
This is a post-peer-review, pre-copyedit version of an article published in Product-
Focused Software Process Improvement. PROFES 2016. Lecture Notes in Computer
Science, vol 10027. The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-319-49094-6_41

http://dx.doi.org/10.1007/978-3-319-49094-6_41

On the Effectiveness of Vector-based Approach
for Supporting Simultaneous Editing of

Software Clones

Seiya Numata1, Norihiro Yoshida2 (
�

), Eunjong Choi3, and Katsuro Inoue1

1 Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{s-numata,inoue}@ist.osaka-u.ac.jp,

2 Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Aichi, Japan
yoshida@ertl.jp,

3 Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara
630-0192, Japan

choi@is.naist.jp,

Abstract. Code clone is one of the factors that makes software mainte-
nance more difficult. Once a developer find a defect in a code fragment,
he/she has to inspect the all of the code clones of the code fragment.
In this study, we investigated the effectiveness of query-based use of a
vector-based clone detection tool for supporting simultaneous fixing of
buggy clones in source code and compared it with the query-based use
of a token-based clone detection tool CCFinder.

Keywords: Code clone detection tool, Software maintenance, Simulta-
neous editing

1 Introduction

A code clone is a code fragment that has identical or similar code fragments to
it in the source code [10]. So far, a lot of code clone detection techniques have
been developed to capture various aspects of source code similarity [7, 10, 13].

For the detection of syntactically identical or similar code fragments, token-
based and tree-based approaches detect identical token sequence and similar
syntax tree in source code, respectively [7, 10]. These approaches are able to de-
tect useful clones (i.e., code fragments to be merged [5], inconsistent code clones
that are suspected to include a bug [9]), but have limitations of false positives
[5] (syntactically similar but semantically different code) and false negatives [4]
(syntactically different but semantically similar clones). As a more sophisticated
approach, a few techniques have been proposed for the detection of only seman-
tically similar clones from source code [7, 11, 12].

For example, Komondoor and Horwitz proposed an approach to finding iso-
morphic subgraphs of program dependence graphs (PDGs) in order to find se-
mantic clones from source code [12]. Also, MeCC detects C functions imple-
menting semantically-similar computations based on the similarity of abstract

2 On the Effectiveness of Vector-based Approach

memory states between them [11]. Jiang and Su proposed an approach to com-
pare program execution traces via random testing in order to find functionally
equivalent code fragments [8]. However, those approaches have limitations. Iden-
tifying isomorphic subgraph of PDG is time-consuming as well as identifying
abstract memory states of C functions [11], and comparing execution traces re-
quire a number of test suites to achieve sufficient level of test coverage. Also, it
is difficult for those approaches to be applied to uncompilable source code.

In our previous research [18], we developed a vector-based approach for the
lightweight detection of function clones. In our vector-based approach, a feature
vector is generated for each function, based on the occurrence of identifiers and
reserved keywords, and then clustering of the generated vectors is performed
by means of locality-sensitive hashing (LSH) [6]. Finally, clones are detected
based on the similarities between each pair of feature vectors. We confirmed the
advantages of the vector-based approach over MeCC as follows:

– Detects a number of function clones but also maintains a low false positive
rate in comparison to MeCC

– Detect in a shorter time
– Finds a larger number of clone-related defects and bad smells

We introduced the tool based on the vector-based approach to a Japanese
multinational IT company and then got feedbacks from practitioners in the com-
pany. According to the feedbacks, the practitioners need to know the effectiveness
of the vector-based approach for supporting simultaneous fixing of buggy clones.
They are mainly motivated to perform query-based use of the vector-based ap-
proach. When they find a defect in a function, they would like to give the function
as a query to the vector-based approach and then discover clone-related defects
from the detected function clones. In our previous research [18], we detected
function clones from OSS and then manually confirmed that a large number
of the detected function clones included defects and bad smells. However, the
effectivness of query-based use of the vector-based approach is still unknown so
far.

In this study, we investigated the effectiveness of query-based use of the
vector-based clone detection tool for supporting simultaneous fixing of buggy
clones in source code. In the investigation, we used the collection of clone-related
defects that was collected by Li and Ernst for the evaluation of a cloned buggy
code detector CBCD [14, 15].

The remainder of this paper is organized into the following sections. Section
2 details a vector-based approach to detecting code clones. Section 3 describes
a method to investigate the effectiveness of query-based use of a clone detection
approach. Section 4 explains the investigation result, Section 5 reviews related
work and finally, Section 6 summarizes this study.

