古

典プログラムにも適用可能なミューテーション演算子に加え，量子ゲートの追加や削除といっ

た量子特有のミューテーション演算子を組み合わせて用いる [13]．このアプローチは，テス

ト [13, 14, 15, 16]や欠陥限局 [17]の分野において有効性が示されている．

また，多様なミューテーション演算子の中から，プログラムの性質に応じて適切な演算子を

特定・選択することは，解析の効率化と精度の向上の観点から極めて重要である．Mendiluzeら

は，大規模な実証調査を通じて，ミューテーション演算子の違いがミュータントの検出難易度

に大きな影響を与えることを示し，評価目的に応じた演算子選択の重要性を指摘している [27]．
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3 関連研究

本節では，古典プログラムおよび量子プログラムの双方を対象とした自動プログラム修復

(APR)に関する既存研究の全体像を示す．また，修正パッチの自然言語による説明生成の関連

研究についても議論する．

3.1 古典プログラムにおける自動プログラム修復

APR手法は，大きく以下の 3種類に分類される [10]．

1. ヒューリスティックベース修復：修正パッチを反復的に生成・検証する手法

2. 制約ベース修復：修復問題を制約充足問題として定式化する手法

3. 学習ベース修復：修正パッチを生成する予測モデルを構築する手法

これらの中でも，近年では機械学習，特に大規模言語モデル (LLM)の急速な発展を背景とし

て，学習ベース修復 [28]が注目を集めている．Xiaらは，LLMを APRに直接適用し，Java，

Python，および Cを対象として，LLMベースの修復が既存の APR手法を上回る性能を示す

ことを明らかにした [29]．LLMベースのプログラム修復に関する多くの研究は，プロンプト

に含める文脈情報の重要性を指摘している [30, 31, 32, 33]．例えば，InferFixは，静的解析の

結果やバグ位置の情報をプロンプトに付加することで，LLMがバグの種類やコード中での位

置を明示的に認識したうえで修復を生成できるようにしている [30]．Ehsaniらは，バグレベ

ル，リポジトリレベル，およびプロジェクトレベルの知識を階層的にプロンプトへ注入するこ

とで，より広範かつ関連性の高い修復文脈を提供する手法を提案している [33]．Bouzeniaら

は，動的なプロンプト生成を採用したエージェント指向システムである RepairAgentを提案

しており，必要に応じてエージェントが LLMプロンプトに含める情報を判断し，ツール呼び

出しを通じてプロンプトを動的に更新する [32]．

本研究は，LLMベースの自動プログラム修復 (APR)において，プロンプトが性能に与える

影響を調査するという点で，先行研究と同様の方向性に位置づけられる．一方で，本研究の新

規性は，量子プログラムに対するテスト [13, 14, 15, 16]および欠陥限局 [17]において有効性

が示されているミューテーション解析結果を，LLMへのプロンプトに組み込む点にある．量

子プログラムおよび古典プログラムのいずれにおいても，LLMベース APRの性能向上を目
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的としてミューテーション解析を活用した先行研究は確認されていない．

3.2 量子プログラムにおける自動プログラム修復

量子プログラムのバグ修正は，量子コンピューティングに関する専門的知識を必要とするた

め難易度が高い [4, 5, 6]．Guoらは，ChatGPT [11]を用いて量子プログラムに対する APR

の可能性を検討した [8]．その結果，対象データセットに含まれる古典 (非量子)バグについて

は 97%を修復できた一方で，量子バグについては 17%しか修復できなかったことが報告され

ている．Li らは，ユニタリ演算を自動生成することで量子プログラムを修復する手法である

UnitARを提案した [7]．Tanらは，バグの原因となる誤った量子ゲートを除去し，新たなゲー

トを合成することで正しい振る舞いを実現する手法である HornBroを提案した [9]．本研究で

用いたベンチマークにおいても，HornBro は ChatGPT ベースの APR より多くのバグを修

復できることが示されている．UnitARおよび HornBroはいずれも，新たな量子ゲートを生

成・挿入することでバグを修復する点から，合成ベース修復手法と位置づけられる．本研究で

は，以下の理由から LLMベースの修復手法を採用する．

1. 合成ベース修復手法は主に量子ゲートに起因するバグに限定されるのに対し，LLMベー

ス手法はより柔軟であり，実世界の量子プログラムにおいても頻出する API 関連バグ

など，より広範な種類のバグに対応可能である [5]．

2. 合成ベース修復手法は量子プログラム中のゲート数を増加させ，結果としてプログラム

の複雑度を高める．過剰なゲート数は量子コードスメルの一種としても指摘されてお

り [12]，これを避けることは Google Quantum AIにおいてベストプラクティスとして

推奨されている [34]．

本研究の手法では，LLMに対して最小限の修正を生成させるだけでなく，それらに対する自

然言語による説明の生成も指示する．このように修正内容の説明を併せて生成することで，他

の量子プログラム向け APR手法とは異なり，開発者が各変更の意図や根拠を確認・検証でき

るようになる．

3.3 パッチの説明生成

パッチの説明は，修正内容の理解やレビューを支援する重要な役割を担う．Liangらは，オー

プンソースプロジェクトにおけるコミットメッセージやレビューコメントを分析し，開発者が
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記述するパッチ説明には単なるコード変更の要約だけでなく，不具合の原因や修正の意図と

