
VOL. E99-D NO. 4
APRIL 2016

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016
1117

PAPER

Dependency-Based Extraction of Conditional Statements for
Understanding Business Rules

Tomomi HATANO†a), Nonmember, Takashi ISHIO†b), Member, Joji OKADA††c), Yuji SAKATA††d), Nonmembers,
and Katsuro INOUE†e), Fellow

SUMMARY For the maintenance of a business system, developers
must understand the business rules implemented in the system. One type of
business rules defines computational business rules; they represent how an
output value of a feature is computed from the valid inputs. Unfortunately,
understanding business rules is a tedious and error-prone activity. We pro-
pose a program-dependence analysis technique tailored to understanding
computational business rules. Given a variable representing an output, the
proposed technique extracts the conditional statements that may affect the
computation of the output. To evaluate the usefulness of the technique, we
conducted an experiment with eight developers in one company. The re-
sults confirm that the proposed technique enables developers to accurately
identify conditional statements corresponding to computational business
rules. Furthermore, we compare the number of conditional statements ex-
tracted by the proposed technique and program slicing. We conclude that
the proposed technique, in general, is more effective than program slicing.
key words: static analysis, control-flow analysis, data-dependence analy-
sis, reverse engineering, Java

1. Introduction

For the maintenance of a business system, developers must
understand the business rules implemented in the sys-
tem [1]–[3]. Business rules are classified into several types,
such as computational business rules and constraints [1].
Computational business rules define how the output of a
feature is computed from the valid inputs. Constraints re-
strict the actions that the system or its users are allowed to
perform. In the implementation of these rules, conditional
statements (e.g., if statements) affect output values in the
computations and verify that the constraints are not violated.

Understanding business rules is a tedious and error-
prone activity for two main reasons [4]. First, the docu-
mentation describing the rules is typically lost, outdated,
or otherwise unavailable. Second, the implemention of the
rules is scatterd throughout the source code. Developers are
required to extract conditional statements corresponding to

Manuscript received May 25, 2015.
Manuscript revised October 17, 2015.
Manuscript publicized January 8, 2016.
†The authors are with Graduate School of Information Science

and Technology, Osaka University, Suita-shi, 565–0871 Japan.
††The authors are with Research and Development Head-

quarters, Center for Applied Software Engineering, NTT DATA
Corporation, Tokyo, 135–8671 Japan.

a) E-mail: t-hatano@ist.osaka-u.ac.jp
b) E-mail: ishio@ist.osaka-u.ac.jp
c) E-mail: okadaju@nttdata.co.jp
d) E-mail: sakatayu@nttdata.co.jp
e) E-mail: inoue@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2015EDP7202

the business rules. When understanding computational busi-
ness rules, developers must answer which of the conditional
statements correspond to the computational business rules
for each output of a feature.

Backward program slicing [5] is used to understand
business rules [2]–[4], [6], [7]. Cosentino et al. [4] proposed
an application of program slicing to extract statements cor-
responding to business rules that compute a particular vari-
able. However, they reported that the extracted statements
may include conditional statements that do not correspond
to the business rules. Those statements are called technical
statements [4] because they frequently verify whether sys-
tem resources, such as a data file or database connection,
are available for executing a feature. The technical state-
ments themselves do not affect the output directly, although
they do determine if the computation is executed. Further-
more, the extraction based on program slicing does not dis-
tinguish the types of rules, although Wiegers et al. state that
distinguishing them is helpful to understand business rules.
Consequently, program slicing is not enough to understand
business rules because it may extract technical statements
and does not distinguish the types of rules.

We propose a program-dependence analysis technique
tailored to understanding computational business rules.
Given a variable representing an output, the proposed tech-
nique extracts the conditional statements that may affect the
computation of the value of the variable. To exclude tech-
nical statements from the analysis, we construct a partial
control-flow graph (CFG), every path of which outputs a
computed result. Further, we ensure that the specified vari-
able is data-dependent on a statement that is directly or tran-
sitively dependent on the extracted conditional statements.
Our technique is designed to extract conditional statements
corresponding to computational business rules, whereas the
existing techniques extract multiple types of rules. In this
paper, conditional statements corresponding to computa-
tional business rules are called relevant statements.

We evaluated whether this technique actually con-
tributes to the performance of developers investigating com-
putational business rules. The evaluation was a controlled
experiment based on an actual process in one company.
Eight subjects in the company were requested to identify
relevant statements to a system output. The results confirm
that the proposed technique enables developers to more ac-
curately identify relevant statements, without affecting the
time required for the task.

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers

1118
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

The contributions of this paper are summarized as fol-
lows.

• We propose a program-dependence analysis technique
for understanding business rules. The proposed tech-
nique is a variant of program slicing that excludes tech-
nical statements.
• We evaluate our technique by conducting an experi-

ment involving eight industrial experts. To the best
of our knowledge, this is the first study to apply an
automated extraction technique to experts’ tasks in
business-rule reverse engineering.
• We apply the proposed technique and program slicing

to two systems developed in industry and demonstrate
that the proposed technique extracts a reduced number
of conditional statements.

