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Abstract—Service interface structure is of primary impor-
tance in SOA to ensure best practice of third-party reuse. One
of the key factors for deploying successful services is assuring
an adequate interface structure. However, a common bad
service design practice is to place semantically unrelated oper-
ations in a single interface. This poor design practice typically
result in a system which is difficult to comprehend, maintain
and evolve providing low performance and reusability. To
address this problem, we present an automated approach, SIM,
to support service developers improve the quality of their
interface modularization. Our approach analyzes structural
and semantic relationships among the operations exposed
in a service interface to identify chains of strongly related
operations. The identified operation chains are used to define
new interfaces with higher cohesion and better usability. We
empirically evaluate our approach on a benchmark of 22 real-
world Web services, provided by Amazon and Yahoo. The
obtained results show that the produced interfaces are (i)
able to improve the service design quality, and (ii) recognized
as ‘useful’ from developers point of view in improving their
service design. Additionally, we found that SIM significantly
outperforms a recent state-of-the-art approach.
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I. INTRODUCTION

Service-oriented Architecture (SOA) has become the
dominant architectural style and the leading edge of contem-
porary software development. The basic idea is to promote
software reuse via ready-made, reusable and composable
services that are available to end users who wish to compose
them towards constructing a novel application. However,
deploying successful services highly depends on how well-
designed are the services [1], [2]. Indeed, one of the key
factors for a successful service is assuring an appropriate
design of its interface.

Recent studies found that developers seem to take little
care of the structure of their WSDL documents [3]. A
common bad design practice that often appear in real-world
services is that their interfaces expose a large number of
semantically unrelated operations with low interface cohe-
sion [1], [2], [4]. Service interfaces tend to cover a lot
of different abstractions and processes, leading to many
operations associated with each abstraction. This will result
in poorly designed systems that are hard to comprehend,
reuse and maintain [5], leading to unsuccessful services.

As first-class design artifact, a service interface should be
carefully and properly designed. Best practice for service
design suggests that services should expose their operations
in an appropriate modularization where each module, i.e.,
interface, defines operations that handle one abstraction at
a time [5], [6]. Service interfaces will consequently exhibit
low coupling and high cohesion [7]. Low coupling means
that a service interface is dependent to a low number of other
types, and interfaces, allowing an effective reuse. Cohesion
refers to how strongly related the operations themselves are.
High cohesion means that the service operations are related
as they operate on the same, underlying core abstraction.

Correctly identifying service interfaces is a challenging
and important service-oriented design activity. Service inter-
faces with unrelated operations often need to be restructured
by distributing some of their functionalities to new inter-
faces, thus reducing their complexity and improving their co-
hesion, reusability, and maintainability. The research domain
that addresses this problem is referred to as “refactoring”
[8] to detect and then correct bad code/design practices.
Although, there are many recently emerging approaches for
detecting service design anomalies, i.e., antipatterns, [1], [9],
[10], [11], [12], the correction step is still in its infancy.

One of the first attempts to service interface remodulariza-
tion was by Athanasopoulos et al. [4], where they proposed
an approach driven by a set of cohesion metrics to capture
structural and conceptual relationships between operations.
However, the concept of coupling between interfaces [13] is
not considered which led to undesirable interface splits and
highly coupled interfaces. Moreover, as a strongest cohesion
metric [6], the conceptual cohesion can be improved to better
capture semantic information embodied in operations names.

To address the above mentioned challenges, we propose in
this paper a novel approach, namely SIM (Service Interface
Modularization), to automatically suggest suitable partition-
ing of a service interface, while maximizing the interface
cohesion and minimizing inter-interface coupling. SIM ex-
ploits different structural (communicational and sequential
similarity) and semantic relationships between operations
using a graph-based representation of an interface, where
the nodes represent the operations and the weights on the
edges represent the likelihood that two operations should
belong to the same interface.



In an effort to demonstrate the effectiveness of our ap-
proach, we conduct an empirical evaluation on a benchmark
of 22 real-world Web services, provided by Amazon and
Yahoo. We compared our approach to a state-of-the-art tech-
nique [4] in terms of what design improvement a candidate
remodularization will bring to the service. Moreover, we
have qualitatively evaluated the usefulness of SIM from a
developer point of view.