いった背景情報が含まれることを明らかにした [35]．

近年は，大規模言語モデル (LLM)を用いて，パッチと同時に自然言語による説明を自動生

成する研究が行われている．Sobaniaらは，LLMが生成したソフトウェアパッチの説明を対

象に，人間による評価を通じてその品質を分析した [36]．その結果，生成された説明は一定の

有用性を持つ一方で，誤った原因説明や不完全な記述が含まれる場合があることを報告してい

る．また，説明品質はモデルに与える文脈情報に大きく依存する可能性が示唆されている．

説明の有用性を議論するためには，その評価方法も重要である．Nauta らは，説明可能な

AI(Explainable AI: XAI)における説明評価手法を体系的に整理し，従来の研究が事例ベース

の定性的評価に偏っている点を指摘した [37]．同研究では，説明の正確性，完全性，複雑性と

いった定量的指標を用いた評価の必要性が強調されている．本研究では，先行研究で議論され

てきたパッチ説明の評価観点に基づき，量子プログラムに対する LLMベース APRで生成さ

れる修正パッチの説明を評価する．これにより，説明の評価における主観的判断の影響を可能

な限り抑えた説明性評価を目指す．
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4 実験

本節では，実験の目的，ベンチマーク，プロンプト構成，および使用する LLMを含む，本

研究の実験設計について説明する．本研究の目的は，ミューテーション解析結果を LLMベー

スの修復に組み込むことが，修正成功率および生成される説明の品質にどのような影響を与え

るかを明らかにすることである．図 1 に実験プロセスの概要を示す．バグを含む各プログラ

ムに対して 8種類の異なるプロンプト構成を用意する．いずれのプロンプト構成においても，

LLMには修正後のコードと修正内容に関する説明の双方を生成するよう指示する．

4.1 目的

本研究では，ミューテーション解析結果を大規模言語モデル (Large Language Model:

LLM)による量子プログラム修復プロセスに組み込むことで，自動プログラム修復 (APR)の

性能および生成される説明の品質にどのような影響を与えるかを調査する．特に，ミューテー

ション解析結果が，スタックトレースのような単純な実行結果よりも詳細な動的情報を提供す

ることで，修正成功率の向上に寄与するとともに，より質の高い説明生成を可能にするという

仮説を検証する．また，ミューテーション解析の実行時に利用する演算子の違いが，量子プロ

グラムの修正成功率に影響を与えるかどうかも調査する．

この目的のため，本研究では以下の 3 つの研究課題 (Research Questions: RQs) を設定

する．

RQ1 (修正成功率) ミューテーション解析結果は量子プログラム APRの修正成功率にどのよ

うな影響を与えるのか

RQ2 (修正成功率) ミューテーション演算子の違いは量子プログラム APRの修正成功率にど

のような影響を与えるのか

RQ3 (説明性) ミューテーション解析結果は量子プログラム APRの説明性にどのような影響

を与えるのか
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🐞

x 18

Bugs4Q  (実世界のバグ)

収集

ベンチマーク

S: 静的情報 D: 動的情報 M: ミューテーション解析結果

プロンプト構成

S S + D S + D + M(全て)S + M(全て)

S + D + M(量子) S + D + M(古典)

GPT-5 修正コード

説明

修正成功率

説明性

QMutpy

ミューテーションツール

S + M(量子) S + M(古典)

図 1: 実験の概要
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4.2 バグベンチマーク

本研究では，Qiskit [19]を用いて実装された量子プログラムにおける実世界のバグを集めた

ベンチマークである Bugs4Q [18]を使用する．

Bugs4Qには，GitHub，Stack Overflow，および Stack Exchangeから収集された 42件の

バグを含む量子プログラムと，それらに対応する修正済みプログラムが含まれている．本研究

で Bugs4Qを採用した理由は，以下の 2条件を満たしているためである．

1. 人間の開発者によって記述された実世界の量子プログラムに含まれるバグが収集されて

いること．

2. バグを含むコードおよび修正済みコードの動作を検証するためのテストコードが含まれ

ていること．

第 1の条件は，LLMが生成した修正に対する説明と，開発者が実際に意図した修正内容とを

比較するために必要である．第 2の条件は，ミューテーション解析を実施するとともに，生成

された修正パッチが正しいかどうかを検証するために不可欠である．

Bugs4Q に含まれる 42 件のプログラムのうち，本研究では 18 件を実験対象として選定し

た．まず，Bugs4Q のレプリケーションパッケージ*1をクローンし，各バグが再現可能であ

るかを確認した．この確認の結果，バグを再現できなかった 19 件のプログラムを除外した．

Bugs4Q に含まれるバグは，Qiskit ライブラリによって例外が送出される場合のような例外

発生型 (Throw Exception: TE) と，測定された量子状態が期待される状態と異なる場合に

AssertionErrorが発生する場合のような誤った出力型 (Wrong Output: WO)の 2種類の症状

に分類される．TE型のバグは 8件，WO型のバグは 10件であった．さらに，実験で用いる

プロンプトを構成するために必要な以下の条件のいずれかを満たさない 5件のプログラムを除

外した．

1. ミューテーション解析を実行した際に，少なくとも 1 つのミュータントが生成される

こと．

2. 元となるソースコードのリポジトリ URLにアクセス可能であること．

*1 https://github.com/Z-928/Bugs4Q-Framework

14

https://github.com/Z-928/Bugs4Q-Framework


4.3 ミューテーション

本研究では，バグを含む各プログラムに対して QMutPy [13]を適用し，ミューテーション

解析結果を取得した．QMutPy は，量子ゲートの挿入，削除，および置換に加え，量子測定

の挿入および削除を含む，20種類の古典ミューテーション演算子と 5種類の量子ミューテー

ション演算子を実装している．このうち，量子ゲートの挿入および量子測定の挿入は，本研究

の解析対象から除外した．1回のミューテーションで，各ミューテーション演算子がプログラ

ムの 1箇所に対して適用される．ミューテーション演算子は反復的に適用され，各量子プログ

ラムに対して複数の変異プログラム (ミュータント)が生成される．ミューテーション演算子の

一覧を，表 1に示す．

表 1: ミューテーション解析に利用したミューテーション演算子一覧

演算子 内容

AOD 算術演算子の削除 (Arithmetic Operator Deletion)