Note that this paper is an extension of our earlier work [8].
We conduct a comparison with program slicing in this paper.

The remainder of this paper is organized as follows.
Section 2 presents related work. Section 3 provides a mo-
tivating example. Sections 4 and 5, respectively, describe
and evaluate the proposed technique. Section 6 offers our
conclusions and future work.

2. Related Work

Sneed et al. [9] proposed a framework based on a pro-
gram slicing technique to extract business rules from source
code. They concluded that techniques for data flow analysis
and extracting partial paths are required for understanding
business rules. The framework is extended for COBOL [6],
C/C++ [2], Java [7], respectively. Furthermore, Cosentino
et al. [4] extended the framework for COBOL programs
based on the principles of Model Driven Engineering. They
automatically identify variables representing outputs using
the COBOL command and visualize the extracted rules at
a higher abstraction level. Although they do not evalu-
ate their technique, a preliminary experiment indicates that
their extraction based on program slicing includes condi-
tional statements that do not correspond to business rules.
Our technique enables the exclusion of those statements and
extracts conditional statements corresponding to computa-
tional business rules, while the existing techniques extract
multiple types of rules without distinguishing them. Fur-
thermore, we conducted a controlled experiment to evaluate
the ability of the proposed technique to help developers.

Various variants of program slicing have been proposed
for different situations. Thin slicing [10] extracts only as-
signment statements that define the value of a given variable.
It excludes all conditional statements from a program slice
for code inspection and debugging of large-scale systems.
Decomposition slicing [11] extracts statements that may af-
fect all the statements using a given variable. A decompo-
sition slice is computed from the union of traditional pro-
gram slices to capture all computations on the variable for
software maintenance. Amorphous slicing [12] transforms
statements extracted by program slicing to simplify a pro-

gram while preserving the semantics of the program. The
simplification (e.g., expanding function calls) is convenient
in the context of program comprehension. Our technique
focuses on partial control-flow paths for a given variable to
understand computational business rules.

Dubinsky et al. [13] proposed a method to identify
business rules in the code using information retrieval tech-
niques. They found that the quality of their technique de-
pended on terms used in identifiers and comments. Because
idiosyncratic abbreviations are frequently used in the code
of a business system, developers require knowledge of the
system. Our dependency-based technique is independent of
identifiers and comments.

Pichler [14] proposed a symbolic execution technique
to extract computations from Fortran programs. Symbolic
execution enables the computations to be represented by
equations. However, it typically has low scalability ow-
ing to the fact that all the paths of a program must be an-
alyzed (called path explosion problem). Furthermore, loop
statements and invocations of libraries are challenging for
symbolic execution. To overcome these challenges, their
technique requires actual test cases and their execution re-
sults. Jaffar et al. [15] proposed a path-sensitive control-
flow graph where a statement may be represented by mul-
tiple vertices. This graph is constructed by symbolic exe-
cution and slicing the results (called tree slicing). Although
they attempt to reduce the number of the paths to be ana-
lyzed by merging vertices, the path explosion problem is a
challenge for them. Because our technique excludes condi-
tional statements that do not correspond computational busi-
ness rules, it reduces the number of the paths compared to
traditional slicing. We expect that our technique can con-
tribute to the path explosion problem in the extraction of
business rules.

3. Motivating Example

3.1 Business Rules Implemented in Source Code

Throughout this paper, we use an example feature that in-
cludes the business rules of an imaginary facility. The fea-
ture computes a usage fee and a time limit for the facility.
The charge is $15 for adults, $10 for students, and $5 for
children. The time limit is 2 hours for regular members and
3 hours for premium members. Tables 1(a) and 1(b) de-
scribe the computational business rules for the fee and time
limit, respectively. The facility defines a constraint; children
cannot become premium members.

The feature is implemented by the single method in

Table 1 Tables representing computational business rules for the fee and
time limit

(a) fee
values conditions

5 children
10 students
15 adults

(b) time limit
values conditions

3 premium members
2 no members

HATANO et al.: DEPENDENCY-BASED EXTRACTION OF CONDITIONAL STATEMENTS FOR UNDERSTANDING BUSINESS RULES
1119

Fig. 1 An example method implementing business rules

Fig. 1. The method action requires two variables as input:
status, representing a user type (child / student / other), and
member (regular / premium). The method computes two
output variables corresponding to a usage fee and a time
limit. The output variables are represented by the param-
eters of the setFee and setHour methods.

The method action includes three steps. The first step
verifies if the database access at line 2 produced an er-
ror. The second step computes an output fee from lines
5 through 14, following the rules presented in Table 1(a).
Lines 7 through 9 examine a constraint between two input
variables and cancel the computation if the constraint is vi-
olated. The third step computes an output hour at lines 15
through 18, following the rules presented in Table 1(b).

Developers maintaining the system must recover Ta-
bles 1(a) and 1(b) from the source code in Fig. 1 to under-
stand the computational business rules of the feature. To
recover the tables, developers must answer the question:
Which of the conditional statements are relevant to the val-
ues passed to setFee and setHour?

