
DOI:10.1587/transinf.2015EDP7261

Publicized:2015/11/27

 This advance publication article will be replaced by the finalized version
after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

1

PAPER

Peer Review Social Network (PeRSoN) in Open Source Projects

Xin YANG†a), Nonmember, Norihiro YOSHIDA††b), Member, Raula GAIKOVINA KULA†††c), Nonmember,
and Hajimu IIDA†d), Member

SUMMARY Software peer review is regarded as one of the most im-

portant approaches to preserving software quality. Due to the distributed

collaborations in Open Source Software (OSS) development, the review

techniques and processes conducted in OSS environment differ from the

traditional review method that based on formal face-to-face meetings. Un-

like other related works, this study investigates peer review processes of

OSS projects from the social perspective: communication and interaction

in peer review by using social network analysis (SNA). Moreover, the re-

lationship between peer review contributors and their activities is studied.

We propose an approach to evaluating contributors’ activeness and social

relationship using SNA named Peer Review Social Network (PeRSoN). We

evaluate our approach by empirical case study, 326,286 review comments

and 1,745 contributors from three representative industrial OSS projects

have been extracted and analyzed. The results indicate that the social net-

work structure influences the realistic activeness of contributors signifi-

cantly. Based on the results, we suggest our approach can support project

leaders in assigning review tasks, appointing reviewers and other activities

to improve current software processes.

key words: Peer Review, Open Source Software, Social Network Analysis

1. Introduction

Software peer review refers to the code inspections by de-

velopers, rather than the authors themselves. It can be re-

garded as one of the most important activities to guarantee

the quality of software products [1] [2]. Software projects

adopt peer review for two principal reasons: reducing de-

fects and saving development cost. The traditional code re-

view (a.k.a code inspection) was established 30 years ago.

Code inspection requires experienced reviewers meet and

discuss the source code written by other developers [3] [4].

Peer review is not only an indicator of the quality of source

code but also signifies a healthy organization. Stable and

growing development communities always hope the expe-

rienced developers could share their knowledge with new

members. For example, developers share knowledge when

they perform code review activities [5].

Recently, the peer review process of Open Source Soft-

ware (OSS) varies from the traditional industrial setting.

One main reason is most OSS projects are geographically

distributed, whereas traditional industry projects take the

†Graduate School of Information Science, NAIST
††Graduate School of Information Science, Nagoya University
†††Graduate School of Information Science and Technology, Os-

aka University
a) E-mail: kin-y@is.naist.jp
b) E-mail: yoshida@ertl.jp
c) E-mail: raula-k@ist.osaka-u.ac.jp
d) E-mail: iida@itc.naist.jp

form of gathering developers in the same room. The mod-

ern OSS peer review applies a broadcasting method to an-

nounce code review tasks and locate appropriate reviewers.

However, we find that only a few of studies have focused on

the code review process.

Our objective is establishing a model of OSS code re-

view community and a set of quantitative measures to de-

scribe the code review process from both technical metrics

and non-technical metrics. Another motivation comes from

the importance of the human factor in software develop-

ment. The human factor has been researched from the diver-

sity of different cultures and the rise of globally distributed

projects [6].

To understand how contributors work and communi-

cate together, we need to investigate the structure of code re-

view community. In this work, we present PeRSoN, which

is a construction of social networks from peer review ac-

tivities, which is based on our previous work [7] [8]. We

categorize contributors into different role groups based on

their authorities, and we define the review activity as any

contribution in the review process. We use the PeRSoN to

evaluate two research questions: RQ1. Which contributor

role is the most important in the peer review community?

and RQ2.What is the relationship between contributors’ ac-

tivities and their network position?.

We applied PeRSoN to three large-scale OSS projects:

Android Open Source Project (AOSP), Qt and OpenStack

by case study. The results of analysis addressed our research

questions and gave hints about the relationships among OSS

peer review contributor roles, their activities and their net-

work structure. Our main findings can be summarized as

two points. First, the contributors who have the verification

authority are the most important (most central) role in the

review community (see Table 8). Second, a strong linear re-

lationship exists between activities of the contributors who

have verification authority and their network positions (see

Table 9). The main contribution of this work can be summa-

rized as follows:

• We established a novel approach to extract data for so-

cial network analysis from our raw dataset that mined

from code review repository.

• This study investigated the importance of OSS peer re-

view contributor roles and their review activities by us-

ing social network analysis.

• We could evaluate the performance of review contribu-

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 1 Contributor Roles in the Peer Review Process .

Role Definition

Contributor A contributor represents a participant who takes part in the code review process.

Author An author represents the contributor who submits a patchset and the owner of the review report belonged to this patchset.

Reviewer A reviewer represents the contributor who reviews the patchset to find defect and bug inside.

Committer A committer represents the contributor who has the authority to commit the patchset into the code repository.

Approver A approver is an experienced reviewer who reviews and approves the patchsets by checking whether the patchset changes follows

the best practices that have been established by the project fits the project’s stated purpose and the existing architecture.

Verifier A verifier handles building, testing and verifying the patchset and decides whether it is suitable for merging into

the source code. In many OSS projects, verifiers can be automated tools.

Fig. 1 The Review Process of Change #17768 in AOSP

tors from their personal activeness, behaviors, and so-

cial relationship using our approach.

The article is organized as follows. Section 2 describes

code review in software engineering as our research back-

ground. In Section 3, we present PeRSoN as our approach

that studies code review process from the social aspect. We

also detail the steps of the approach and the metrics we used.