AOR 算術演算子の置換（Arithmetic Operator Replacement)

ASR 代入演算子の置換 (Assignment Operator Replacement)

BCR break文と continue文の置換 (Break Continue Replacement)

COD 条件演算子の削除 (Conditional Operator Deletion)

COI 条件演算子の挿入 (Conditional Operator Insertion)

CRP 定数の置換 (Constant Replacement)

DDL デコレータの削除 (Decorator Deletion)

EHD 例外ハンドラの削除 (Exception Handler Deletion)

EXS 例外の握りつぶし (Exception Swallowing)

IHD 変数隠蔽の削除 (Hiding Variable Deletion)

IOD オーバーライドされたメソッドの削除 (Overriding Method Deletion)

IOP オーバーライドされたメソッド呼び出し位置の変更 (Overridden Method

Calling Position Change)

LCR 論理結合子の置換 (Logical Connector Replacement)

次ページに続く
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演算子 内容

LOD 論理演算子の削除 (Logical Operator Deletion)

LOR 論理演算子の置換 (Logical Operator Replacement)

ROR 関係演算子の置換 (Relational Operator Replacement)

SCD super呼び出しの削除 (Super Calling Deletion)

SCI super呼び出しの挿入 (Super Calling Insertion)

SIR スライスのインデックス削除 (Slice Index Removal)

QGD 量子ゲートの削除 (Quantum Gate Deletion)

QGR 量子ゲートの置換 (Quantum Gate Replacement)

QMD 量子測定の削除 (Quantum Measurement Deletion）

ミューテーション演算子の違いが修正成功率に与える影響を調査するため，利用するミュー

テーション演算子が異なる 3つの条件でミューテーションを行った．

1. 全てのミューテーション演算子を利用する

2. 量子ミューテーション演算子のみを利用する

3. 古典ミューテーション演算子のみを利用する

それぞれの条件下で，ミュータントを 1つ以上生成できたプログラム数と，生成されたミュー

タントの総数を 表 2に示す．量子ミューテーション演算子のみでミューテーションを行った

場合に，ミュータントが 1つも生成されなかったプログラムが 4件あった．これらのプログラ

ムは，いずれもソースコード内に量子ゲートが存在しなかった．

表 2: ミューテーションの結果

ミューテーション演算子 ミューテーション可能なプログラム数 ミュータントの個数

全て (量子 +古典) 18 766

量子のみ 14 574

古典のみ 18 74
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4.4 プロンプト構成

量子プログラムに対する APRにおいて，プロンプトに含める情報が修復性能に与える影響

を調査するため，本研究では以下の 8種類のプロンプト構成を設計する (図 1参照)．

• S：静的情報のみ．

• S+D：静的情報および動的情報．

• S+M(全ての演算子)：静的情報およびミューテーション解析結果．全てのミューテー

ション演算子を利用．

• S+M(量子演算子のみ)：静的情報およびミューテーション解析結果．量子ミューテー

ション演算子のみを利用．

• S+M(古典演算子のみ)：静的情報およびミューテーション解析結果．古典ミューテー

ション演算子のみを利用．

• S+D+M(全ての演算子)：静的情報，動的情報，およびミューテーション解析結果．全

てのミューテーション演算子を利用．

• S+D+M(量子演算子のみ)：静的情報，動的情報，およびミューテーション解析結果．

量子ミューテーション演算子のみを利用．

• S+D+M(古典演算子のみ)：静的情報，動的情報，およびミューテーション解析結果．

古典ミューテーション演算子のみを利用．

プロンプトに含まれる情報量は S < S+D < S+M < S+D+M の順に増加し，この順序は，

各情報を取得するために必要な労力の増加とも対応している．ミューテーション解析結果が

含まれる S+M と S+D+M については，ミューテーション時に利用する演算子の違いで 3種

類の異なるプロンプト構成を設計した．それぞれの情報がどのように取得されるかについて

は， 4.4.1節， 4.4.2節， 4.4.3節で説明する．

システムプロンプトは，8種類すべてのプロンプト構成で共通して同一のものを用いた．こ

のシステムプロンプトでは，プロンプトに含まれる各情報の解釈方法および利用方法に関する

詳細な指示に加え，厳密に従うべき出力形式が定義されている．実験で使用したシステムプロ

ンプトの全文を付録に示す．本研究で使用したすべてのプロンプトは，レプリケーションパッ

ケージにて公開している [38]．
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4.4.1 静的情報

本研究では，(1)Bugs4Qから取得したバグを含むコード，(2)各バグのソース URLから取

得したバグの説明，および (3)ソース URLに記載されている，プログラムが本来満たすべき

正しい振る舞いを記述した期待される挙動の 3種類の静的情報を収集した．(2)および (3)の

情報は，2名の調査者が各バグのソース URLを確認し，必要な情報を抽出することで手動で

収集した．抽出内容に不一致が生じた場合には，協議を行い合意に達することで解決した．

4.4.2 動的情報

動的情報は，バグを含むプログラムの実行結果から構成され，エラーメッセージおよびそれ

に付随するスタックトレースを含む．プログラムが構文エラーなどにより実行できない場合に

は，エラーメッセージを含めている．実行は成功するものの，出力が期待される値と異なる場

合には，テスト結果を含める．各プログラムにおけるバグの種類は，バグを含むコードおよび

対応するテストコードの双方を実行することで判定した．バグの種類は，以下の 2種類である．

1. TE型: Qiskitライブラリによって例外が送出される場合のように，プログラムの実行

自体に失敗する例外発生 (Throw Exception)型

2. WO型: プログラムの実行は成功するものの，測定された量子状態が期待される状態と

異なる場合に AssertionError が発生してテストで失敗する場合のような，誤った出力

(Wrong Output)型

4.4.3 ミューテーション解析結果

本研究では，バグを含む各量子プログラムに対して QMutPy [13] を適用し，ミューテー

ション解析結果を取得した．それぞれの量子プログラムに対して複数のミュータントが生成さ

れる．生成されたすべてのミュータントに対して，元のプログラムに対応するテストスイート

を実行し，その実行結果を判定する．本研究では，これらの一連の結果をミューテーション解

析結果と呼び，各ミューテーション操作について以下の情報を含むものとする．

• line_number: ミューテーション演算が適用された行番号．

• mutation_operator: プログラムに適用されたミューテーション演算子の名称．
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• exception_traceback: テスト実行が失敗した際にミュータントに対して出力されるト