3.2 Extraction of Business Rules by Program Slicing

Backward program slicing [5] appears to be a promising
technique to respond to the above question. The technique
extracts all the statements that may affect the value of a
given variable, referred to as the slicing criterion. The set of
the extracted statements is called the program slice.

A program slice is computed using a program depen-
dence graph. This graph is a directed graph where the
vertices represent all the executable statements in a pro-
gram; the edges represent the control and data dependen-
cies among the statements. A statement s2 is control de-
pendent on a statement s1, if s1 determines whether s2 is
executed. A statement s2 is data-dependent on a statement
s1, if s2 may use a variable whose value is defined by s1.
These dependencies are extracted from a CFG. This graph is
a directed graph where the vertices represent all executable

Fig. 2 A control-flow graph (a) and program dependence graph (b) of
Fig. 1

statements (or basic block) in a program; the edges represent
the control-flow paths [16].

Figures 2(a) and 2(b) illustrate examples of a CFG and
program dependence graph. In the graphs, each vertex has a
label indicating the corresponding line number. Each graph
has a special vertex named Entry that represents the entry
of a method and controls statements that are not control-
dependent on any statements.

A program slice with respect to a slicing criterion is
extracted by backward traversal of a program dependence
graph. The traversal visits all vertices that are reachable
from the vertex representing the criterion via edges. A set of
the visited vertices and criterion is the program slice for the
criterion. For example, given line 14 as a slicing criterion,
program slicing extracts lines {2, 5, 6, 7, 10, 11, 12, 14}.

Although backward program slicing extracts all state-
ments that may affect the value of a given variable, it cannot
answer the question of which of the statements are relevant
to the given variable. For example, a program slice with re-
spect to the variable fee at line 14 includes four conditional
statements (lines 2, 6, 7, and 11) that may be executed be-
fore line 14. However, only lines 6 and 11 correspond to the
computational business rules for fee, because the value of
fee is defined by the user type (see Table 1(a)). Lines 2 and
7 do not correspond to the computational rules for fee be-
cause line 2 is a technical statement which verifies database
connections and line 7 is a condition for the constraint to
children. They only determine if the feature is executed.

When investigating the computational business rules
for the time limit, we can extract statements that may affect
a parameter passed to setHour at lines 15 and 17, by com-
puting the union of program slices with respect to the lines
(a decomposition slice [11]). However, the resultant slice in-
cludes four conditional statements at lines 2, 6, 7, and 16 ,

1120
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

whereas only line 16 corresponds to the computational busi-
ness rules for the time limit. Lines 2 and 7 do not correspond
to the computational business rules for the same reasons of
the former example. Whereas line 6 is relevant to setFee, a
value of status does not affect a value of a parameter passed
to setHour on the paths that execute setHour. For setHour,
line 6 is a condition representing the constraint; it is not a
part of computational business rules.

As demonstrated in these examples, program slicing
does not distinguish conditional statements corresponding
to the computational business rules from other conditional
statements. Consequently, developers must manually ex-
tract the conditional statements corresponding to the com-
putational business rules for the output.

4. The Proposed Technique

The proposed technique is a program-dependence analysis
of a single method in a Java program, where we analyze
data dependencies caused by method calls in the method.
The proposed technique requires two inputs: a method m
that implements the business rules to be analyzed and a set-
ter method s called in m that receives the output of the busi-
ness rules. The proposed technique extracts the conditional
statements in m that are relevant to s. A conditional state-
ment c is relevant to s, if c directly or transitively affects a
statement that determines an argument for method s. Condi-
tional statements that are not relevant to s include technical
statements and statements relevant to other setter methods.

The proposed technique includes three steps:

1. Extract a CFG of the method m and its subgraph Gs

related to s.
2. Extract control-dependence edges in the CFG and Gs

and data-dependence edges in Gs.
3. Extract relevant conditional statements from method

m using control-flow, control-dependence, and data-
dependence edges.

The proposed technique uses a call graph for the entire
program to identify method call instructions in m that invoke
s and to perform data-dependence analysis on method calls
in m. We use variable-type analysis [17] for our implemen-
tation.

4.1 Control-Flow Analysis

This step constructs a CFG from the bytecode of m, and ex-
tracts its subgraph such that every path from the entry point
invokes s. A CFG is a directed graph where the vertices
VCFG represent all the bytecode instructions of m and the
edges CF represent control-flow paths [16]. Let S be the set
of instructions invoking s. Subgraph Gs has vertices Vs and
edges CFs formulated as follows.

Vs = {v ∈ VCFG | ∃s ∈ S : v
CF∗−−−→ s}

CFs = {(v1, v2) ∈ CF | v1 ∈ Vs ∧ v2 ∈ Vs}

Fig. 3 Three graphs to extract conditional statements: (a) is a subgraph
of Fig. 2(a) for setFee (line 14). (b) is a dependence graph extracted from
(a). (c) is a subgraph of Fig. 2(a) for setHour (lines 15 and 17).

x
E−→ y denotes there exists an edge from x to y in E (i.e.,

(x, y) ∈ E). x
E∗−−→ y denotes there exists a path from x to y

through edges in E. Note that x
E∗−−→ x.