Section 4 describes our experiment design, research ques-

tions, data processing, and results. Section 5 discuss the

implications and validity based on our findings. In Section

6, we lay out those important related work and the relation-

ship with this study. Section 7 describes the conclusion of

this paper and the future plan of our study.

2. Background

In the past decade, OSS as a dynamic software development

manner has been adopted by many software organizations.

Unlike traditional industry projects, OSS code is accessible

for patch contributions. With the rise of OSS projects, regu-

lar code inspection also has been modified to cater for OSS

projects development. It is not feasible for developers to al-

ways have communication or collaboration directly. As a

result, it is hard to search appropriate reviewers to perform

the high-quality review because of lacking the information

of contributors. Based on these difficulties, OSS peer re-

view applies a broadcasting method to announce and search

the appropriate reviewer for particular source code [9].

To facilitate these OSS peer review style, many soft-

ware projects even industrial projects have adopted peer re-

view tools. These companies perform code review instead

of face-to-face inspection meeting (e.g., Google uses Ger-

rit† in AOSP, and Microsoft uses CodeFlow as their review

tools††). Many large-scale OSS projects have adopted web-

based peer review. They also have claimed that peer review

is an important quality assurance technique in their projects

[10] [11] [12]. During the early time of OSS projects, most

OSS projects assign review task and retrieve feedback using

mailing list [13]. Currently, OSS projects adopt light-weight

peer review tools instead of using mailing-list. Applying

peer review tools, the status of code review can be tracked

easily and review contributors can participate in peer review

freely. The mechanism being used in OSS projects for peer

review provides benefits to communities like sharing knowl-

edge and experience among contributors.

3. Peer Review Social Network (PeRSoN)

3.1 Process and Networks

Peer Review Process.

The peer review process represents the process to per-

form code review related activities by code authors and re-

viewers to guarantee the reliable software. In our study,

contribution activity refers to the activities carried out by

contributors, which means both authors of code change and

reviewers. The primary contribution activities include sub-

mission of new patchset, revision of patchset, code review,

review approval, review verification, review discussion and

others. Based on the activities records in code review sys-

†https://code.google.com/p/gerrit/
††http://goo.gl/5zk0wF

YANG et al.: PEER REVIEW SOCIAL NETWORK (PERSON) IN OPEN SOURCE PROJECTS

3

Table 2 Centrality Measures and Social Implication.

Centrality Measures Social Implication

Degree Activity

Betweenness Control

Closeness Independence

tem, we calculate the number of activities then separate con-

tributors into different roles by their activities. Also, we in-

troduce the definitions of contributor roles that will be used

throughout this paper in Table 1.

Figure 1 is a practical example of review process. This

figure represents the review process of Change #17768 of

AOSP†. The first step of review is commit phase that author

submit new patchset and the system will notify reviewers by

email. Then in review phase, reviewers will perform reviews

based on this patchset (Change #17768). Every contributor

can perform review in a project, but only those reviewers

who have the authority of Approval or Verification(Always

chosen from core members, or experienced and active re-

viewers) can determine whether this change can be merged

(Some projects also use bots to build and test the patchset as

Verifiers). In this case, three different reviewers have per-

formed reviews. Mark Gross has reviewed but still need

someone with approval authority to approve it. As a result,

David Turner has approved this patchset, and JBQ (Jean-

Baptiste Queru) has verified it. The final step is integration

phase, system or particular core members will merge the ap-

proved and verified patchset into project code repository. In

this example, JBQ has merged this patchset to the reposi-

tory.

PeRSoN Definition.

Our approach uses social network described as a graph

network called PeRSoN. PeRSoN is a social network con-

structed by peer review dataset, which a vertex represents a

review contributor and an edge represents a review activity

happened between two review contributors (e.g., in Figure 1,

Mark, David, and JBQ performed code review for Bruce’s

patchset, and then they left comments as feedback to every-

one who have contributed in these reviews). In this study,

we define the network model as a undirected and weighted

network.

We assume that a contributor ci has a set of reviews Rci.

A review r in a patch set has a set of contributors including

both authors and reviewers {c1, c2, ... , cn}. A PeRSoN

edge e is formed when two contributors (e.g., ci and c j) are

members of the same review. Formally, e(ci, c j) exists if

ci ∈ Rci and c j ∈ Rc j where Rci ∩ Rc j , ∅.

Network Measures

Our model can be used to describe more complex dis-

tribution characteristics of the contributors. In our approach,

we evaluate the reviewers network by using the three stan-

dard centrality measures of Degree, Betweenness and Close-

ness based on the definitions from Freeman [14] as below:

• Degree Centrality.

Degree Centrality indicates the number of edges that a

†https://goo.gl/8uFZiv

Fig. 2 An Example of Contributors Evaluation Using PeRSoN

vertex has, A vertex (contributor) is defined as ck and

a(ci, ck) = 1 if ci and ck are connected, otherwise 0.

Degree Centrality of ck is defined as CD(ck):

CD(ck) =

n∑

i=1

a(ci, ck)

• Betweenness Centrality.

Betweenness Centrality of a given vertex indicates the

number of shortest paths from all vertices to all other

vertices that pass through this vertex. We define gi j

= the number of edges from vertex ci to vertex c j, and

gi j(ck) = the number of edges from vertex ci to vertex c j

that passing through ck. Then calculate the probability

bi j =
gi j(ck)

gi j

. Betweenness Centrality of ck is defined

as CB(ck):

CB(ck) =

n∑∑

i< j

bi j(ck)

• Closeness Centrality.