The results show that the interface remodularization solu-
tions proposed by SIM are (i) able to significantly increase
the cohesion of the refactored interfaces while maintaining
an acceptable coupling; and (ii) are considered useful by
developers in improving service interface design.

The rest of this paper is organized as follows. Section II
provides the necessary background along with a motivating
example. Our approach, SIM, is discussed in Section III.
Our empirical study and its results are presented is Section
IV. Threats to validity are analyzed in Section V, while
the related work is discussed in Section VI. Finally, our
conclusions and future work are stated in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we review some concepts that are prereq-
uisites for our approach, and present a real-world motivating
example.

A. Background

Web service. According to the W3C1 (World Wide Web
Consortium), a Web service provides a set of interfaces, each
interface is defined as a WSDL port type and characterized
by a set of operations. An operation corresponds to a
particular functionality; its execution requires at most one
input message and produces at most one output message. A
message is characterized by a set of parameters; a parameter
corresponds to either a primitive or complex element (XML
type). A complex element have a set of constituent elements.

Modularity. Service interface modularity concerns, gen-
erally, the degree to which the operations of a service
belong together and well partitioned into cohesive interfaces.
Indeed, good modularization of software leads to system
which is easier to design, develop, test, maintain, and evolve.

The importance of design modularity was best articulated
by David et al. [14]: “perhaps the most widely accepted
quality objective for design is modularity”. Although modu-
larity tends to be a subjective concept, measuring the degree
of modularization of a software design can be achieved
through two quality measures: cohesion and coupling [15].

Cohesion. Service interface cohesion is the measure of
the degree to which the operations exposed in a service
interface conceptually belong together [5]. There are many
types of cohesion including coincidental, logical, temporal,
communicational, sequential, external, implementation, and
conceptual cohesion [5].

1http://www.w3c.org/TR/ws-arch

Coupling. Coupling within a service measures the rela-
tionships between implementation elements belonging to the
same service [13]. Service interface coupling is a measure
of how strongly a service interface is connected to or relies
on other service interfaces.

Web service antipatterns. Service antipatterns are symp-
toms of poor design and implementation practices that
describe bad solutions to recurring design problems. They
often lead to software which is hard to maintain and evolve
[1], [9], [10], [11]. Common Web service antipatterns in-
clude the god object Web service, fine-grained Web service,
chatty service, ambiguous service, CRUDy interface and, the
low cohesive operations in the same port type.

Refactoring. Software refactoring is defined by Fowler
[8] as “the process of changing the internal structure of a
software to improve its quality without altering the external
behavior”. Refactoring is recognized as an essential practice
to improve software quality. Dudney et al. [7] have defined
an initial catalog of refactoring operations for Web services
including Interface Partitioning, Interface Consolidation,
Bridging Schemas or Transforms and Web Service Business
Delegate. This paper focus on automating the Interface
Partitioning refactoring to improve service modularization.

B. Motivating example
To illustrate some of salient issues related to poor service

interface modularity, let us consider a real-world service, the
Amazon Elastic Compute Cloud service (EC2)2 provided by
Amazon. Figure 1 shows a fragment of the major interface
of EC2 which exposes a quite large number of operations
(87 operations) offering a variety of business abstractions.
It allows its users to obtain, configure and control several
computing resources including images, volumes, security,
instances, and snapshots, grouped in a single interface,
AmazonEC2PortType.

Consequently, for a client who wants to manage images
using EC2 (e.g., client 1 in Figure 1), he should study
the specifications of the existing AmazonEC2PortType
interface which consists of 4,261 lines of WSDL and schema
definitions, and a 812 pages API documentation guide3.
However, only few operations might be useful for client 1 for
managing images (CreateImage(), RegisterImage(), Deregis-
terImage(), DescribeImages(), ModifyImageAttribute(), Re-
setImageAttribute(), and DescribeImageAttribute()).