Figure 3(a) is a sample subgraph of the CFG in Fig. 2(a)
with respect to setFee. For simplicity, the vertices in Fig. 3
represent executable statements and their line numbers in
the program although actual vertices of our implementation
represent bytecode instructions. Whereas vertices 2 and 7
have branches in the CFG, they have no branches in the sub-
graph. Thus, the conditional statements corresponding to
the vertices are not relevant to the computational business
rules for fee in Sect. 3.

4.2 Dependence Analysis

This step extracts data-dependence edges (DDs) and two
kinds of control-dependence edges (CD and CDs). CD
is the set of control-dependence edges extracted from the
CFG of m. CDs and DDs are sets of control-dependence
and data-dependence edges extracted from the subgraph Gs.
In addition to the definition of dependence representations
given by Horwitz et al. [18], we extract the following data-
dependence edges.

HATANO et al.: DEPENDENCY-BASED EXTRACTION OF CONDITIONAL STATEMENTS FOR UNDERSTANDING BUSINESS RULES
1121

4.2.1 Constant Values

A constant value used in a statement is independent of other
statements. However, we define a data-dependence edge be-
tween a bytecode instruction that loads a constant value and
another instruction that uses the value. For example, the
statement at line 17 includes two bytecode instructions: the
instruction that loads the constant value 3 and the instruc-
tion that invokes setHour. There exists a data-dependence
edge between the two. This data-dependence is introduced
to identify a conditional statement that controls method call
statements using different constant values.

4.2.2 Field and Array Variables

Suppose an instruction i1 defines the value of a field variable
(or an element of an array variable) and another instruction
i2 uses the value of a field variable (or an element of an
array variable). There exists a data-dependence edge from
i1 to i2 if i1 and i2 may access the same field (or the same
array). Each field is identified by class name and field name
considering class hierarchy. Each array is identified by its
type.

4.2.3 Invocations of Methods

The side effect of method calls is conservatively analyzed to
avoid overlooking relevant statements. Suppose instructions
i1 and i2 invoke methods. There exists a data-dependence
edge from i1 to i2 if the following condition holds.

De f (i1) ∩ Use(i2) , ∅

De f (i1) is the set of field and array variables that may be
defined by methods (directly or transitively) invoked from
the instruction i1. Use(i2) is the set of field and array vari-
ables that may be used by methods (directly or transitively)
invoked from i2. For a conservative analysis, we assume
that library methods that are not included in the target pro-
gram may define and use all field and array variables in the
program.

For example, suppose that setFee in the Fig. 1 defines
a value of a field A.x and setHour uses a value of the same
field A.x, data-dependence edges from an invocation of set-
Fee to invocations of setHour are extracted.

4.3 Extracting Conditional Statements

Using the computed dependence edges, this final step ex-
tracts the set of relevant conditional statements R from m as
follows.

R = CV ∪ OW

CV = {c | ∃s ∈ S ,∃d ∈ Vs : c
(CDs∪DDs)∗−−−−−−−−−→ d

DDs−−−→ s}

OW = {c | ∃s1, s2 ∈ S ,∃d ∈ Vs : s1
CFs∗−−−−→ c ∧

c
(CD∪DDs)∗−−−−−−−−→ d

DDs−−−→ s2}

CV represents the set of conditional statements that may af-
fect statements passing values to s. Each element of CV
directly or transitively affects an instruction that provides
data to s. OW represents the set of conditional statements
that determine if a value set by s1 is overwritten by another
value at s2. Because a conditional statement affects an out-
put even if it decides not to execute s2, we use CD instead
of CDs for the definition of OW.

Figure 3(b) presents the dependence graph of the pro-
gram in Fig. 1 when setFee is specified as s (i.e., S = {14}).
The conditional statements at lines 6 and 11 are extracted as
relevant statements because they hold the condition of CV .
Figure 3(c) displays a subgraph when setHour is specified
as s (i.e., S = {15, 17}). The conditional statement at line
16 is extracted as a relevant statement because it holds the
condition of OW. The conditional statements at lines 2 and
7 are not extracted because they do not hold the conditions
of either CV or OW; nor do they satisfy the condition of CV
since they have no dependence edge to other vertices. Fur-
thermore, they do not satisfy the condition of OW because
they are not reachable from setFee or setHour.

R may include truly irrelevant statements because the
proposed technique uses only dependencies among instruc-
tions. If several assignment statements pass the same value
to s, conditional statements that select one of these state-
ments are irrelevant to the output. However, the proposed
technique regards such conditional statements as relevant to
the output.

Our implementation supports two techniques for pro-
viding the extracted conditional statements to developers.
The first one is code comments. Our tool adds code com-
ments to conditional statements as indicated in Fig. 1. Be-
cause developers are required to analyze the same method
m for each output variable, an irrelevant statement for one
variable may be relevant for another. Developers can use
the code comments generated for several variables to under-
stand the entire structure of the method. The second tech-
nique is a CSV file. Our tool outputs a file listing all the
conditional statements in a specified method m and indi-
cating whether each statement is relevant. Developers can
record the progress of the investigation in the generated file.