2 Vector-based approach to detecting clones

Figure 1 provides an overview of the vector-based approach. The Vector-based
approach takes source code is used as the input, and the the output consists of

On the Effectiveness of Vector-based Approach 3

Word Count

xxx 3

yyy 2

zzz 3

・・・ ・・・

Function A

Function C

・

・

・

Function A

Function B

Function C

Function A

Function B

Word Count

xxx 2

yyy 4

zzz 1

・・・ ・・・

Function B

Function C

Function D

Function E

Cluster 1

Cluster 2

・

・

・

・

・

・

Source Code

(Input)
Similarity

Function

Pair

Determine

Clones

0.95
Function A

✓

Function B

0.70
Function C

Function D

0.70
Function C

Function E

0.90
Function D

✓

Function E

・・・ ・・・ ・・・

Word Lists Feature Vectors Clusters of

Functions

Clone Pair List

(Output)

STEP1:

Extracting Word

STEP2:

Generating

Feature Vectors

STEP3:

Clustering

Feature Vectors

STEP4:

Detecting Clones

},,,{
321

…　aaa

},,,{
321

…　ccc

},,,{
321

…　bbb

Fig. 1. Overview of the Vector-based approach

a list of clone pairs (i.e., pairs of function clones that are identical or similar to
one another).

Hereafter, we use the term word to represent a set of identifiers (e.g., variables
and function names) and reserved keywords (e.g., conditional statements and
interactive statements).

2.1 STEP1:Extracting Word

In this step, words are extracted from functions in the source code. During this
process, if an identifier consists of more than one word, it is divided into different
words as follows:

– It is divided using a delimiters such as hyphens or underscores, between
words.

– It is split by using a capital letter for each word using CamelCase

2.2 STEP2:Generating Feature Vectors

In this step, feature vectors are generated based on the weights of extracted words
from STEP1. For this, we use Term Frequency Inverse Document Frequency(TF-
IDF) [2], a popular technique, in IR, for weighting each word. Uramoto et al.
used TF-IDF to weight newspaper articles for the relation of multiple news
articles [17]. In this study, we use TF-IDF to weight words in the source code.

TF-IDF combines Term Frequency(TF) weights and Inverse Document Fre-
quency(IDF) weights. For example, suppose Nw represents the occurrences of w
in a function, and Nall represents the total number of occurrences of all words
in a function. In addition, Function represents the set of all functions in the

4 On the Effectiveness of Vector-based Approach

source code, while Functionw represents the set of functions that contain word
w exists. The weighting of w using TF-IDF is defined as follows :

tfw =
Nw

Nall
idfw = log

|Function|
|Functionw|

tfidfw = tfw × idfw

2.3 STEP3:Clustering Feature Vectors

Clustering is used to identify candidates for clone pairs, and is conducted. prior
to clone detection (STEP4) for the sake of time efficiency. In this step, the fea-
ture vectors generated in STEP 2 are clustered using Locality-Sensitive Hash-
ing(LSH) [6], which is known to be an efficient nearest neighbor search algorithm.

To cluster feature vectors, in this study we usesdE2LSH4[1], which imple-
ments the LSH algorithm. Given a feature vector as a query, E2LSH performs
clustering of feature vectors approvimate to the query from the dataset, based
on Euclidean distance. Using a dataset of functions, with each feature vector
(function) as a query, a set of similar functions is returned.

2.4 STEP4:Detecting Clones

Clone pairs are detected based on the cosine similarity between all of the fea-
ture vectors of the clustered feature vectors obtained in STEP 3. Cosine similar-
ity identifies similarities between multidimensional vectors. Formally, the cosine
similarity between two vectors a, and b whose dimension is d are determined as
follows :

sim(a, b) = cos(a, b) =

∑d
i=1 aibi√∑d

i=1 ai
2

√∑d
i=1 bi

2

Cosine similarity takes a value between 0 and 1, because feature values only
have positive values, as seen in the formulation of the TF-IDF described in STEP
2. If the cosine similarity value between two feature vectors is higher than the
threshold, these two vectors are regarded as clone pairs. In this study, we set the
threshold at 0.9 to reduce the probability of false positive results.

3 Investigation Method

We investigated the effectiveness of query-based use of the vector-based clone
detection tool for supporting simultaneous fixing of buggy clones in source code
and compared it with the query-based use of a token-based clone detection tool
CCFinder [10]. Please note that we set 10 tokens as minimum length of a token
sequence for CCFinder because most clone-related defects in the dataset are 10
tokens or smaller in source code.

As we mentioned in Section 1, this research was triggered by the feedbacks
from the Japanese multinational IT company. Because this company has used
CCFinder for several years, they would like to know the effectiveness comparison
of the vector-based approach and CCFinder.

4 http://www.mit.edu/~andoni/LSH/

On the Effectiveness of Vector-based Approach 5

Table 1. The numbers of N1, N2, N3 and N4

Vector-based approach CCFinder
threshold = 0.9 threshold = 0.5

N1 11 10 10

N2 22 13 11

N3 4 11 16

N4 1 4 1

3.1 Dataset

For our investigation, we used the dataset of clone-related defects that was col-
lected by Li and Ernst [14, 15]. The clone-related defects in the dataset are from
the OSS repositories of Git, Linux kernel and PostgreSQL that are written by
C/C++.

