
Towards Detection and Analysis of Interlanguage
Clones for Multilingual Web Applications

Yuta Nakamura∗, Eunjong Choi∗, Norihiro Yoshida†, Shusuke Haruna∗ and Katsuro Inoue∗
∗Osaka University, Japan

{n-yuuta@ist, ejchoi@osipp, haruna@ist, inoue@ist}.osaka-u.ac.jp
†Nagoya University, Japan

yoshida@ertl.jp

Abstract—In this position paper, we introduce an instance of
interlanguage clones in a multilingual web application system and
then discuss research challenges on the detection and analysis.

I. MOTIVATION

The number of web applications have rapidly increased

over the last decades. In order to speed up web application

development, developers frequently write code clones [4]. As

a result, many web applications contain more than 50% code

clones [2][3][4]. Since code clones can be one of the factors

that increase maintenance costs in general, code clones in a

web application system should be detected and managed to

alleviate maintenance costs [2][4].

Web application systems are typically written in multiple

programming languages (e.g. HTML and JavaScript) where

different languages rely on each other [2][4]. This causes

interlanguage clones, each of which spans different program

files that are written in different programming languages in

the development of web application systems. In this position

paper, we define an interlanguage clone as a set of code

fragments So that satisfies the following conditions:

• So span multiple files F (where |F | ≥ 2)

• multiple programming languages are used in files F
• each code fragment ci ∈ S is callee or caller of a set

of the other code fragments Sa (where |Sa| ≥ 1, Sa ∈
So, ci /∈ Sa)

• ∃Sc(Sc ≡ So) where ≡ means that each code fragment in

So has its clone in Sc and the same callee/caller relations

exist between the code fragments in Sc.

To give a clear idea of interlanguage clones across multiple

program files in web application systems, we introduce a

pair of interlanguage clones in Webogram1, an open-source

telegram web application (Fig. 1). This pair of interlanguage

clones is spread across view and logic files implemented

by HTML and JavaScript. Each of the code fragments in

the HTML files (Fig. 1(a) and 1(c)) calls the functions up-
dateGroup (Fig. 1(b)) and updateChannel (Fig. 1(d)) in

the ‘controller.js’ file, respectively. The pair of interlanguage

clones (a, b) and (c, d) in Fig. 1 is considered to be maintained

simultaneously (e.g. enhancement, bug fix). For example in

Fig. 1, if developers change a view of the HTML file (Fig.

1https://web.telegram.org

1(a)) of the interlanguage clone (a, b), they have to consider

if the HTML file (Fig. 1(c)) of its clone pair, (c, d), should

be modified or not. For another example, if developers add an

exception handling to updateGroup (Fig. 1(b)), they have to

determine that they should add the code to updateChannel
(Fig. 1(d)).

Assuming that a clone pair in the ‘html’ files (Fig. 1(a),

Fig. 1(c)) and the ‘js’ file (Fig. 1(b), Fig. 1(d)) is detected,

respectively, developers should check these two clone pairs.

However, if a clone pair is detected as a larger-granularity

code clones, they only check a clone pair (Fig. 1 (a) and (b),

Fig. (c) and (d). As a result, they can save time and efforts for

checking all the detected code clones. Therefore, we expect

that detecting these code clones from web applications helps

developers to easily perform maintenance.
Although some previous approaches detect code clones from

multilingual software systems [1][2], the granularity of the

detection is a code fragment written in only one language.

Therefore, they are against our purpose of detecting interlan-

guage clones which detection granularity is a code fragment

spanning multiple languages.
In order to detect these code clones from web applica-

tions, we discuss a method to detect interlanguage clones

(i.e., larger-granularity code clones spread throughout different

programming languages). We expect that larger-granularity

can decrease efforts to check all of the detected code clones

from web applications.

II. RESEARCH CHALLENGES

Target programming languages: Web applications are

mainly written in multiple programming languages. In order

to detect interlanguage clones from web applications, we can

adopt a language-independent approach. However, we need

to detect code clones using a language dependent approach

because program dependent approach is more precise than

an independent one. In order to use a program dependent

approach, we should decide on the target programming lan-

guages. To solve this problem, we investigated frequencies

of co-used programming language combinations used in web

applications. In detail, at first, we randomly selected 109,547

open source web applications that were developed until 2014

from GitHub2. After that, we excluded applications written

2https://github.com/

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

978-1-5090-1855-0/16 $31.00 © 2016 IEEE

DOI 10.1109/SANER.2016.55

17

�������	

��
��
�
����
��	����	���
��
��	����
������

�������	

��
��
�
����
��	���������

�

������

�������	

��
��
�
����
��	����������

����������	

����������
������������� ��

�

!"��
���#$���
��	���	���������������

����������	

����������
������
�����
	���������	

��%��
	�������&	����'���	����(��

�������������	��)&	����!"��

����������&	����'���	�����*�+�&	����������
��
���	�����+���+�&	����������
��
��+�,��#$���

�����
	�������&	����'���	���������������

������

������

�������	

��
��
�
����
��	����	���
��
��	����
������

�������	

��
��
�
����
��	��������

�

������

�������	

��
��
�
����
��	����������

����������	

����������
������������� ��

�

!"��
���#$���
��	���	���������������

����������	

����������
������
�����
	���������	

��%��
	�����������'���	����(��

�������������	��-����!"��

��������������'���	�����*�+�����������
��
���	�����+���+�����������
��
��+�,��#$���

�����
	�����������'���	���������������

������

������

����'���	��-����������������!"�%

���!.
����'�����'�	
�"�%

������/

(

�

����'�����'���	�����������/

�	��	��0��
�
�/

�

�������	��0��
�
�'�&��!���������!���	��
"�%

1��2��	��
3	�	���'�����

2��	��3�

	��!���	��
"/

�	������4��������1��)&	�
3	�	���'���)&	�4�����!
����'�&	�56"/

 ����4����' ���	��	
�!+&�
���������
+7�%����4�����������4�����("/

("8+���	���+9!���������!"�%

�������
����'�����'���	����/

("/

�

����'���	��)&	���� �����������!"�%

���!.
����'�&	����'�����'�����&"�%

������/

(

�	� ���
�
�
���89/

�

����'�&	����'���	���� ������/

������� :'	��!���
�
�
"'�&��!���������!"�%

�	� ����4����� ��1��)&	�
3	�	���'���)&	�4�����!
����'�&	�56"/

 ����4����' ���	��	
�!+&�
���������
+7�%����4�����������4�����("/

("8+���	���+9!���������!"�%

�������
����'�&	����'���	����/

("/

(/

��������	
���	
�������
� ������������
�����

������������
��������������
�	
���	
�������
�

Fig. 1: An Example of Clone Pair in Webogram

in only single language and then found 66,825 applications

using multiple languages. Finally, we applied a pattern mining

approach to these applications to identify frequently co-used

program languages. As a result, we found out that Html
and JavaScript are the most frequently co-used (22.9%) lan-

guages for web applications. They are followed by PHP and

JavaScript (6.5%), C and C++ (6.1%), and HTML and Ruby
(6.0%). These results imply that an approach that detects code

clones across HTML and JavaScript files is necessary.

Approach for detecting clones: Web applications contain

source code written in co-dependent multiple programming

languages. Therefore, detecting interlanguage code clones

from web applications is a challenging issue. One of the

solutions for detecting interlanguage code clones from web

applications is merging co-dependent code clones detected

from each programming language. In detail, after detecting

code clones from files written in each programming language,

the code clones are merged into an interlanguage clone based

on call relationship or data flows among the code clones.

In order to detect code clones from each programming

language of web applications, we can use existing code clone

detection tools [5]. However, as shown in Fig. 1, some code

clones might have gaps such as addition or insertion of

statements. Therefore, tools that detect Type-3 code clones

can be a good candidate for detecting code clones[5].

However, we have one problem on this domain. Some files

are written in two or more languages (e.g., an HTML file

including JavaScript between <script> and </script>
tags). These tangled files are an obstacle to analyze for clone

detection tools described above. Therefore, it is necessary for

our approach to separate them to files written in only one

language.
Management for detected clones: After code clones are

detected from web applications, results of detected code clones

should be reported. However, because code clones might be

spread throughout web applications, we face the challenge

of how detected code clones should be presented to the

developer and in what format. These design decisions will

affect management of detected code clones.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

bers 25220003, 26730036 and 15H06344.

REFERENCES

[1] N. Kraft, B. Bonds, and R. Smith. Cross-language clone detection. In
Proc. of SEKE 2008, pages 54–59, 2008.

[2] T. Muhammad, M. F. Zibran, Y. Yamamoto, and C. K. Roy. Near-miss
clone patterns in web applications: An empirical study with industrial
systems. In Proc. of CCECE 2013, pages 1–6, 2013.

[3] D. C. Rajapakse and S. Jarzabek. An investigation of cloning in web
applications. In Proc. of ICWE 2005, pages 252–262, 2005.

[4] D. C. Rajapakse and S. Jarzabek. Using server pages to unify clones
in web applications: A trade-off analysis. In Proc. of ICSE 2007, pages
116–126, 2007.

[5] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Sci.
Comput. Program., 74(7):470–495, 2009.

18