5. Evaluation

Developers must examine the source code of a feature to
understand the computational business rules, even if the rel-
evant conditional statements are extracted by the proposed
technique. To evaluate whether the proposed technique can
help developers identify relevant conditional statements, we
conducted a controlled experiment using human subjects.
Our research questions are formulated as follows:

RQ1 Does the proposed technique help developers accu-
rately identify conditional statements relevant to com-
putational business rules?

RQ2 Does the proposed technique affect the time required
to identify relevant conditional statements?

1122
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Table 2 Target methods

ID Methods LOC |C| |Cs| |R|
T1 m1 = getPaidHolidayDataDto 101 17 12 7

s1 = setAcquisitionDate

T2 m2 = chkWorkOnHolidayInfo 152 23 23 15
s2 = setPltWorkType

RQ3 Is the proposed technique accurate?

Because the controlled experiment investigates a par-
ticular case, it is not obvious that the proposed technique,
in general, is more effective than program slicing. We com-
pared the proposed technique with program slicing to an-
swer another research question formulated as follows:

RQ4 How many conditional statements are removed from
the program slices?

We applied our technique and program slicing to all
the methods that implement business rules in two subject
systems written in Java and compared the number of condi-
tional statements extracted by the techniques.

5.1 Experiment with Human Subjects

5.1.1 Setup

(1) Subjects

We recruited eight reverse engineering experts from one
company. They had been engaged in reverse engineering
for at least one year. Their Java experience was widely dis-
tributed from 0.5 to 12 years, with a median of one year. No
subject was familiar with the target system.

(2) Tasks

The tasks used in our experiment were created from MosP
4.0.0†, an attendance management system. Two Java meth-
ods, m1 and m2, were randomly selected from the longest
methods whose conditional statements could not be re-
moved by program slicing. Table 2 presents the details of
the two methods. Column |C| represents the number of all
conditional statements in m. Column |Cs| represents the
number of conditional statements extracted by program slic-
ing with respect to each setter method (s1 and s2). All the
conditional statements in Cs are located prior to each set-
ter method. Column |R| indicates the number of conditional
statements extracted by the proposed technique.

For each task, the subjects were given the following:

• Eclipse IDE including the source code of the system.
• Target method m and the setter method s to be ana-

lyzed.
• Spreadsheet including all conditional statements and

their line numbers in m.

The subjects performed one task with the proposed
technique and the other task without the proposed technique.

†http://sourceforge.jp/projects/mosp/releases/53354

Table 3 Task assignment

Task 1 Task 2
Subject Target Our technique Target Our technique

1, 2 T1 Yes T2 No
3, 4 T1 No T2 Yes
5, 6 T2 Yes T1 No
7, 8 T2 No T1 Yes

Table 3 indicates the tasks assigned to the subjects. The re-
sults of the proposed technique were provided to the subjects
by annotating conditional statements in the source code (as
illustrated in Fig. 1) and in a spreadsheet. A subject working
without the proposed technique received a list of conditional
statements in a spreadsheet without annotation. A program
slice was not explicitly provided because it includes all the
conditional statements located prior to s.

Each task included two subtasks that are typical re-
verse engineering processes in the company. In the first sub-
task, the subjects classified each conditional statement as ei-
ther relevant or irrelevant and recorded the result in a given
spreadsheet. In the second subtask, they used the results of
the first subtask to create a table of the computational busi-
ness rules. Each task was limited to two hours. The results
of the second subtask were used to determine the correct
answer of the first subtask.

(3) Procedure

At the beginning of the experiment, the subjects were given
the following information: (1) the purpose of the experi-
ment, (2) a summary of the proposed technique, (3) the pro-
cess of the task, (4) an exercise in MosP using a sample
task, and (5) an explanation of the answer for the sample
task. The subjects performed their tasks independently after
the introduction.

Upon completion of all the tasks, the subjects discussed
the correct answer with the third author, who is also a re-
verse engineering expert in the company. Because they
reached agreement on the computational business rules in
the tasks, we used the results to evaluate the accuracy of the
subjects.

5.1.2 Results

RQ1: Does the proposed technique help developers accu-
rately identify conditional statements relevant to computa-
tional business rules?

The left box plot in Fig. 4 compares the accuracy of the de-
velopers’ classification of conditional statements. The accu-
racy is the ratio of the number of correctly classified condi-
tional statements to the total number of conditional state-
ments in the method. We observed that developers sup-
ported by the proposed technique classified the conditional
statements more accurately. A Wilcoxon rank sum test in-
dicated that the difference was statistically significant (the
p-value was 0.0148). Furthermore, Cliff’s Delta [19], which
measures the effect size for the test, indicated that the dif-
ference was large (the delta was 0.625) [20]. The improve-

HATANO et al.: DEPENDENCY-BASED EXTRACTION OF CONDITIONAL STATEMENTS FOR UNDERSTANDING BUSINESS RULES
1123

Fig. 4 Comparison of the accuracy and time for tasks

ment was achieved because the subjects without the pro-
posed technique tended to accidentally misclassify condi-
tional statements as irrelevant. The proposed technique en-
abled subjects to carefully investigate such relevant condi-
tional statements by identifying irrelevant conditional state-
ments. We concluded that the proposed technique enabled
the developers to accurately identify conditional statements
relevant to computational business rules.