A more adequate modularization of the provided oper-
ations within distinct interfaces would simplify the com-
prehension and reuse of the functionalities that the client
actually needs. For instance, a unique interface for managing
images, another for volumes, another for security, another
for snapshots, and so on. Indeed, inappropriate interface
madularity might lead to a service which is difficult to com-
prehend and reuse in business processes, hard to maintain

2http://s3.amazonaws.com/ec2-downloads/2009-10-31.ec2.wsdl
3https://aws.amazon.com/documentation/ec2/
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Figure 1: The Amazon Elastic Compute Cloud service (EC2)
interface (a fragment of total 87 operations).

and extend because of its large number of non-cohesive
operations. Above that, these services may suffer from a
high response time or even unavailable to end users because
it is overloaded [7].

Thus developers are encouraged to refactor and review
their service interfaces to provide best practice of third-
party reuse. Motivated by the above mentioned issues, this
work aims at providing an automated approach to support
developers in improving their service interface structure.

III. THE PROPOSED SIM APPROACH

Our approach, SIM, aims at identifying refactoring op-
portunities in order to decompose large interfaces with se-
mantically unrelated operations into two or more interfaces.
The identified interfaces should have high cohesion, low
coupling and attempt to encapsulate related abstractions.
SIM is not trying to identify service interfaces suffering from
semantically unrelated operations, but rather it assumes that
such a design problem, i.e., antipattern, is detected [1], and
focus on fixing it.

Figure 2 shows our approach process that consists of three
main steps: (1) operations similarity extraction, (2) operation
chains identification, and (3) light chains merging.

A. Step 1: Operations similarity extraction

SIM takes as input a Web service interface (WSDL
file/url) to be refactored. Then, it parses the WSDL sources
by tree walking up the XML hierarchy.

The parsed interface will be then analyzed to extract
the different relationships between operations. To do so,
we use cohesion metrics as an indicator of operations

relatedness. SIM employs three commonly used interface
cohesion metrics to extract operations similarity that will
drive the remodularization process: sequential, communica-
tional, and conceptual cohesion. Our cohesion metrics focus
on interface-level relations, as service implementation is typ-
ically not provided by the service providers. Similarly, we do
not consider information concerning the usage of operations
by clients, as this information is mostly influenced by the
specific scenario where the service is used.

1) Sequential similarity (Sseq): SS quantifies the sequen-
tial properties of two service operations as defined by the
sequential category of cohesion [5]. Two operations are
deemed to be connected by a sequential control flow if
the output from an operation is the input for the second
operation, or vice versa. Formally, let op1, op2 ∈ si, two
operations belonging to an interface si, then Sseq is defined
as follows:

Sseq(op1, op2) =
MS(I(op1), O(op2)) +MS(O(op1), I(op2))

2
(1)

where I(op) and O(op) refer to the input and out-
put messages of the operation op, respectively; and
MS(I(op1), O(op2)) is the function that returns the mes-
sage similarity between two messages I(op1) and O(op2).

Message similarity (MS). Two messages are similar if
they have common parameters, or similar types of param-
eters. To calculate MS of two messages m1 and m2, our
approach is based on the average of:

• The number of common subtrees: it corresponds to the
sum of the orders of common bottom-up subtrees of
m1 and m2, divided by the order of the message that
results from the union of m1 and m2, as defined in [2].

• The number of common primitive types: it corresponds
to the Jaccard similarity between m1 and m2, i.e., the
ratio of common primitive types in m1 and m2, divided
by the union of primitive types of m1 and m2.

By combining these two measures, MS aims at capturing
message similarity. The more two messages share common
primitive types, the more they are likely to be similar.

2) Communicational similarity (Scom): Scom quantifies
the communicational properties of two service operations,
as defined by the communicational category of cohesion [5].
Two service operations are deemed to be connected by a
communication similarity, if they share (or use) common
parameter and return types, i.e., both operations are related
by a reference to the same set of input and/or output data.
Formally, let m1 and m2, two operations, then Scom is
defined as follows:

Scom(op1, op2) =
MS(I(op1), I(op2)) +MS(O(op1), O(op2)

2
(2)

where I(op) and O(op) refer to the input and out-
put messages of the operation op, respectively; and
MS(I(op1), I(op2)) is the function that returns the message
similarity between two messages I(op1) and I(op2).
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Figure 2: SIM process overview.