Closeness Centrality of one vertex indicates the inverse

of its farness. Farness indicates the sum of the dis-

tance between this vertex to all other vertices. We de-

fine d(ci, ck) = the distance (number of edges) linking

ci and ck. Then Closeness Centrality of ck is defined as

CC(ck)−1:

CC(ck)−1 =

n∑

i=1

d(ci, ck)

Freeman also suggested that each centrality measures

have social implications as shown in Table 2 [14]. First,

Degree centrality implies activity degree, a vertex with a

high degree in the network suggests this person should be

active and enthusiastic. Second, betweenness centrality im-

plies control. A vertex with high betweenness centrality acts

as a bridge among other vertices in social networks. Third,

closeness centrality implies independence of a vertex. A

vertex with low closeness represents that this people is in-

dependent and far away from all other people.

Figure 2 is an example of how we evaluate the perfor-

mance of contributors from their human factor and social

aspect using our approach. Here we simplified the networks

by ignoring the weight of edges. However, in the practical

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 3 Field and Definition in Comment History.

Field Definition

reviewId ID of the review report.

authorId The author who created the patch.

reviewerId The contributors who reviewed this patch.

lastUpdate The timestamp of last update in this review.

writtenOn the time when this review comment is created.

message the content of this review comment.

experiment, we calculate the weight of edges. The vertices

represent contributors and edges represent the review activ-

ities between contributors. We perform social network anal-

ysis for this network by calculating the centrality measures

for each contributor. After we calculated the centrality dis-

tribution, some observation can be summarized as follows:

c5 has the highest degree in this network, which indicated

he/she is the most active contributors; c1 has the highest be-

tweenness and it represents that he/she work as a bridge in

the community, and he/she could be a potential bottleneck,

which may cause problems to the process; c0 has the low-

est closeness which means he/she contribute as individual or

rarely collaborate with others.

Due to the importance of social aspect study on peer

review, we introduce the following research questions that

we mentioned in Section 1.

RQ1 Which contributor role is the most important in the

peer review community?

RQ2 What is the relationship between contributors’ activ-

ities and their network position?

As we introduced in Section 3.1, social network analysis

provides the data constructed from the social relationship

between people. We want to investigate who are the most

important contributors and is there a relationship between

review authority and social network position in peer review

community (RQ1). Moreover, whether realistic activities

of contributors correlate with their social network position

(RQ2). To address these research questions, we introduce

the details of our approach in next subsection.

3.2 Approach

We now introduce the main steps to our approach as three

steps; 1.) Dataset mining, 2.) Network generation and role

classification and 3.) Metrics analysis.

Dataset Mining. We used a dataset from our previous

work [15]†.

To extract raw peer review dataset we apply Gerrit of-

ficial API to obtain raw dataset. Gerrit code review system

provides an REST-like API for users ††. Users can access

and gain the raw dataset through HTTP for their use. The

raw dataset is stored in the form of JSON files. For each re-

view in peer review system, the JSON dataset has a unique

†The dataset is available to download at http://sdlab.
naist.jp/reviewmining/
††https://goo.gl/PsKwFx

Fig. 3 An Illustrative Example of Network Generation

ChangeID. The JSON dataset includes the following fea-

tures: The review information with reviewers’ comments,

the updates history of patches, and the details of when and

how they have been merged into the source code or be aban-

doned. We created scripts using Python to download the raw

dataset by using official API. The primary functions of the

scripts are extracting useful data out from raw dataset and

store this useful refined dataset into a database. In detail,

we extracted the data from the comments history of each re-

view reports in raw dataset. Some important data we used

is described as Table 3. In next paragraph, we will intro-

duce how we use these data to create the social network and

investigate the potential relationship between contributors.

Network Generation and Role Classification. We re-

gard the review as a communication channel between code

submitters and reviewers. Every review is a time of dis-

cussion or feedback between patch authors and reviewers.

Using the history dataset of each review, we extract the con-

nection of all the contributors in peer review communities.

The steps how we extract the review connection is intro-

duced as follows: First, it was assumed that all the review

related activities of the contributors in a review process are

recorded in the comments on the review reports, such as an

author has submitted a new patch or another reviewer has

reviewed a patch and given his/her comments based on the

patch change. This step is shown in Figure 3(a).

Second, to form the network, all contributors partici-

pating in the same review were connected, which indicates

the contributors who work in the same review have used the

same communication channel as a team work, as shown in

Figure 3(b).

Finally, we perform role classification by contributors’

activities from their comments (e.g., An approval comment

from a contributor can be regarded that this contributor has

the authority to approve a patch). We separate contribu-

tors by their different activities and authorities. More details

about classification will be introduced in Section 4.3.

Metrics Analysis. The analysis of this study in-

cludes analysis of the network metrics. Specifically, we use

the standard centrality measures: degree, betweenness and

closeness to obtain contributors’ network position. Then we

YANG et al.: PEER REVIEW SOCIAL NETWORK (PERSON) IN OPEN SOURCE PROJECTS

5

Table 4 Basic Information of AOSP, OpenStack and Qt.

AOSP OpenStack Qt

Period 2009/01∼ 2011/07∼ 2011/07∼

2011/06 2012/06 2012/06

of Comments 42449 64793 219044

of Contributors 1086 426 620

of Reviewers 451 165 207

of Approvers 99 86 201

of Verifiers 111 29 117

of Vertices 808 379 558

of Edges 15429 55301 150017

compare the centralities between different contributor role

groups to investigate which group is most important. We

then use statistical analysis to find correlations between the

contributors centrality measures and their activities.