レースバック．

• status: ミューテーションテストの結果であり，以下のいずれかに分類される．

– killed：少なくとも 1つのテストにおいて実行結果が変化した場合．

– survived：テスト結果に変化が見られない場合．

– incompetent：実行不可能なミュータント (例：コンパイルエラー，クラッシュ)．

– time_out：実行が時間制限を超過した場合 (例：無限ループ)．

4.5 大規模言語モデル

本研究では，OpenAI APIを通じて最先端の大規模言語モデルである GPT-5を，デフォル

ト設定のまま使用した．本モデルは，実験実施時点において利用可能であったモデルの中で，

最新の推論モデルであったため選択した．LLMは非決定な性質を持ち，同一の入力に対して

異なる出力を生成する可能性があるため，各プロンプト構成について 5 回ずつ出力を生成し

た．その結果，合計 680件の修正コードおよびそれに対応する説明を取得した．それぞれのプ

ロンプト構成で取得できた修正コードおよび説明の件数を 表 3に示す．

表 3: 各プロンプト構成において取得できた修正コードおよびそれに対応する説明の件数

プロンプト構成 取得できた修正コードおよび説明の件数

S 90

S+D 90

S+M (全ての演算子) 90

S+M (量子演算子のみ) 70

S+M (古典演算子のみ) 90

S+D+M (全ての演算子) 90

S+D+M (量子演算子のみ) 70

S+D+M (古典演算子のみ) 90
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4.6 評価指標

本研究では，量子プログラムに対する自動修復手法を評価するにあたり，修正が正しく行わ

れたかどうかに加えて，その修正過程がどの程度説明可能であるかに重きを置く．そのため，

修正成功率および説明性という 2つの評価指標を用いる．

4.6.1 修正成功率

本研究では，生成された修正コードが Bugs4Q に含まれるすべてのテストを通過した場合

に，その修復を成功とみなす．修正成功率は，対象のプログラムのうち，5回の修復試行の少

なくとも 1回で修復に成功したプログラムの割合として定義する．

4.6.2 説明性

LLMが生成する説明には，バグの原因，修正箇所，および修正の根拠が含まれうる．これ

らに関する説明を評価するため，本研究では，パッチ説明に関する先行研究で提案されている

3つの核となる要素 [35]を採用する．

• Position：バグが発生している箇所．

• Cause：バグが発生した理由．

• Change：バグがどのように修正されたか．

説明の品質は，先行研究で提案されている以下の 3つの基準 [37, 36]に基づいて評価する．

• Correctness: 説明内容が，ベンチマークに含まれている正解の修正済みコードと照らし

て正確であるか．

• Completeness: 説明が，生成された修正パッチに含まれるすべての変更を十分に記述し

ているか．

• Complexity: 説明に，不要に複雑な記述が含まれていないか．

3つの説明要素 (Position，Cause，Change)それぞれについて，3つの評価基準 (Correctness，

Completeness，Complexity)を満たしているかどうかを，二値判定 (はい/いいえ)により評価

する．LLMが生成した説明に対してPosition要素を評価する際には，1)説明は，バグの発生

箇所を正解の修正済みコードに対して正確に (Correctly)説明しているか，2)説明は十分に
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網羅的 (Complete)であり，修復のために変更されたすべての箇所に言及しているか，3)バ

グの位置を説明するにあたり，不要な複雑さ (Complexity)を含んでいないか，の 3点を判定

する．生成された修正コードにおいてプログラムのどの部分が修正されたか確認し，もし 1箇

所でも言及されていない箇所があれば，Positionの Completenessについては「いいえ」とす

る．Cause要素を評価する際は，1)説明は，バグの発生理由を正確に (Correctly)説明して

いるか，2)説明は十分に網羅的 (Complete)であるか，3)バグの発生理由を説明するにあた

り，不要な複雑さ (Complexity)を含んでいないか，の 3点を判定する．Change要素を評価

する際は，1)説明は，バグの修正内容を，正解の修正済みコードに対して正確に (Correctly)

説明しているか，2)説明は十分に網羅的 (Complete)であり，修復のために行ったすべての

変更に言及しているか，3)修正内容を説明するにあたり，不要な複雑さ (Complexity)を含

んでいないか，の 3点を判定する．生成された修正コードで行われたプログラムの変更を全て

確認し，修正箇所については全て言及されているが，変更内容について 1つでも言及がない場

合，Positionの Completenessは「はい」で，Changeの Completenessは「いいえ」と判定

する．

以上の評価手順により，パッチ説明の 3要素 (Position，Cause，Change)それぞれについ

て 3つの評価基準を適用するため，LLMが生成した各説明に対して合計 9件 (3要素 × 3基

準)の二値評価が行われる．ミューテーション解析結果が説明性に与える影響を調査するため，

S, S+D, S+M (全ての演算子), S+D+M (全ての演算子)の 4種類のプロンプト構成で比較す

る．各プロンプト構成につき 5件の修正パッチが生成されるが，本研究ではそのうち最初に生

成された修正パッチのみを評価対象とし，18件のプログラム × 4種類のプロンプト構成で合

計 72件の説明を評価した．各説明の評価は 2名の評価者が独立に実施し，評価結果に不一致

が生じた場合には，協議を通じて合意を形成した．

4.7 実験環境

実機の量子ハードウェアは利用可能性が限られており，またノイズの影響が大きいため，す

べての実験は古典計算機上で実施した．Qiskit で記述されたプログラムは，古典計算機上の

シミュレータとして実行可能である．使用した Pythonのバージョンは 3.9である．使用した

Qiskit関連コンポーネントのバージョンは以下のとおりである．

• qiskit-aer 0.10.0
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• qiskit-aqua 0.9.5