RQ2: Does the proposed technique affect the time required
to identify relevant conditional statements?

The right box plot in Fig. 4 compares the time required to
complete the task with and without the proposed technique.
Although developers supported by the proposed technique
required less time than those without the proposed tech-
nique, the difference was small and not statistically signif-
icant (the delta was −0.172 and the p-value was 0.645).
This is because the subjects read the entire source code for
the methods to understand the business rules. Even if rele-
vant conditional statements are automatically extracted, they
must verify what conditions are represented in those state-
ments. We conclude that the proposed technique does not
affect the time for investigating source code and creating ta-
bles.

RQ3: Is the proposed technique accurate?

It is our opinion that the proposed technique accurately ex-
tracts relevant statements though it sometimes includes ir-
relevant statements and misses relevant statements. There
were 17 relevant conditional statements created during the
discussion with the subjects. Fourteen of the original 22
statements were extracted by the proposed technique and the
remaining three conditional statements were missed by the
proposed technique. Hence, the recall and the precision of
the proposed technique are 0.82 (14/17) and 0.64 (14/22),
respectively. The proposed technique included eight state-
ments that were classified as irrelevant by the subjects, be-
cause of a simple conservative analysis for library methods.
The conditional statements would be excluded if a more pre-
cise analysis was implemented.

The proposed technique missed three conditional state-
ments because of a difference between actual dependence

Fig. 5 The difference between our technique and developers

and conceptual dependence. A simplified example is illus-
trated in Fig. 5. In the source code, two conditional state-
ments, if (i == 0) and if (i == 1), determine a value passed to
the method setX. The proposed technique classified the for-
mer statement as relevant and the latter statement as irrel-
evant, because the former statement determined the param-
eter: 10 is passed if i == 0 and 20 otherwise. Conversely,
developers classified both conditional statements as relevant
because they subconsciously regarded the two consecutive
statements as a single control-flow structure.

We determined that the proposed technique can extract
conditional statements without missing relevant statements
by regarding consecutive conditional statements as a com-
bined statement as indicated in the right side of Fig. 5. Al-
though conditional statements extracted by this technique
may include irrelevant statements, the technique is expected
to reduce the developers’ identification time because they
are only required to consider the extracted statements with-
out inspecting the other conditional statements.

5.2 Comparison with Program Slicing

5.2.1 Setup

We extracted conditional statements from all the methods
that implement business rules in two systems: MosP and a
small sales management system, which is used in a company
for a system development exercise. Using naming rules of
class and method, we identified methods M that implement
business rules and setter methods S that receive the outputs.
M and S in MosP are identified as follows:

M: all the methods that belong to classes ending with “Ac-
tion”

S: all the methods that start with “set” and belong to classes
ending with “Vo” or “Dto”

In MosP, Action classes have methods that implement busi-
ness rules. The methods store the computational results into
DTO objects to transfer the results to a database. Further,
the methods store the computational results into VO objects
to display the results on the user interface. We identified M
and S in the sales management system in a similar manner.
In this experiment, we analyzed all the pairs of m ∈ M and
s ∈ S that were directly invoked by m.

1124
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Table 4 The extraction results of conditional statements

System MosP Sales
#targets 1,440 28

#(our < slice) 991 28
our 1 1

median slice 2 8.5
all 4 10
our 48 4

max slice 65 19
all 70 19
our 4,381 20

sum slice 7,527 224
all 11,831 248

5.2.2 Result

RQ4: How many conditional statements are removed from
the program slices?

Table 4 presents the extraction results of conditional state-
ments. Row #targets represents the number of method pairs
where the number of conditional statements extracted by
program slicing is larger than zero. Row #(our < slice) rep-
resents the number of method pairs where the number of
conditional statements extracted by the proposed technique
is smaller than that of the conditional statements extracted
by program slicing. The remainder of Table 4 represents the
statistics of the number of conditional statements. Figures 6
and 7 plot the distributions of the number of conditional
statements in MosP and the sales management system, re-
spectively.

In MosP, for 69% (991/1,440) method pairs, the num-
ber of conditional statements extracted by the proposed
technique was smaller than that of the conditional state-
ments extracted by program slicing. A test using a R pack-
age† estimated that the number of conditional statements
extracted by the proposed technique was 1.75 smaller with
the median than that of conditional statements extracted by
program slicing. We consider that the reduction is effec-
tive for developers investigating the computational business
rules because they must analyze all possible method pairs in
the system. From the sum indicated in Table 4, we conclude
that the proposed technique can reduce conditional state-
ments that developers must analyze to 58% (4,381/7,527)
of program slicing.

In the sales management system, for all method pairs,
the number of conditional statements extracted by the pro-
posed technique was smaller than that of the conditional
statements extracted by program slicing. Furthermore, the
reduction size was greater than that in MosP (the estimated
median was 5.75). This is because the computational busi-
ness rules were simple, whereas the violation checks for in-
puts were large and complicated. The proposed technique
excluded conditional statements for the checks, whereas
program slicing extracted them.