4. Empirical Case Study

We evaluate our approach by applying PeRSoN network to

three real world OSS projects that using Gerrit as code re-

view system. These three projects require strict code review

mechanism, which means every code change must be re-

viewed first, then be commit to project code repository. An-

other reason for choosing these projects is that they adopt

code review system instead of a mailing list, which bring

more convenience when collecting the data.

4.1 Experiment Setup

At first, we studied the peer review process using Gerrit en-

vironment in three projects. We found that Gerrit system

manages contributors by providing different authorities. For

example, normal contributors (not core members) can re-

view code, but they have no permission to make the final

decision of change. While core members can both review

and judge a change. Because high-authority contributors

have more responsibility to the quality of change, we first

hypothesize the high-authority contributors are more impor-

tant to the review system as follow.

H1 The contributors who have the highest authorities

in code review play the most important role in code review

community.

We address RQ1 by accepting H1, and we introduce

how we compare the difference between high review au-

thorities contributors and other people in statistical analysis

in Section 4.4. Complementary to H1, we add a H0 as a

null hypothesis that indicates the contributors who have the

highest review authorities and other contributors are from

the same distribution.

We address RQ2 by calculating the correlation of con-

tributors’ activities and their network positions for different

contributor groups, which separated by the roles. We use

degree, closeness and betweenness to measure contributors’

network positions, and then compare their activities.

4.2 PeRSoN Generation

Datasets. AOSP (Android Open Source Projects) is an in-

dustrial open source project that developing software prod-

ucts for mobile device†. OpenStack project provides cloud

services platform ††. Only a few of verifiers are human, but

the primary verification works are done by Continuous In-

tegration (CI) tool. Qt Project is an application framework

that mainly use to develop graphical user interface †††. Qt

uses the term Sanity Review instead of Verify in its Gerrit

system.

Several necessary data in change information table is

needed to generate PeRSoN. e.g., Change-Id represents the

review report identification, a unique Hash code generated

by Git. Uploaded and Updated represents the timestamps

when this report created and when is the latest update.

When a patchset is under review, the author who has

submitted this patchset could still update and fix this patch-

set. A review report could include more than one patchsets

if the author upload revisions. In Gerrit, contributors can

check the status for current patchset such as who has re-

viewed or who will verify it. As a result, the comments

record all the reviewers who take part in the review are im-

portant. In this study, PeRSoN was generated by R †††† and

igraph package. The statistical analysis of this study was

performed by R.

Generated Networks. Applied the network generat-

ing method mentioned in 3.2 and in Figure 3, the social net-

works have been generated from these projects separately.

The basic information of these social networks is shown

as Table 4. In this study, the dataset of AOSP covers 2.5

years but OpenStack and Qt have only one year. Because

projects have different periods, the review dataset was sep-

arated into smaller samples. We split the dataset by one

month, three months and six months to observe how the net-

works of AOSP evolved through time.

In experiment period, we found that results of every

six months are most obvious and evident, and then we de-

cided to divide dataset by every six months. We also gen-

erate PeRSoN by the whole dataset, and the number of ver-

tices and edges are shown as Table 4. We include all the

participants in our networks as vertices, and all the review

comments between contributors as edges. We can found that

each project has a different size in networks.

From the information in Table 4, it is easy to find

out the common reviewers group is larger than the verifiers

group. This observation complies with the Onion Model of

OSS development [16] that considers the core members as

the most important and the smallest group. It can be sup-

posed that the smallest group of peer review, the verifiers

should also play the most important roles in code review

†http://source.android.com/
††http://www.openstack.org/
†††http://qt-project.org/
††††http://www.r-project.org/

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 5 Summary of Distributions for VAC, VC, AC, and C contributors

in AOSP

VAC VC AC C

Min 5 4 1 1

1st Qu. 46 15 7 3

Degree Median 108 29 24 6

Mean 251 56 25 13

3rd Qu. 293 49 31 12

Max 3349 439 79 779

Min 0.0000 0.0000 0.0000 0.0000

1st Qu. 0.0002 0.0000 0.0000 0.0000

Betweenness Median 0.0036 0.0000 0.0000 0.0000

Mean 0.0176 0.0017 0.0006 0.0002

3rd Qu. 0.0111 0.0024 0.0001 0.0000

Max 0.6509 0.0155 0.0065 0.0440

Min 0.3417 0.2837 0.3194 0.0024

1st Qu. 0.4274 0.3438 0.4089 0.3328

Closeness Median 0.4474 0.4099 0.4199 0.4033

Mean 0.4455 0.3884 0.4094 0.3708

3rd Qu. 0.4683 0.4263 0.4226 0.4121

Max 0.6793 0.4738 0.4473 0.5176

process. To observe results easily, we separated contribu-

tors into different roles from the activities of their review

comments that can be regarded as the history of their activi-

ties.

4.3 Contributor Roles Classifications

We classified the roles of the contributors by the activities

they performed during the code review. We extracted con-

tributors’ activities by mining their review comments. Ad-

ministrators or team leaders in a project can set the review

rules, such as evaluating code changes by a different score

or approving code change with certain review authorities.

Each project may have their rules and own authorities as-

signment. In this study, we investigated the review rules of

three projects to extract review activities from the comment

history. Moreover, we classify contributors roles more detail

to gain a better understanding of the relationship between

contributor groups.