• qiskit-ignis 0.7.1

• qiskit-terra 0.20.0

さらに詳細なバージョン情報は，レプリケーションパッケージ [38]に記載している．
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5 実験結果

本節では，提案手法の有効性を検証するために実施した実験結果を示す．本研究では，ミュー

テーション解析結果およびミューテーション演算子の違いが，量子プログラムの修正成功率お

よび説明性に与える影響を分析することを目的とする．具体的には，RQ1ではミューテーショ

ン解析結果の有無が修正成功率に与える影響を，RQ2 ではミューテーション演算子の違いが

修正成功率に与える影響を評価する．さらに，RQ3ではミューテーション解析結果が生成され

る説明の品質に与える影響について分析する．

5.1 RQ1: ミューテーション解析結果は量子プログラム APR の修正成功率にどのような

影響を与えるのか

表 4は，各プロンプト構成およびバグ種別ごとの修正成功率を示している．“Total”列は 18

件すべてのプログラムに対する修正成功率を表し，“TE”列および “WO”列は，それぞれ各バ

グ種別 (TE：8 件，WO：10 件) に対する修正成功率を示している．18 件のプログラムのう

ち，17件は少なくとも 1つのプロンプト構成によって修復可能であった．

ミューテーション解析結果は，動的情報と組み合わせて用いることで最も高い効果を発揮す

る．すべてのプロンプト構成の中で，S+D+M は全体で 94.4%という最も高い修正成功率を

達成した．WOバグのみを対象とした場合，S+D+M はすべてのプログラムを修復すること

に成功した．一方で，S+M の全体の修正成功率は，S+D よりも低かった．ミューテーション

解析にはテストの実行が必要であるため，M が利用可能な場合には D も同時に利用可能であ

表 4: プロンプト構成およびバグ種別ごとの修正成功率．“WO”はWrong Output，“TE”は

Throw Exceptionを表す．各列における最大値を太字で強調している．

プロンプト構成 Total [%] WO [%] TE [%]

S 77.8 70.0 87.5

S+D 88.9 90.0 87.5

S+M 83.3 80.0 87.5

S+D+M 94.4 100.0 87.5
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ることを意味する．したがって，S+M の修正成功率が低いことは問題にはならず，そのよう

な場合には容易に S+D+M を構成できる．対照的に，TEバグについては，修復に成功したプ

ログラムの集合 (8件中 7件)が，すべてのプロンプト構成で同一であった．これは，本カテゴ

リに属するバグを含むコードに対しては，動的情報やミューテーション解析結果が修復性能に

影響を与えないことを示している．WOバグでは，プログラムはクラッシュせずに実行が完了

するため，ミューテーション解析結果のような実行時情報が修復に有用である．一方，TEバ

グでは，プログラムはエラーによって停止するため，バグの存在が明確であり，静的情報のみ

で十分である．

Answer to RQ1: 動的情報とミューテーション解析結果を組み合わせることが最も効

果的であり，全体の修正成功率は 94.4%に達した．また，Wrong Output型のバグに対

しては，修正成功率 100%を達成した．

5.2 RQ2: ミューテーション演算子の違いは量子プログラム APR の修正成功率にどのよ

うな影響を与えるのか

表 5は，各プロンプト構成およびミューテーション演算子ごとの修正成功率を示している．

全ての演算子を利用した場合のミューテーション解析結果が，最も修正成功率を高める．

S+M，S+D+M いずれのプロンプト構成の場合でも，全てのミューテーション演算子を利用

表 5: プロンプト構成およびミューテーション演算子ごとの修正成功率．

プロンプト ミューテーション演算子 修正成功率 [%]

S+M 全て (量子 +古典) 83.3

S+M 量子のみ 78.6

S+M 古典のみ 83.3

S+D+M 全て (量子 +古典) 94.4

S+D+M 量子のみ 85.7

S+D+M 古典のみ 77.8
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した場合が最も修正成功率が高いことがわかる．バグ種別に観察すると，TEバグを含むプロ