3) Semantic similarity (Ssem): Ssem quantifies the se-
mantic relatedness of operations, as defined by the concep-
tual category of cohesion. We define a concrete refinement
of the conceptual cohesion, as it is regarded as the strongest
cohesion metric [6].

Ssem is based on the meaningful semantic relationships
between two operations, in terms of some identifiable do-
main level concept. We expand the existing definition to get
more meaningful sense of the semantic meanings embodied
in the operation names. To this end, we perform a lexical
analysis on operation signature. Our lexical analysis consists
of the four following steps:

1) Tokenization. The operation names are tokenized us-
ing a camel case splitter where each name is broken
down into tokens/terms based on commonly used
coding standards.

2) Filtering. We use a stop word list to cut-off and filter
out all common English words4 and reserved words
from the extracted tokens. Typically, these words are
irrelevant to the implemented concept. Such words
carry a very low information value and can negatively
affect the semantic similarity process as they have no
direct relation to the business abstraction domain.

3) Lemmatization. This is a morphological process that
transforms each word to its basic form (i.e., lemma).
This process aims at reducing a word to its basic
form in order to group together the different inflected
forms of a basic word so they can be analyzed as
a same word. Hence, different forms of words that
may have similar meanings are grouped together and
handled as identical word. For example, the verb ‘to
pay’ may appear as ‘pay’, ‘paid’, ‘paying’, ‘payment’,
‘payments’. The base form, ‘pay’ is then the lemma of
all these words. To do so, we use Stanford’s CoreNLP5

to find the base forms of all extracted words.
4) Vocabulary expansion. To enhance the effectiveness

of the semantic similarity, we utilize WordNet6, a
widely used lexical database that groups words into
sets of cognitive synonyms, each representing a dis-
tinct concept. We use WordNet to enrich and add

4http://www.textfixer.com/resources/common-english-words.txt
5nlp.stanford.edu/software/corenlp.shtml
6wordnet.princeton.edu

more informative sense to the extracted bag of words
for each operation. For example, the word customer
can be used with different synonyms (e.g., client,
purchaser, etc.), but pertaining to a common domain
concept.

To capture semantic similarity between two bags of words
A and B extracted from two operations op1 and op2 respec-
tively, we use the cosine of the angle between both vectors
representing A and B in a vector space using tf-idf (term
frequency-inverse document frequency) model. We interpret
term sets as vectors in the n-dimensional vector space, where
each dimension corresponds to the weight of the term (tf-idf)
and thus n is the overall number of terms. Formally, the Ssem

between op1 and op2 corresponds to the cosine similarity of
their two weighted vectors ~A and ~B and defined as follows:

Ssem(op1, op2) = cosine( ~A, ~B) =
~A · ~B

‖ ~A‖ × ‖ ~B‖
(3)

Then, an operation-by-operation matrix is generated by
combining all the used structural and semantic similarity
measures. Each index in the matrix represents the overall
similarity between two operations opi and opj , i.e., the
likelihood they should be in the same interface. The index
is computed follows:

Sim(opi, opj) = wSseq ∗ Sseq(opi, opj)+wScom ∗ Scom(opi, opj)

+ wSsem ∗ Ssem(opi, opj) (4)

where wSseq
+wScom

+wSsem
= 1 and their values denote

the weight of each similarity measure.

B. Step 2 : Operation chains identification
After generating an operation-by-operation matrix for a

given interface si, a dependency graph is constructed where
the vertices represent the operations and the edges represent
the similarity measure between them. Then, the service
interface remodularization problem is formulated as a graph
partitioning problem.

Due to the fine-grained message similarity and seman-
tic similarity measures between operations, their similarity
is often unlikely to be equal to zero. Consequently the
generated graph tends to be a connected graph. To deal
with this issue, we defined the threshold k as minimum
coupling score between subgraphs. We filter the operation-
by-operation matrix, based on the threshold k, where all
similarity values less than k are converted to zero.