As a result, a new classification method using activities

are proposed and applied. Based on our previous work re-

lated to contributor classifications [7] [17] [18], we apply a

classification method based on the activity types. Each con-

tributor is labeled based on their roles, such as V as Verifica-

tion, A as Approval, C as Code-Review. We investigate con-

tributors from all seven combinations of V, A, C, VA, VC,

AC, and VAC. For example, If one contributor has activities

records of review and verification, he will be noted as VC.

A contributor only contributed by approval without other ac-

tivities, he will be noted as A. If a contributor has Verifica-

tion activities also did code review and approved patchsets,

who takes part in everything can be noted as VAC.

4.4 Results

RQ1: Most Important Contributors. We address RQ1

by comparing the distributions of contributors’ network po-

sitions. In peer review process, verification should be the

Table 6 Summary of Distributions for VAC, AC, and C contributors in

OpenStack

VAC AC C

Min 263 9 1

1st Qu. 995 106 11

Degree Median 1497 277 29

Mean 2665 429 69

3rd Qu. 2604 650 78

Max 20050 2273 1016

Min 0.0000 0.0000 0.0000

1st Qu. 0.0006 0.0000 0.0000

Betweenness Median 0.0033 0.0002 0.0000

Mean 0.0337 0.0011 0.0000

3rd Qu. 0.0128 0.0012 0.0000

Max 0.6290 0.0139 0.0060

Min 0.5108 0.4725 0.3510

1st Qu. 0.5602 0.5099 0.4809

Closeness Median 0.5753 0.5232 0.4993

Mean 0.5966 0.5306 0.4966

3rd Qu. 0.6082 0.5498 0.5101

Max 0.8873 0.6087 0.5745

Table 7 Summary of Distributions for VAC, VC, A, and C contributors

in Qt

VAC VC AC C

Min 8 7 2 2

1st Qu. 363 48 6 6

Degree Median 776 124 36 20

Mean 1204 314 45 70

3rd Qu. 1420 346 82 68

Max 12010 4194 124 764

Min 0.0000 0.0000 0.0000 0.0000

1st Qu. 0.0000 0.0000 0.0000 0.0000

Betweenness Median 0.0000 0.0000 0.0000 0.0000

Mean 0.0002 0.0000 0.0000 0.0000

3rd Qu. 0.0000 0.0000 0.0000 0.0000

Max 0.0053 0.0006 0.0000 0.0001

Min 0.5014 0.5018 0.5004 0.5009

1st Qu. 0.5119 0.5053 0.5018 0.5023

Closeness Median 0.5213 0.5082 0.5036 0.5036

Mean 0.5283 0.5123 0.5039 0.5061

3rd Qu. 0.5369 0.5134 0.5059 0.5071

Max 0.6545 0.5919 0.5073 0.5351

highest authority in the peer review as it was the last stage

of change before its merge or abandoned. Moreover, from

Freeman’s study, we know in a network structure, the cen-

trality measures imply the importance of each node. As a

result, the most important contributors indicate they have

the highest centralities. In this study, three standard central-

ity measures have been used, and all of them have differ-

ent social implications. From the observations of our pre-

vious work based on AOSP, which we separated contributor

roles into Verifier and Non-Verifier, we created cumulative

graphs of contributors’ frequency, and we observed: Ver-

ifiers’ degree and betweenness increased over time while

non-verifiers did not change too much. Verifiers have a rel-

atively greater degree and betweenness than non-verifiers.

However, we did not find any relationship between Verifiers

and non-verifiers in terms of closeness.

Also, we separate contributors by more detail way as

we mentioned in Section 4.1. The classification results

YANG et al.: PEER REVIEW SOCIAL NETWORK (PERSON) IN OPEN SOURCE PROJECTS

7

Table 8 Comparison of Three Centrality Measures Distributions For Different Role Groups in AOSP,

OpenStack and Qt. V Represents Verification, A Represents Approval, C Represents Code-Review, And

The Following Number Indicate The Amount Of Reviewers In This Group (e.g., VC (26) represents that

26 contributors have performed Verification and also Code-Review in the current project). Each Row

Presents The Hypothesis Being Tested (e.g., VAC ∼ VC), The One-Side Alternative Hypothesis (i.e., >)

And The p-Value (With (*) Indicate That The Alternative Hypothesis Is Accepted.)

Projects Comparison Degree Closeness Betweenness

VAC (80) ∼ VC (26) >, p = 5.091e - 06, (*) >, p = 8.751e - 07, (*) >, p = 2.416e - 05, (*)

AOSP VAC (80)∼ AC (16) >, p = 9.292e - 07, (*) >, p = 2.897e - 05, (*) >, p = 2.059e - 05, (*)

VAC (80)∼ C (451) >, p < 2.2e - 16, (*) >, p < 2.2e - 16, (*) >, p < 2.2e - 16, (*)

OpenStack VAC (26) ∼ AC (69) >, p = 9.292e - 07, (*) >, p = 2.897e - 05, (*) >, p = 2.059e - 05, (*)

VAC (26) ∼ C (165) >, p < 2.2e - 16, (*) >, p < 2.2e - 16, (*) >, p < 2.2e - 16, (*)

VAC (116) ∼ AC (72) >, p = 1.447e - 14, (*) >, p = 1.536e - 11, (*) >, p = 1.096e - 09, (*)

Qt VAC (116)∼ A (13) >, p = 1.939e - 08, (*) >, p = 2.356e - 08, (*) >, p = 2.645e - 07, (*)

VAC (116)∼ C (207) >, p < 2.2e - 16, (*) >, p < 2.2e - 16, (*) >, p < 2.2e - 16, (*)

like follows: AOSP has four different contributor roles as

VAC, VC, AC, and C. From the observations we found:

VAC group has greater median value than other contribu-

tors’ groups, and the interquartile range of VAC group is

wider than other groups in terms of degree and between-

ness but not in closeness (see Table 5). OpenStack has three

groups: VAC, AC, and C. The results show that the VAC

group has greater median than other groups, and same as

AOSP, the interquartile range of VAC group is wider than

other groups in degree and betweenness but not in close-

ness (see Table 6). Qt has four groups: VAC, AC, A and C.