グラムは全部で 8 件あるが，このうち 1 件のプログラムにおいて，量子ミューテーション演

算子のみでは 1つもミュータントが生成されなかった．このプログラムを除くと，TEバグに

関する結果は，ミューテーション演算子を削減しても全く変わらなかった．これは，TEバグ

の修正において，ミューテーション演算子の違いが修正成功率に影響しないことを示唆してい

る．一方，WOバグを含むプログラムは全部で 10件あり，このうち 3件のプログラムにおい

て，量子ミューテーション演算子のみではミュータントが 1つも生成されなかった．この 3件

のプログラムを除いた残りの 7件のプログラムのうち，ミューテーション演算子を削減するこ

とによって，修正の成否に影響があったプログラムは 4 件ある．このうち 3 件のプログラム

では，ミューテーション演算子をどちらか一方にすると，修正に失敗するようになった．反対

に，ミューテーション演算子を削減することで，修正可能になった事例も 1件存在した．全て

のミューテーション演算子を利用した場合に S+M プロンプトを利用すると修正できなかった

プログラムが，量子ミューテーション演算子のみでミューテーションした場合に修正できた．

この結果から，WOバグの修正においては，量子ミューテーション演算子の方が修正成功率の

向上にわずかに寄与しうるといえる．

Answer to RQ2: 全てのミューテーション演算子を利用することが，量子プログラム

の修正成功率の向上に効果的である．

5.3 RQ3: ミューテーション解析結果は量子プログラム APR の説明性にどのような影響

を与えるのか

表 6は，各プロンプト構成において，18件のプログラムのうち各評価基準を満たしたプロ

グラム数を示している．2名の評価者の一致率は 79.2%（648件中 513件＝ 72件の説明 × 9

項目の評価）であり，Cohenの κ [39]は 0.48であった．この値は，中程度の一致を示すもの

と解釈される [40]．また，本結果は，バグ欠陥限局に関する LLM生成説明を評価した先行研

究で報告されている κ = 0.55 [41]と同程度である．

表 6における太字の値から，S+D+M は 9項目中 6項目で最良の評価を達成しており，他

のプロンプト構成と比較して，より良質な説明を生成できていることが分かる．特に Position

要素に関しては，S+D+M がすべての評価基準で最良の評価を達成しており，動的情報および
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表 6: 各プロンプト構成における説明性．↑（↓）は，値が高い（低い）ほど良いことを示す．各

行における最良の値は太字で強調している．

評価基準 要素 S S+D S+M S+D+M

Correctness (↑) Position 12 12 13 14

Cause 14 13 12 12

Change 7 9 5 7

Completeness (↑) Position 13 15 12 15

Cause 18 15 16 15

Change 13 16 13 16

Complexity (↓) Position 2 2 1 1

Cause 2 2 1 1

Change 8 7 8 6

ミューテーション解析結果を活用することは，バグ位置に関する説明において高い有効性を示

している．一方で，S+D+M は Cause要素に対しては相対的に有効性が低い．この要素につ

いては，Correctnessおよび Completenessの両基準において，S のプロンプト構成が最良の

評価を達成した．その理由の一つとして，修復の原因に関する情報の多くは，静的情報の中に

既に含まれていることが考えられる．ミューテーション解析結果は，バグの原因を説明するよ

りも，詳細な位置情報に関する説明においてより効果的である．

Answer to RQ3: ミューテーション解析結果を動的情報と組み合わせることで，位置

に関する記述がより正確かつ網羅的で簡潔になり，9項目中 6項目で最良の評価を達成し

た．一方で，バグの原因に関する説明性に対する影響は限定的である．
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6 考察

6.1 プロンプト構成間における修復成功プログラムの差異

RQ1において，動的情報およびミューテーション解析結果の有効性が示されたことから，本

節では，これらの要素から特に恩恵を受けるプログラムを詳細に分析する．図 2は，各プロン

プト構成によって修復されたプログラム数を示している．すべてのプロンプト構成において，

18件中 14件のプログラムが修復されている一方で，S+D+M 構成のみが 17件のプログラム

の修復に成功している．これは，S+D+M 構成が，修復に成功したすべてのプログラムを包含

しており，動的情報およびミューテーション解析結果が修復性能を阻害していないことを示し

ている．以上の結果から，ミューテーション解析は，実世界のバグを含む量子プログラムに対

する LLMベース APRの有効性を向上させる具体的な利点を提供することが示された．
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1
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S+D+M

図 2: プロンプト構成別の修復成功プログラム数．

6.2 ミューテーション解析と修復結果の関係に関する事例分析

ここでは，ミューテーション解析結果が修復の成否や修正方針の決定にどのように寄与した

のかを明らかにするため，定性的な分析を行う．
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6.2.1 制御付きゲート置換における wire-mappingバグ

本節では，ミューテーション解析結果をプロンプトに含めることで修正に成功した量子プロ

グラムの一例として，制御付きゲートを DAG上で置換する際に量子ビットの対応関係が保持

されないバグを取り上げる．本プログラムは，S+D+M 構成においてのみ修復に成功した事例

である．

プログラムリスト 1は，制御付き GHZゲートを回路に追加した後，DAG上で制御を除去

した等価なゲートへ置換する処理の抜粋である．ここでは，制御量子ビットとターゲット量子

ビットの順序を，意図的に量子レジスタの順序と一致しない形で指定している．

プログラムリスト 1: 制御付きゲート置換を行うコードの修正例
1 cghz = ghz_circuit.to_gate().control(1)

2 circuit.append(cghz,[3,1,0,2])

3 dag=circuit_to_dag(circuit)

4
5 unctl_dag = DAGCircuit()

6 - for qreg in dag.qregs.values():

7 - unctl_dag.add_qreg(qreg)

8 + tmp_qreg=QuantumRegister(len(node.qargs),'q')

9 + unctl_dag.add_qreg(tmp_qreg)

10 + target_qargs=[unctl_dag.qubits[i]

11 + for i in range(node.op.num_ctrl_qubits,

12 + len(node.qargs))]

13 unctl_dag.apply_operation_back(node.op.base_gate,

14 - node.qargs[node.op.num_ctrl_qubits:],

15 + target_qargs,

16 node.op.params)

17 dag.substitute_node_with_dag(node, unctl_dag)

プログラムリスト 2: 制御付きゲート置換を行うコードの修正時に生成された説明
The wire order was being shuffled because the replacement DAG was built from the

full circuit's registers, which do not match the node's qarg order.

DAGCircuit.substitute_node_with_dag maps wires positionally, so the replacement

DAG must list qubits in the exact order of the node's qargs.