†http://cran.r-project.org/web/packages/exactRankTests/

Fig. 6 The number of conditional statements in MosP

Fig. 7 The number of conditional statements in the sales management
system

5.3 Threats to Validity

In the controlled experiment with human subjects, we used
the discussion results of the nine experts as the correct an-
swer. These results may be wrong because the experts were
not developers of the subject system. Moreover, the results
may be biased because they may have wanted to believe
their own answer. However, we believe that this possibil-
ity is low because the nine experts did finally agree on the
same answer.

Because the controlled experiment was conducted on a
single case, different results may be observed on other com-
panies. However, we consider that the evaluation follows an
actual situation in understanding business rules because the
subject system is developed by a different company from the
one that the participants work for. Furthermore, we open the
answer used in the evaluation on our website †† to make the
experiment replicable.

In the comparative experiment with program slicing,
we used the naming rules of classes and methods to iden-
tify the methods to be analyzed. The first author reviewed
the source code of the subject systems and determined that
††http://sel.ist.osaka-u.ac.jp/people/t-hatano/ieice/exp.html

HATANO et al.: DEPENDENCY-BASED EXTRACTION OF CONDITIONAL STATEMENTS FOR UNDERSTANDING BUSINESS RULES
1125

using the naming rules was valid. However, the analyzed
methods may include inappropriate methods and there may
exist other methods that should be analyzed. We did not
read all the methods in the subject systems.

We obtained the comparison results from two systems.
The results may not be applicable to arbitrary business sys-
tems. However, we believe that the proposed technique can
be effective in general business systems because the two sys-
tems had different uses (attendance and sales management)
and were developed by different organizations.

6. Conclusion and Future Work

We have proposed a program-dependence analysis tech-
nique designed for understanding computational business
rules. The proposed technique extracts conditional state-
ments that are relevant to an output value. We conducted
a controlled experiment to evaluate whether this technique
actually contributed to the performance of developers. We
determined that the proposed technique enabled developers
to more accurately identify conditional statements relevant
to computational business rules. Furthermore, we compared
the number of conditional statements extracted by the pro-
posed technique and program slicing. We confirmed that the
proposed technique is more effective for developers investi-
gating computational business rules compared to program
slicing.

In future work, we would like to support conceptually
related conditional statements as described in the result of
RQ3. We are also interested in the interprocedural analysis
of business rules distributed across several methods. Finally,
we plan to apply the proposed technique to other enterprise
systems to evaluate the effectiveness of the proposed tech-
nique.

Acknowledgments

We would like to thank the subjects who participated in
this study. This work was supported by JSPS KAKENHI
Nos.25220003 and 26280021.

References

[1] K. Wiegers and J. Beatty, Software Requirements, Third ed., Mi-
crosoft Press, 2013.

[2] X. Wang, J. Sun, X. Yang, Z. He, and S. Maddineni, “Business rules
extraction from large legacy systems,” Proc. CSMR, pp.249–253,
2004.

[3] H. Sneed, “Extracting business logic from existing COBOL pro-
grams as a basis for redevelopment,” Proc. IWPC, pp.167–175,
2001.

[4] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, and J. Perronnet, “Ex-
tracting business rules from COBOL: A model-based framework,”
Proc. WCRE, pp.409–416, 2013.

[5] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng., vol.SE-10,
no.4, pp.352–357, 1984.

[6] H. Huang, W. Tsai, S. Bhattacharya, X.P. Chen, Y. Wang, and J.
Sun, “Business rule extraction from legacy code,” Proc. COMPSAC,
pp.162–167, 1996.

[7] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, and J. Perronnet, “A

model driven reverse engineering framework for extracting business
rules out of a Java application,” Proc. RuleML, pp.17–31, 2012.

[8] T. Hatano, T. Ishio, J. Okada, Y. Sakata, and K. Inoue, “Extraction
of conditional statements for understanding business rules,” Proc.
IWESEP, pp.25–30, 2014.

[9] H. Sneed and K. Erdos, “Extracting business rules from source
code,” Proc. WPC, pp.240–247, IEEE Comput. Soc. Press, 1996.

[10] M. Sridharan, S.J. Fink, and R. Bodik, “Thin slicing,” Proc. PLDI,
pp.112–122, 2007.

[11] K.B. Gallagher and J.R. Lyle, “Using program slicing in software
maintenance,” IEEE Trans. Softw. Eng., vol.17, no.8, pp.751–761,
1991.

[12] M. Harman, D. Binkley, and S. Danicic, “Amorphous program slic-
ing,” Journal of Systems and Software, vol.68, no.1, pp.45–64, 2003.

[13] Y. Dubinsky, Y. Feldman, and M. Goldstein, “Where is the business
logic?,” Proc. ESEC/FSE, pp.667–670, 2013.

[14] J. Pichler, “Specification extraction by symbolic execution,” Proc.
WCRE, pp.462–466, 2013.

[15] J. Jaffar and V. Murali, “A path-sensitively sliced control flow
graph,” Proc. ESEC/FSE, pp.133–143, 2014.