The observation shows, Qt’s VAC group has greater median

value than other groups in degree and closeness but not ob-

viously in betweenness, and the interquartile range of VAC

group is wider than any other group (see Table 7).

To compare the different centrality distributions among

VAC and other roles, we applied a Wilcoxon-Mann-Whitney

test to evaluate H1 [19]. We adopt Wilcoxon-Mann-

Whitney because that we found the population has only one

variable (each centrality) but with more than two levels (dif-

ferent roles), and we assume that each role group have in-

dependent centrality distribution and not affect each other.

All three project have tested by comparing the VAC role

with other groups existing in each project. VAC role with

VC, AC and C has proved in AOSP. The null hypothesis H0

that related to H1 is that VAC and other roles come from

the same distribution. H0 can be rejected, and H1 can be

accepted if VAC > VC, VAC > AC and VAC > C, the p-

value of all comparison is below the significant threshold of

0.05. The results of p-value are given in Table 8 are all be-

low 0.05. The null hypothesis is rejected, and the one-sided

alternative hypothesis is accepted, the true location shift is

greater than 0. For AOSP, OpenStack and Qt, The most ac-

tive Verifier (VAC) have significantly higher centrality than

other contributors.

As mentioned above, RQ1 can be addressed that the

most active Verifier (VAC) are the most important (central)

role in the review process.

RQ2: Activities and Network Position. We address

RQ2 by calculating the correlation of contributors’ activities

and their network positions. We use Spearman because we

Table 9 Correlation (Spearman) of VAC Activity And Centrality Mea-

sure.

Projects Degree Betweenness Closeness

AOSP 0.952 0.789 0.485

OpenStack 0.964 0.992 0.868

Qt 0.953 0.884 0.795

take the measurements from ordinal scales, while Pearson

correlation is more appropriate for the measurement taken

from interval scale. The correlations between the activi-

ties of different contributors and their centrality measures in

three projects have been calculated. We calculated the cor-

relation for each role group, but we only found a strong rela-

tionship in VAC contributors. The results in Table 9 shows

that in OpenStack and Qt, activities of VAC have a strong

linear relationship to all centralities. In AOSP, activities of

VAC have a strong linear relationship between degree and

betweenness, but not in closeness.

As a result, we addressed RQ2 by analyzing contrib-

utors’ activities and their centrality measures that indicate

their network position. We found that most active verifiers

(VAC), the relationship between their activities and their

network position had a strong positive correlation. Except

closeness centrality is unusual in AOSP, all the results show

that a strong positive correlation exists between with central-

ities and contributors’ activities. However, we did not found

a strong relationship for other contributors’ role groups.

5. Discussion

5.1 Implications

The results of the case study show that the network metrics

(centrality) can be used to provide useful information about

users roles based on their review activities. In RQ1, we find

that verifiers and not the approvers are the most important

roles of a review process. In RQ2, we find that again con-

tributors that are verifiers (VAC) have a significant correla-

tion with all other network measures.

To further understand the reviewer roles, additionally

studied the evolution of role types and network positions

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 4 Correlations for Three Centrality Measures Evolution.

over time. As depicted in Figure 4, the relationship between

the three centrality measures is compared, to estimate cor-

relation coefficients over time. This figure shows that strong

positive correlation exists between verifiers’ betweenness

and closeness, and also between their degree and between-

ness. We used this results to categorizing several exception

cases of contributors’ centralities. Based on the positive cor-

relation between verifiers’ betweenness and closeness, it is

impossible to find a verifier has high betweenness, but low

closeness or a verifier has low betweenness but high close-

ness. Exception cases have been analyzed in which:

• A verifier had high-degree and low-closeness. A veri-

fier has high-degree means he or she performed more

activities than other people, and the low-closeness

means he or she is far away from the network center.

• A verifier had low-degree and high-closeness. A veri-

fier has low-degree means he or she performed few ac-

tivities, and the high-closeness means he or she is close

to the network center.

We manually checked dataset to find special cases we

described above. We found a core member from AOSP,

who has a high degree and a low closeness (comparing

with median value). This contributor has contributed a lot

in Approvals and Verifications but participated only in ker-

nel/common project. While we found another maintainer in

AOSP who has low degree but high closeness, we inves-

tigated that this contributor contributed very limited times

but participated in many projects (e.g., platform/build, plat-

form/external/qemu, platform/external/clearsilver, and plat-

form/system/core).

In addition, the correlation results (see Figure 4) and

the exception cases to create Table 10 were combined.

From which the following observations can be made: First,

verifiers with high-closeness (close to the network center)

may have high-betweenness (more control). Second, veri-

fiers with high-degree (more contribution) may have high-

betweenness (more control). However, results show that no

significant correlation exists between verifiers’ degree (con-

Table 10 Exception Cases For Verifiers.