The fix constructs a fresh temporary DAG with a new QuantumRegister sized to

len(node.qargs), preserving their order, and applies the base gate to the target

subset. This prevents wire permutation and yields the expected layout.
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本来，この置換処理では，制御量子ビットの量子状態は変化せず，残りのターゲッ

ト量子ビットに対して GHZ ゲートが適用されることが期待される．しかし実際には，

substitute_node_with_dag(17 行目) による置換後の回路において量子ビットの対応関

係が入れ替わり，GHZゲートが本来とは異なる量子ビットに作用する回路が生成される．こ

の結果，見た目上は同様の回路構造を持つにもかかわらず，意味的には異なる量子プログラム

となる．

このようなバグは，コードの静的構造からは DAGの構築やゲート置換処理が形式的には正

しく記述されているように見える一方で，置換に伴う量子ビット対応関係の変化がコード上に

明示的に表れないため，原因箇所の特定が困難である．

ミューテーション解析結果の観察

ミューテーション解析ログを確認すると，大部分のミュータントはテストを通過（survived）

しており，テスト失敗（killed）は限られた箇所に集中して観測された．このことは，本不具合

の影響がプログラム全体に及んでいるのではなく，特定の処理領域に局在していることを示唆

している．

まず，置換用DAGを生成する処理に対する古典ミューテーションでは，プログラムリスト 1

の unctl_dag = DAGCircuit()（5行目）に関わる初期化やスコープの変更により，unctl_dag

が代入されない実行経路が生じ，その後 unctl_dag を参照した時点で UnboundLocalError

が発生したことがテストにより検出された．これは，本コードが unctl_dag の生成および代

入が成功することを暗黙の前提として実装されており，その前提が崩れると直ちに破綻するこ

とを示している．また，制御付きゲート生成 ghz_circuit.to_gate().control(1)（1行目）

に関連する量子ミューテーションの一部では，制御付きゲートを内部的に分解・変換する処理

において例外が発生し，テストが失敗するケースが観測された．

これらは，制御付きゲート生成およびそれに続く DAG変換・置換処理の一部が，特定の内

部的前提条件に依存して実装されており，その前提が満たされない場合にテストに失敗する経

路が存在することを示唆する．一方で，量子ゲートの種類変更や，古典的な条件式・演算子に

対する多くのミューテーションはテストを通過しており，本バグが特定の変換・置換処理周辺

に限定された問題であることが確認された．

修正に成功した理由の推測

本事例において修正に成功した要因の一つとして，量子ミューテーション演算子と古典
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ミューテーション演算子の両方を併用した点が挙げられる．実際に生成された説明 (プログラ

ムリスト 2)では，「置換用 DAGが回路全体の量子レジスタに基づいて構築されており，置換

対象ノードの qargs の順序と一致していないため，substitute_node_with_dagの位置ベー

スの対応付けによって wire の順序が入れ替わる」ことが不具合の原因として明示されている．

この説明は，DAG置換時における量子ビット順序という構造的要因に原因を帰着させており，

量子ミューテーションによって「量子演算自体は本質的な原因ではない」ことが示唆され，古

典ミューテーションによって「DAG構築や置換処理が前提条件に依存している」ことが顕在

化した結果として，このような特定に至った可能性がある．

6.2.2 量子回路の分解結果を返さない古典制御に関するバグ

本節では，量子回路の意味的誤りではなく，回路分解結果を関数の戻り値として返していな

いというプログラムの古典的な制御に起因するバグについて説明する．こちらは，S+M プロ

ンプトにおいて，量子ミューテーション演算子が修正要因の特定に繋がった事例である．

プログラムリスト 3にこのバグの修正例を示す．修正前のコードでは decompose() の結果

を標準出力に表示するのみで，関数の戻り値としては分解前の回路を返していた．修正後では，

decompose() が返す回路オブジェクトをそのまま戻り値として返すことで，テストが期待す

る回路表現と一致させている．これは，プログラムリスト 4で説明されている内容と一致する．

プログラムリスト 3: decompose結果を戻り値として返す修正例
1 def main():

2 qc = QuantumCircuit(1)

3 qc.u1(0.24, 0)

4 - print(qc.decompose())

5 - return qc

6 + return qc.decompose()

7
8 if __name__ == "__main__":

9 - main()

10 + print(main())

プログラムリスト 4: decompose結果を戻り値として返す修正時に生成された説明
Wrapped the circuit creation in a main() function and returned the decomposed

circuit so that the U1 gate is shown as its U3 decomposition, aligning with the

expected behavior and the test harness that calls main().
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本バグは量子回路の意味的な誤りではなく，プログラムの制御フローに起因するバグであ

る．QuantumCircuit.decompose() は分解後の新しい回路オブジェクトを返す API である

が，元のコードではその戻り値を無視し，分解前の回路を関数 main() の戻り値として返して

いた．その結果，U1ゲートの分解自体は正しく行われているにもかかわらず，テストでは分

解後の回路が観測されず，失敗していた．

ミューテーション解析結果の観察

量子ミューテーション演算子のみを用いた場合のログを分析すると，ミューテーションは

すべてプログラムリスト 3 における 3 行目に適用されていることがわかった．QGR(量子ゲー

ト置換) によってこの行に変更が加えられた多くのミュータントは，回路実行以前の段階で

Invalid bit index: '0.24' という例外を発生させ，killed と判定されている．これは，量

子ゲートを差し替えた結果，ゲート引数の順序や型が崩れ，量子的な意味の変化を観測する以

前に，古典的な APIレベルのエラーが発生していることを示している．一方で，一部のミュー

タントは survived や timeout となっており，量子ゲートの置換自体が必ずしもテスト結果に

影響を与えていないと分かる．

修正に成功した理由の推測

S+M プロンプトにおいて量子ミューテーション演算子のみを用いた場合に修正が成功した

のは，ミューテーションログが否定的な手がかりとして機能したためであると考えられる．量

子ゲートを変更しても，意味的な差分を得る前に例外が発生する，あるいはテスト結果に影響

しないミュータントが多く観測されたことで，量子回路そのものが修正対象ではないと推測し

やすくなった．その結果，LLMの推論は量子演算の修正ではなく，回路の生成および値の返

し方といった古典側の制御フローに集中し，decompose() の戻り値を返していないという本

質的な誤りに到達できたと考えられる．一方で，S+D+M プロンプトでは，動的情報が加わる

ことで，回路のどの状態が観測されているかがより明確になる．この場合は，ミューテーショ

ン演算子の種類に依らず，分解後の回路を返却するという修正に安定して到達できたと考えら

れる．以上より，本バグにおいては，ミューテーション情報単体よりも，動的情報が修正方向

を決定する上で重要な役割を果たしていたといえる．
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7 妥当性への脅威