Although there are many ways to setup k according to
the preferences of the service developers, it is difficult to
choose a standard threshold value for all the interfaces
being refactored. In fact, this depends on the context, the
application domain, and the naming technique used by the
original service developers. To deal with this problem, our
approach employs a dynamic threshold taking into account
the characteristics of the whole interface being refactored.
We setup k as the first-quartile computed from all the values
in the operation-by-operation matrix after filtering out all the
zero values. Thus all similarity values that are less than k
are considered as outliers, i.e., low coupling.

After filtering the operation-by-operation matrix and split-
ting the graph into disconnected subgraphs, we identify the
chains of connected operations belonging to the different
subgraphs. These chains represent the new interfaces of the
service, and the threshold k is therefore used to control the
coupling between the identified interfaces.

C. Step 3: Light chains merging

After identification of operation chains, some isolated and
light chains (with a single operation or small number of
operations) might be generated due to low similarity with the
rest of operations in the interface being refactored (e.g., op11
and op12 in Figure 2). Such fine-grained interfaces are likely
to be antipatterns [1], [9], as a core abstraction requires
typically more than two operations. To avoid this situation,
we define a threshold minimal interface size, minSize.
Although we fixed minSize = 2, it can be easily configured
by the developer according to his preferences.

Then, we compute the Coupling between light and
appropriately-sized interfaces, and merge each light chain
with the chain it is most coupled with. To this end, we
define the coupling, Cpl, between two interfaces si1 and
si2 as follows:

Cpl(si1, si2) =

∑
opi∈si1,opj∈si2

Sim(opi, opj)

| si1 | × | si2 |
(5)

where Sim(opi, opj) is defined in equation 4, and | si1 |
denotes the number of operations in the interface si1.

Although SIM process is fully automated, the generated
interfaces should be analyzed by the service developers who
can accept the suggested remodularization as it is, or adjust
it by moving operations from one interface to another, or
merging/splitting some interfaces.

IV. VALIDATION

This section presents our empirical evaluation to investi-
gate how well SIM suggests effective and useful remodular-
ization solutions and compare it with existing state-of-the-art
alternative [4].

Our replication package is available online [16] to encour-
age future research in the field of Web service refactoring.

Table I: Experimental benchmark overview.

Service interface Provider ID #operations LoCseq LoCcom LoCsem

AutoScalingPortType Amazon I1 13 0,98 0,96 0,79
MechanicalTurkRequesterPortType Amazon I2 27 0,84 0,91 0,85
AmazonFPSPorttype Amazon I3 27 0,97 0,92 0,93
AmazonRDSv2PortType Amazon I4 23 0,96 0,91 0,58
AmazonVPCPortType Amazon I5 21 0,96 0,93 0,82
AmazonFWSInboundPortType Amazon I6 18 0,96 0,93 0,73
AmazonS3 Amazon I7 16 0,97 0,89 0,75
AmazonSNSPortType Amazon I8 13 0,97 0,96 0,84
ElasticLoadBalancingPortType Amazon I9 13 0,97 0,93 0,72
MessageQueue Amazon I10 13 0,98 0,98 0,81
AmazonEC2PortType Amazon I11 87 0,98 0,97 0,93
KeywordService Yahoo I12 34 0,93 0,84 0,91
AdGroupService Yahoo I13 28 0,94 0,84 0,65
UserManagementService Yahoo I14 28 0,97 0,96 0,91
TargetingService Yahoo I15 23 0,96 0,74 0,74
AccountService Yahoo I16 20 0,98 0,92 0,88
AdService Yahoo I17 20 0,89 0,79 0,88
CompaignService Yahoo I18 19 0,91 0,83 0,91
BasicReportService Yahoo I19 12 0,99 0,91 0,92
TargetingConverterService Yahoo I20 12 0,8 0,84 0,53
ExcludedWordsService Yahoo I21 10 0,81 0,72 0,54
GeographicalDictionaryService Yahoo I22 10 0,99 0,79 0,65

A. Research questions

We designed our experiments to address the following
research questions:

RQ1: What is the impact of the suggested remodularizations
by our approach on service interface design quality?

RQ2: Do the suggested remodularizations provide a better
partitioning of abstractions from a developer’s point of view?