Low

Degree

Low

Closeness

Low

Betweenness

High

Degree
—

Active

/ Far away
—

High

Closeness

Inactive

/ Central
— —

High

Betweenness
— — —

tribution activity) and closeness (network position). Finally,

from these findings, several suggestions for the exception

cases can be provided:

• Verifiers with high-degree and low-closeness may be

experts in specialized fields because they perform more

activity and have few connections with other members

or work teams. Therefore, if they result to be special-

ists, the important review requests can be suggested to

send to them.

• Verifiers with low-degree and high-closeness may con-

tribute less; however, being close to the network center,

they may represent key figures tied to many other peo-

ple. So, verifiers as high authorities can be suggested

not to remove them or change their roles thoughtlessly.

Based on the analysis of detecting particular cases, cer-

tain contributors can be found in their different behaviors.

5.2 Threats to Validity

This study researched three large-scale OSS projects and

proved that the verifiers in peer review process are the most

important contributors. We discuss the limitations of this

study as the following:

• Dataset Period. Modern peer review process using

code review tools is a new technique for OSS projects,

YANG et al.: PEER REVIEW SOCIAL NETWORK (PERSON) IN OPEN SOURCE PROJECTS

9

different from many bug tracking systems that have

been used for more than ten years. In this study, review

dataset was extracted from three projects, the longest

period (AOSP) are still less than three years. Because

AOSP server has shut down for six months, the data

structures have been changed after that. As a result,

our study based on the dataset has relatively short term

period.

• Community Size. The community size can be re-

garded as an important factor in the project’s develop-

ment. Centrality measures are dependent on network

size, which is presumably changing over time. The

three projects have the different size that may affect the

analysis of results. This approach needs to be evaluated

by more projects with the different size.

• Measures of SNA. Due to our limited knowledge, in

this study centrality measures were introduced into the

study. More measures need to be introduced such as

component, k-core, in-degree/out-degree, modularity.

Also, the relationship between actors and time phases

can be improved to analyze the network evolution in

many different situations.

6. Related Work

Prior work related to this study could be divided into two

aspects: Studies on OSS community and OSS peer review;

Studies on the social aspect of software engineering. We

provide these related work as following two parts.

Raymond referred to the different structures and pro-

cesses of industry software and OSS as Cathedral and

Bazaar [20]. Rigby et al. examined Apache Server Project

for two techniques and created several metrics similar to tra-

ditional inspection experiments to find an efficient and ef-

fective OSS review technique [13]. Rigby et al. also have

studied the broadcast nature of OSS peer review, which is

totally different with traditional method [9]. Balachandran

suggested use review-bot to reduce human effort and im-

prove review quality [21].

Bird et al. extracted and studied the potential structure

for latent sub-communities in OSS projects using SNA [22].

Zanetti et al. adopted SNA to predict bugs into valid and in-

valid as the bug triage approach of OSS projects [23]. Kwak

et al. have studied social networks based on social network-

ing media such as Twitter [24].

The main difference between our study and related

works above is we study code review from social aspect

while traditional study are mainly from the technical per-

spective only. Moreover, based on the prior studies that

studied the human and social aspect of software engineer-

ing, we found the value and importance to perform study

from human and social perspective.

7. Conclusion and Future work

The motivation of using the approach of Social Network

Analysis to research OSS peer review process comes from

the distributed construction of OSS community and human

factors in software development. OSS projects, especially

industry-leaded OSS projects need developers to contribute

enthusiastically. As proposed human factor should affect

OSS review process, SNA approach was applied into this

case study has researched three OSS projects. Then review-

ers can be classified into several role groups with significant

differences. The results show there is a strong correlation

between the activities of most important contributors and

their network positions. Network measures distributions of

contributors can be used for evaluating contributors’ active-

ness. For example, project managements can identify con-

tributors who are enthusiastic but in a specialized field, and

contributors who are in important network position but un-

enthusiastic.

In our future plan, we plan to apply our approach

to more software projects. Since different projects have

different review processes and different review techniques,

we will apply this social network based approach to other

projects to prove the usefulness of our approach. We be-

lieve our approach will identify the main factors influencing

the review communities, and what are the main differences

between the review techniques and processes.

• We plan to establish a set of metrics that could mea-

sure the activeness and social relationship of each re-

view contributor in a review community, from both the

social aspect and technical aspect. We could investi-

gate the experienced and active contributors and assign

them to the important task and higher authority in cer-

tain fields.

• In order to establish healthy communities with the

high-productivity and good relationship, we plan to

investigate more networks from different projects.

Comparing the difference between network between

projects will give hints about the different patterns of

review networks. Based on these patterns, we can sug-

gest what kind of network structures are more suitable

for certain cases.

• All of this analysis could help to detect the weakness or

potential risk in the development process. In the end,

the results could help project managements to monitor

the communication and collaboration networks among

developers to control the quality of the software prod-

uct from human and social aspects.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Num-

bers 26730036.

References

[1] A. Ackerman, L. Buchwald, and F. Lewski, “Software inspections:

an effective verification process,” Software, IEEE, vol.6, pp.31–36,

1989.

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

[2] A.F. Ackerman, P.J. Fowler, and R.G. Ebenau, “Software in-

spections and the industrial production of software,” Proc. of a

symposium on Software validation: inspection-testing-verification-

alternatives, pp.13–40, 1984.

[3] M. Fagan, “Advances in software inspections,” Software Engineer-

ing, IEEE Transactions on, vol.SE-12, no.7, pp.744–751, 1986.

[4] M.E. Fagan, “Design and code inspections to reduce errors in pro-

gram development,” IBM Systems Journal, vol.15, no.3, pp.182–

211, 1976.