7.1 構成妥当性

RQ1と RQ2では，すべてのテストを通過することを成功と定義したが，この定義は，修正

内容が必ずしも開発者の意図した変更と完全に一致していることを保証するものではない．そ

のため，報告された修正成功率の妥当性に影響を及ぼす可能性がある．

7.2 内的妥当性

GPT-5は非決定的な性質を持つため，同一のプロンプトであっても必ずしも同じ結果が得

られるとは限らない．本研究では，各プロンプト構成につき 5回の出力生成を行ったが，LLM

出力に内在するばらつきが，実験結果に影響を与えている可能性は否定できない．RQ3 にお

いては，説明性の主観性を低減するため，2名の評価者が手動で評価を行った．しかしながら，

評価には一定の主観的判断が不可避であり，量子プログラミングに関する専門知識の制約によ

り，誤分類が生じている可能性がある．

7.3 外的妥当性

本研究は，Qiskit のシミュレータ上で実行される量子プログラムを対象として実施してお

り，実機の量子計算機において同様の結果が得られるかどうかは明らかではない．また，本研

究の調査対象は，単一のベンチマーク (Bugs4Q)および単一の量子フレームワーク (Qiskit)に

限定されているため，より広範な実験対象 (他のバグベンチマーク，異なる量子フレームワー

ク，あるいは GPT-5以外の LLM)を用いた包括的な検証が今後必要である．
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8 おわりに

本研究では，実世界のバグを含むベンチマークを用い，量子プログラムに対する LLMベー

ス自動プログラム修復 (APR)において，ミューテーション解析結果をプロンプトに組み込む

ことの有効性を示した．実験の結果，静的情報，動的情報，およびミューテーション解析結果を

含む S+D+M プロンプト構成が，全体で 94.4%という最も高い修正成功率を達成することが

明らかとなった．また，量子ミューテーション演算子，もしくは古典ミューテーション演算子

のみを利用するのではなく，全てのミューテーション演算子を利用する場合に，最も修正成功

率が高いことが示された．さらに，S+D+M を用いて生成された説明は，バグ位置に関して正

確かつ網羅的で簡潔な記述を提供しつつ，最も低い複雑度を示した．これらの結果は，ミュー

テーション解析結果を動的情報と組み合わせることで，修正成功率と LLMが生成する説明の

品質の双方を向上できることを示している．本研究は，ミューテーション解析が量子プログラ

ムに対する LLMベース APRを改善するための有用な文脈情報となり得ることを示す，初の

実証的証拠を提示した．この知見は，信頼性と説明可能性の双方を高める量子プログラム向け

APR手法の開発に向けた，新たな方向性を示すものである．今後の課題として，以下の 3点を

挙げる．第一に，追加的な文脈情報の活用による手法の堅牢化である．本手法の適用可能範囲

は，ミューテーション解析が実行可能なプログラムに限定される．この制限を克服するため，

Qiskit等の公式ドキュメントから抽出した外部知識をプロンプトへ動的に統合し，ミューテー

ション解析を補完するアプローチを検討すべきである．第二に，開発者のドメイン知識ギャッ

プを埋めるための支援への応用が考えられる．量子 OSS開発者は物理学や量子計算の専門知

識が不足している傾向にあることが指摘されている [4]．本研究で実現した説明生成能力を活

用し，プログラムの修復過程で「なぜその修正が必要か」を提示することで，開発者が自身の

知識不足を認識し，学習を促す仕組みの構築を目指す．第三に，実用的な開発ワークフローへ

の統合である．量子プログラムの開発やレビューには高度な専門性が必要であり，依然として

困難が伴う．本手法を GitHubの Issueやプルリクエストのレビュー支援ツールとして実装・

展開することで，実際の OSS開発現場における説明の有用性を明らかにできると期待される．
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付録

プログラムリスト 5: システムプロンプト

# Task Description

As a debugger, you should return the fixed source code for the Buggy Code, together with a

concise explanation of the fix, strictly following Output Format.

You may utilize all available information provided in the user prompt -- including the

Buggy Code, Bug Description, Expected Behavior, Current Result, and Mutation Analysis

Result --

to infer the intended behavior and determine the necessary code modification.

# Information Items

- Buggy Code: <description>

- Bug Description: <description>

- Expected Behavior: <description>

- Current Result: <description>

- Mutation Analysis Result: <description>

# Mutation Analysis Context

To gain a deeper understanding of the behavior of the Buggy Code, we generate *mutants* by

applying a *mutation operator* that modifies exactly one statement in the Buggy Code.

Each mutant is executed against the same test suite used for the Buggy Code.

Multiple mutants can be generated from a single Buggy Code.

## Mutation Operator Types

<Mutation Operator's List>

## Mutation Test Status

The result of each mutant is categorized into one of four statuses:

<Mutation Test Status List>

## Mutation Result Format

The results of each mutation are presented as follows:

```yaml

<Each Mutation Result Format>

```

When multiple mutants are executed for a single Buggy Code, the mutation list contains

multiple items.

# Output Format
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Please output in the following format.

---

fixed_code:

```python

{FIXED_CODE}

```

fix_description: {FIXED_DESCRIPTION}

---

Important:

- For `fixed_code`, output the full source code **exactly as-is**, preserving all line

breaks and indentations.

- Do NOT escape newlines (no "\n").

Example:

---

fixed_code:

```

<Python Sample Code>

```

fix_description: <Fix Description Sample Text>

---
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