B. Analysis method

To evaluate our approach, we conducted our experiment
on a benchmark of 22 real-world services provided by Ama-
zon7 and Yahoo8. We selected services that are identified as
god object Web service antipatterns [1], [9] with interfaces
exposing at least 10 operations. We chose these web services
because their WSDL interfaces are publicly available, and
they were previously studied in the literature [4], [17]. Table
I presents our used benchmark.

To assess the efficiency of our approach, we compare it
to a state-of-the-art approach [4]. In the rest of the paper
we refer by Greedy to denote the approach proposed in
[4]. Greedy is a cohesion-based approach that iteratively
split a service interface using a greedy algorithm without
considering the coupling between the generated interfaces.

To answer RQ1, we assess the design improvement that
a candidate remodularization suggested by SIM will bring
to the service comparing to Greedy,Athanasopoulos2015tsc.
Our evaluation is based on Cohesion (LoC), Coupling, and
Modularity metrics. For cohesion, we use the average of
three widely used lack of cohesion metrics: lack of sequen-
tial cohesion (LoCseq), lack of communicational cohesion
(LoCcom), and lack of semantic cohesion (LoCsem) [2].
For coupling, we define Coupling as the average coupling
values Cpl (cf. equation 5) between all pairs of produced
interfaces. Finally, Modularity is the average of the overall

7http://aws.amazon.com/
8developer.searchmarketing.yahoo.com/docs/V6/reference/



cohesion and coupling. For each of these three metrics,
we report the quality improvement value before and after
remodularization, QILoC , QICoupling , and QIModularity.

To answer RQ2, we evaluated our approach from de-
veloper’s point of view. To this end, we conducted an
empirical study involving 12 independent volunteer subjects
including 6 industrial developers and 6 graduate students in
Software Engineering (2 MSc and 4 PhD candidates). All
subjects are familiar with service-oriented development and
SOAP Web services with an experience ranging from 4 to 9
years. The subjects were unaware of the techniques SIM and
Greedy neither the particular research questions, in order to
guarantee that there will be no bias in their judgment.

We asked the participants to evaluate the proposed remod-
ularization by both SIM and Greedy via a survey hosted
in eSurveyPro9, an online Web application. Participants
were asked to answer the following question: “Does the
new modularization improve the understandability of the
service?”. Possible answers follow a five-point Likert scale
to express their level of agreement: 1: Strongly disagree, 2:
Disagree, 3: Neutral, 4: Agree, 5: Fully agree.

To draw statistically sound conclusions, we compared
the participants evaluations of SIM and Greedy using the
Wilcoxon rank sum test in a pairwise fashion [18] in order
to detect significant efficiency differences between SIM and
Greedy. Moreover, to assess the efficiency difference mag-
nitude, we studied the effect size based on Cohen’s d [18].
The effect size is considered: (1) small if 0.2 6 d < 0.5,
(2) medium if 0.5 6 d < 0.8, or (3) large if d > 0.8.

C. Results

Results for RQ1. Figure 3 reports the results achieved
by both SIM and Greedy in terms of cohesion, coupling and
modularity. We expected an increase of cohesion (desired
effect) due to the split of different operations exposed in the
original interface. However, we also expected an increase
of coupling (side effect), since splitting an interface into
several interfaces typically results in an increment of the
total dependencies between interfaces. For these reasons
coupling and cohesion should be measured together to make
a proper judgment on the complexity and quality of service
interfaces (Modularity metric).

Looking at Figure 3a, we can see that for almost all
the interfaces the cohesion is sensibly improved by both
approaches. In particular, the improvement achieved by
Greedy is better than SIM. However, Figure 3b shows the
achieved coupling improvement with a clear deterioration.
Indeed, this is natural as the original interface is single (thus
its Coupling = 0). Consequently, any interface partitioning
will result in some connections between interfaces due to
the semantic similarity that is unlikely to be equals to zero
and due to some shared (primitive) data types in messages.

9http://www.esurveyspro.com
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Figure 3: Quality improvements achieved by SIM and
Greedy in terms of Cohesion, Coupling and Modularity.