[16] F. Allen, “Control flow analysis,” ACM Sigplan Notices, vol.5, no.7,
pp.1–19, 1970.

[17] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, “Practical virtual method call resolution
for Java,” Proc. OOPSLA, pp.264–280, 2000.

[18] S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering ver-
sions of programs,” ACM TOPLAS, vol.11, no.3, pp.345–387, 1989.

[19] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordi-
nal questions,” Psychological Bulletin, vol.114, no.3, pp.494–509,
1993.

[20] J. Romano, D. Kromrey, Jeffrey, J. Coraggio, and J. Skowronek,
“Appropriate statistics for ordinal level data: Should we really be
using t-test and Cohen’s d for evaluating group differences on the
NSSE and other surveys?,” Proc. FAIR, pp.1–33, 2006.

Tomomi Hatano received his master’s de-
gree from Osaka University in 2015. He is a
Ph.D. candidate at Osaka University. His re-
search interests include program analysis and re-
verse engineering.

Takashi Ishio received the Ph.D. degree in
information science and technology from Osaka
University in 2006. He was a JSPS Research
Fellow from 2006-2007. He is now an assistant
professor of computer science at Osaka Uni-
versity. His research interests include program
analysis and program comprehension. He is a
member of the IEICE, IPSJ, JSSST, IEEE, and
ACM.

http://dx.doi.org/10.1109/csmr.2004.1281426
http://dx.doi.org/10.1109/csmr.2004.1281426
http://dx.doi.org/10.1109/csmr.2004.1281426
http://dx.doi.org/10.1109/wpc.2001.921728
http://dx.doi.org/10.1109/wpc.2001.921728
http://dx.doi.org/10.1109/wpc.2001.921728
http://dx.doi.org/10.1109/wcre.2013.6671316
http://dx.doi.org/10.1109/wcre.2013.6671316
http://dx.doi.org/10.1109/wcre.2013.6671316
http://dx.doi.org/10.1109/tse.1984.5010248
http://dx.doi.org/10.1109/tse.1984.5010248
http://dx.doi.org/10.1109/cmpsac.1996.544158
http://dx.doi.org/10.1109/cmpsac.1996.544158
http://dx.doi.org/10.1109/cmpsac.1996.544158
http://dx.doi.org/10.1007/978-3-642-32689-9_3
http://dx.doi.org/10.1007/978-3-642-32689-9_3
http://dx.doi.org/10.1007/978-3-642-32689-9_3
http://dx.doi.org/10.1109/iwesep.2014.14
http://dx.doi.org/10.1109/iwesep.2014.14
http://dx.doi.org/10.1109/iwesep.2014.14
http://dx.doi.org/10.1109/wpc.1996.501138
http://dx.doi.org/10.1109/wpc.1996.501138
http://dx.doi.org/10.1145/1250734.1250748
http://dx.doi.org/10.1145/1250734.1250748
http://dx.doi.org/10.1109/32.83912
http://dx.doi.org/10.1109/32.83912
http://dx.doi.org/10.1109/32.83912
http://dx.doi.org/10.1016/s0164-1212(02)00135-8
http://dx.doi.org/10.1016/s0164-1212(02)00135-8
http://dx.doi.org/10.1145/2491411.2494588
http://dx.doi.org/10.1145/2491411.2494588
http://dx.doi.org/10.1109/wcre.2013.6671323
http://dx.doi.org/10.1109/wcre.2013.6671323
http://dx.doi.org/10.1145/2635868.2635884
http://dx.doi.org/10.1145/2635868.2635884
http://dx.doi.org/10.1145/390013.808479
http://dx.doi.org/10.1145/390013.808479
http://dx.doi.org/10.1145/354222.353189
http://dx.doi.org/10.1145/354222.353189
http://dx.doi.org/10.1145/354222.353189
http://dx.doi.org/10.1145/65979.65980
http://dx.doi.org/10.1145/65979.65980
http://dx.doi.org/10.1037/0033-2909.114.3.494
http://dx.doi.org/10.1037/0033-2909.114.3.494
http://dx.doi.org/10.1037/0033-2909.114.3.494

1126
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Joji Okada received master’s degree in
information science from Nagoya University in
2008. He is an assistant manager at NTT DATA
Corporation. His interests are program analysis
and programming. He is a member of the IPSJ.

Yuji Sakata received master’s degree in ma-
terials science and engineering from the Univer-
sity of Tokyo in 1996. He is a manager at NTT
DATA Corporation. His interests are program
analysis and reverse engineering. He is a mem-
ber of the IPSJ.

Katsuro Inoue received the B.E., M.E., and
D.E. degrees in information and computer sci-
ences from Osaka University, Japan, in 1979,
1981, and 1984, respectively. He was an as-
sistant professor at the University of Hawaii at
Manoa from 1984-1986. He was a research as-
sociate at Osaka University from 1984-1989, an
assistant professor from 1989-1995, and a pro-
fessor beginning in 1995. His interests are in
various topics of software engineering such as
software process modeling, program analysis,

and software development environment. He is a member of the IEEE, the
IEEE Computer Society, and the ACM.