[5] P.C. Rigby and C. Bird, “Convergent contemporary software peer re-

view practices,” Proceedings of the 2013 9th Joint Meeting on Foun-

dations of Software Engineering, pp.202–212, 2013.

[6] D.E. Damian and D. Zowghi, “An insight into the interplay between

culture, conflict and distance in globally distributed requirements ne-

gotiations,” System Sciences, 2003. Proceedings of the 36th Annual

Hawaii International Conference on, pp.10–pp, IEEE, 2003.

[7] X. Yang, R.G. Kula, C.C.A. Erika, N. Yoshida, K. Hamasaki, K. Fu-

jiwara, and H. Iida, “Understanding oss peer review roles in peer re-

view social network (person),” Proc. of APSEC 2012, pp.709–712,

2012.

[8] X. Yang, “Social network analysis in open source software peer re-

view,” Proc. of FSE 2014, pp.820–822, 2014.

[9] P.C. Rigby and M.A. Storey, “Understanding broadcast based peer

review on open source software projects,” Proc. of ICSE 2011,

pp.541–550, 2011.

[10] A. Mockus, R.T. Fielding, and J. Herbsleb, “A case study of open

source software development: the apache server,” Proc. of ICSE

2000, pp.263–272, 2000.

[11] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information

needs in bug reports: improving cooperation between developers

and users,” Proceedings of the 2010 ACM conference on Computer

supported cooperative work, pp.301–310, 2010.

[12] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code

review by predicting reviewers and acceptance of patches,” Research

on Software Analysis for Error-free Computing Center Tech-Memo

(ROSAEC MEMO 2009-006), 2009.

[13] P.C. Rigby, D.M. German, and M.A. Storey, “Open source software

peer review practices: a case study of the apache server,” Proc. of

ICSE 2008, pp.541–550, 2008.

[14] L.C. Freeman, “Centrality in social networks conceptual clarifica-

tion,” Social Networks, vol.1, no.3, pp.215–239, 1978-1979.

[15] K. Hamasaki, R.G. Kula, N. Yoshida, A. Cruz, K. Fujiwara, and

H. Iida, “Who does what during a code review? datasets of oss peer

review repositories,” Proc. of MSR 2013, pp.49–52, 2013.

[16] K. Crowston and J. Howison, “The social structure of free and open

source software development,” First Monday, vol.10, no.2, 2005.

[17] R.G. Kula, A.E.C. Cruz, N. Yoshida, K. Hamasaki, K. Fujiwara,

X. Yang, and H. Iida, “Using profiling metrics to categorise peer

review types in the android project,” Proc. of ISSRE 2012, pp.146–

151, 2012.

[18] P. Thongtanunam, X. Yang, N. Yoshida, R.G. Kula, A.E. Ca-

margo Cruz, K. Fujiwara, and H. Iida, “Reda: A web-based visu-

alization tool for analyzing modern code review dataset,” Proc. of

ICSME 2014, pp.605–608, 2014.

[19] D.A. Wolfe and M. Hollander, “Nonparametric statistical methods,”

Nonparametric statistical methods, 1973.

[20] E.S. Raymond, The Cathedral and the Bazaar, 1st ed., O’Reilly &

Associates, Inc., Sebastopol, CA, USA, 1999.

[21] V. Balachandran, “Reducing human effort and improving quality in

peer code reviews using automatic static analysis and reviewer rec-

ommendation,” Proc. of ICSE 2013, pp.931–940, 2013.

[22] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent

social structure in open source projects,” Proc. of FSE 2008, pp.24–

35, 2008.

[23] M.S. Zanetti, I. Scholtes, C.J. Tessone, and F. Schweitzer, “Catego-

rizing bugs with social networks: a case study on four open source

software communities,” Proc. of ICSE 2013, pp.1032–1041, 2013.

[24] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social

network or a news media?,” Proceedings of the 19th International

Conference on World Wide Web, pp.591–600, 2010.

Xin Yang is a PhD student in the Gradu-

ate School of Information Science at Nara In-

stitute of Science and Technology (NAIST). He

received his M.E. from NAIST in 2013. His re-

search interests are in Empirical Software Engi-

neering, Mining Software Repository, Software

Peer Review, and Social Network Analysis. He

is a student member of ACM.

Norihiro Yoshida received his BE from

the Kyushu Institute of Technology in 2004 and

his Master and PhD from Osaka University in

2006 and 2009, respectively. He is an associate

professor at Nagoya University. Before joining

Nagoya University in 2014, he was an assistant

professor at the Nara Institute of Science and

Technology from 2010. His research interests

include program analysis and software develop-

ment environment. He is a member of the IEEE,

the IEEE Computer Society, and the ACM.

Raula Gaikovina Kula is a currently Re-

search Assistant Professor at Software Engi-

neering Lab, Osaka University. In 2013, he

graduated with a PhD from Nara Institute of Sci-

ence and Technology. He is currently an ac-

tive member of the IEEE Computer Society and

ACM. His research interests include repository

mining, peer review, API & software reuse and

software visualizations.

Hajimu Iida received his B.E., M.E., and

Dr. of Eng. degrees from Osaka University in

1988, 1990, and 1993, respectively. From 1991

to 1995, he worked for the Department of Infor-

mation and Computer Science, Faculty of Engi-

neering Science, Osaka University as a research

associate. Since 1995 he has been with the

Graduate School of Information Science, Nara

Institute of Science and Technology, Japan. His

current position is a Professor of the Laboratory

of Software Design and Analysis. His research

interests include modeling and analysis of software and development pro-

cess.