As reported in figure 3b, SIM is able to remarkably reduce
the coupling decrease for all the services. Improvement
of cohesion usually comes at the expense of increase in
coupling and vice versa.

A candidate remodularization is a good design solution
if the improvement of cohesion is significantly greater than
the deterioration of coupling. This balance is captured by
the Modularity metric as reported in figure 3c. For the 22
services, interesting modularity improvements was achieved
by SIM up to 0.13, while Greedy approach turns out to be
less effective while recording three services (I7, I11 and
I16) have a deteriorated modularity due to the high coupling
resulted in the new interfaces.

Furthermore, Figure 4 shows a fragment of the SIM
remodularization for the Amazon EC2 interface described
in Section II-B (We provide full results in our replication
package [16]). We noticed that its operations are better
partitioned into several cohesive interfaces, where each inter-
face exposes operations for a specific abstraction: instance,
address, volume, security, snapshot and image managements.
To get more qualitative sense, RQ2 assesses the results from
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+RunInstances()

+StartInstances()

+StopInstances()

+TerminateInstances() 

+UnmonitorInstances() 

+MonitorInstances()

+BundleInstance()

+RebibootInstances() 

+DescreInstances()
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« interface »

AmazonEC2PortType_6

+RegisterImage() 

+DescribeImages() 

+CreateImage()
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+ModifyImageAttribute() 

+ResetImageAttribute() 

+DescribeImageAttribute()
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+AllocateAddress() 

+AssociateAddress() 
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+ReleaseAddress()

« interface »

AmazonEC2PortType_4

+RevokeSecurityGroupIngress() 
+AuthorizeSecurityGroupIngress() 
+CreateSecurityGroup() 
+DeleteSecurityGroup()
+DescribeSecurityGroups
+GetPasswordData() 

« interface »

AmazonEC2PortType_3 

+AttachVolume() 

+CreateVolume()

+DeleteVolume()

+DescribeVolumes()

+DetachVolume()

« interface »

AmazonEC2PortType _5 

+ModifySnapshotAttribute() 

+ResetSnapshotAttribute() 

+DescribeSnapshotAttribute()

+DeleteSnapshot()

Web service container

Figure 4: The Amazon EC2 service interface after remodu-
larization using SIM (a fragment of total 87 operations).

a developer’s perspective.
Results for RQ2. Figure 5 and Table II summarize the

developers assessment for the new interface modularizations.
For all the studied services, the participants rated the SIM
remodulations with an average score of 3.71, while an
average of 2.48 was recorded for the Greedy approach.
In addition, as reported in table II, the rating results of
SIM and Greedy was statistically different with a ‘large’
effect size (only for participants 4, 6 and 12, the effect size
was medium). This provides evidence that the interfaces
suggested by SIM are more adjusted to developers needs
than those of Greedy. Moreover, on top of the 22 cases, par-
ticipants identified two services where the original interface
is relatively understandable even without remodularization,
but they suggested that an early remodularization can be
interesting to avoid potential difficulties in future service
releases with additional operations.

An interesting point here was that the participants con-
firmed that the interfaces suggested by SIM tend to be more
appropriately sized and describe distinct abstractions with
less overlap. A participant commented on the generated
Amazon EC2 interfaces (Figure 4) : “This design indicates
that service interfaces are not trying to do too much, and
allows the service to be reused more effectively”. Moreover,
we noticed that Greedy approach split some core abstractions
into many interfaces. For instance, in the Amazon EC2 inter-
face, operations related to image management was dispersed
through many other interfaces: operations RegisterImage()
and DescribeImages() are assigned to a new interface, De-
scribeImageAttribute() is in another interface, CreateImage()
is in another interface, ResetImageAttribute(), DeregisterIm-
age() and ModifyImageAttribute() are in another interface
along with other unrelated operations [4], [16]. On the other
hand, most of the identified interfaces expose operations
related to different core abstractions. For instance, for the
same Amazon EC2 service, a suggested interface by Greedy
contains DetachVolume(), AttachVolume() and DescribeIn-
stanceAttribute(). Results show that this design is unlikely
to be desirable for developers. Moreover, the obtained results
suggest that coupling is as important metric as cohesion to
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Figure 5: Developer’s assessment for the remodularization
solutions proposed by SIM and Greedy.

Table II: Statiscal results of the developers evaluation.

Participant Average Rating Statistical tests

SIM Greedy P-value Effect size

Participant 1 4 2.68 <0,05 Large (1.874)
Participant 2 4 2.40 <0,05 Large (2.345)
Participant 3 4.18 2.31 <0,05 Large (2.203)
Participant 4 3.04 2.59 <0,05 Medium(0.654)
Participant 5 3.95 2.72 <0,05 Large (1.809)
Participant 6 2.86 2.40 0.085 Medium (0.578)
Participant 7 3.95 2.22 <0,05 Large (3.403)
Participant 8 3.77 2.22 <0,05 Large (2.255)
Participant 9 3.90 2.59 <0,05 Large (1.703)
Participant 10 3.63 2.31 <0,05 Large (1.827)
Participant 11 3.77 2.45 <0,05 Large (2.182)
Participant 12 3.5 2.90 <0,05 Medium (0.707)
Average 3.71 2.48 <0,05 Large (1.014)

drive Web service interface remodularization.

V. THREATS TO VALIDITY

This section discusses threats to the validity of our study.
Threats to external validity can be related to the studied
services. Although we used 22 real-world Web services
provided by Amazon and Yahoo, from different application
domains and ranging from 10 to 87 operations, we can not
generalize our results to other services and other technolo-
gies, e.g., REST services. Internal threats to validity can be
related to the choice of the best configuration parameters,
k, minSize, wSseq

, wScom
and wSsem

. Although we used
several combinations in order to analyse the influence of
each parameter on the obtained results, we are planing to
empirically investigate all possible values. Another threat to
the internal validity can be related to the knowledge and
expertise of the human evaluators. Although we took care
to select participants having from 4 to 9 years experience
with service-oriented development, we plan to ask more
experienced professionals on software quality assessment
and software refactoring to provide their expert opinion.

VI. RELATED WORK

Much work has been done on automatic approaches for
software refactoring to fix bad design and code practices.



In the recent few years, different approaches have pro-
posed to discover design problems and antipatterns in Web
services [1], [9], [10], [11], [12]. However fixing these
antipatterns is still an unexplored and challenging task. One
of the first attempts to address service interface partitioning
was by Athanasopoulos et al. [4] (Greedy). Although their
approach was able to improve cohesion, it is not perfectly
adjusted to the developers’ needs [4]. Limitations of the
approach can be related to the coupling between interfaces
which is not considered, and to the conceptual similarity
which does not take full advantage of the semantic informa-
tion embodied in operation names. SIM addresses explicitly
these two drawbacks to improve the modularization quality.

Most of the related work focus on refactoring of object-
oriented (OO) applications. Our approach is more closely
similar to Extract Class refactoring in OO systems, which
employs metrics to split a large class into smaller, more
cohesive classes [8]. Bavota et al. [19], [20] have proposed a
similar approach to split a large class into smaller cohesive
classes using structural and semantic similarity measures.
Fokaefs et al. [21] proposed an automated extract class refac-
toring approach based on a hierarchical clustering algorithm
to identify cohesive subsets of class methods and attributes.
However, the Extract Class refactoring is not applicable in
the context of Web services as typically the Web service
source code is not publicly available, and the development
paradigm, used technologies and metrics are different.

VII. CONCLUSION

In this paper, we proposed an approach, SIM, to im-
prove the design quality of Web service interfaces. Our
approach aims at automatically partitioning large interfaces
with semantically unrelated operations into smaller cohe-
sive interfaces, each representing a distinct abstraction. An
empirical study on a benchmark of 22 real-world Web
services showed that our approach provides improved ser-
vice interface modularity over the state-of-the-art approach.
Our results show the added value of considering coupling
and dedicated semantic similarity measure for automatic
remodularization. As future work, we plan to involve clients
usage in the remodularazation process, test our approach on
additional Web services and refactor other common web
service interface antipattern types, e.g., fine-grained Web
service, ambiguous Web service, and chatty Web service [1].
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