The dataset also includes commit IDs of not only clone-related defects but
also code clones of those defects [14]. Please note that we removed the instances
if a defect and its code clones in the same function because the purpose of this
study is the investigation of effectiveness of query-based use of the vector-based
approach.

3.2 Effectiveness Criteria

We used not only precision/recall and F-measure but also a categorization pro-
posed by Li and Ernst [15]. Li and Ernst proposed the following categorization
for each instance in their dataset of clone-related defects.

– N1: no false positives, no false negatives
– N2: no false positives, some false negatives
– N3: some false positives, no false negatives
– N4: some false positives, some false negatives

After clones of each clone-related defect are detected, each clone detection tool
can be characterized by the numbers of N1, N2, N3 and N4.

Precison/recall and F-score for each approach are calculated from the to-
tal numbers of true positives, detected functions and buggy functions that are
involved in the dataset.

4 Investigation Results

Table 1 shows the numbers of N1, N2, N3 and N4 and Table 2 shows recall,
precision and F-score for each approach.

According the numbers of N2 in Table 1, the vector-based approach with
threshold=0.9 is the most efficient for supporting simultaneous fixing of buggy

6 On the Effectiveness of Vector-based Approach

Table 2. Recall, Precison and F-score

Vector-based approach CCFinder
threshold=0.9 threshold=0.5

Recall 0.41 0.53 0.53

Precision 0.59 0.11 0.01

F-score 0.48 0.18 0.02

clones because N2 means no false positive. When developers have only a limited
time, the vector-based approach with threshold=0.9 is the most suitable.

In terms of the numbers of N3 in Table 1, CCFinder is the highest. For the
development of a high-reliability software system, CCFinder is the most suitable
because N3 means no false negative.

N1, N2, N3 and N4 take account of the existence of false postives and neg-
atives and do not take account of the numbers of them precisely. On the other
hand, Recall/Precision takes account of the numbers of them precisely.

According to Table 2, the precision of CCFinder is extremely low. In several
instances of clone-related defects in the dataset, CCFinder detects a large num-
ber of false positives (max. 218). This means that CCFinder is unsuitable when
developers have only a limited time. The vector-based approach with thresh-
old=0.9 is most suitable when developers have only a limited time according to
the precision in Table 2.

In terms of recall, the all of the score are almost same. The vector-based
approach with threshold=0.5 and CCFinder are the highest score between them.
Since the precision of CCFinder is extremely low, the vector-based approach with
threshold=0.5 is more suitable for the development of a high-reliability software
system.

5 Related Work

Thus far, various techniques have been proposed for the detection of code clones
from source code. For the detection of syntactically identical or similar code
fragments, the token-based and tree-based approaches detect identical token
sequences and similar syntax trees in the source code, respectively [7, 10]. How-
ever, these approaches may result in false positives (syntactically similar but
semantically different clones) [5] and false negatives (syntactically different but
semantically similar clones) [4].

As a more sophisticated approach, a few techniques have been proposed for
the detection of only semantically similar clones from the source code [8, 11,
12]. For example, Komondoor and Horwitz proposed for finding the isomorphic
subgraphs of PDGs in order to find the semantic clones from the source code [12].
Additionally, MeCC [11] detects C functions implementing semanticallysimilar
computations, based on the similarity of their abstract memory states. Jiang and
Su proposed an approach to comparing program execution traces via random

On the Effectiveness of Vector-based Approach 7

testing in order to find functionally equivalent code fragments [8]. The vector-
based approach in this paper is inspired by the existing vector-based approach
that is proposed by Marcus et al. [16]. Their original approach uses a LSI-based
clustering technique to form all clusters of similar entities. LSI-based retrieval
is a considerable idea to improve the recall of the vector-based approach in our
study. However, we do not use LSI because it leads the increase of the detection
time.

Various applications of the detection of code clones from source code have
been proposed. For example, several studies have been conducted on the support
of clone refactoring using clone detection techniques. Balazinska et al. proposed
a code clone classification method for the identification of reengineering oppor-
tunities [3]. Higo et al. [5] proposed a set of metrics to represent the difficulty of
merging clones detected by the token-based clone detection tool CCFinder [10].
Yoshida et al. proposed an approach for extracting clone clones that are related
to each other from the output of CCFinder, and suggesting these be used as
a large-scale reengineering opportunity [19]. Combining these approaches with
the vector-based approach appears to be a promising solution for achieving the
efficient support of clone refactoring.

6 Summary

In this study, we investigated the effectiveness of the query-based use of the
vector-based clone detection tool for supporting simultaneous fixing of buggy
clones in source code. In the investigation, we used the collection of clone-related
defects that was collected by Li and Ernst for the evaluation of a cloned buggy
code detector CBCD [14, 15].

The summary of the investigation result is as follows:

– The detection result of the vector-based approach with threshold=0.9 is
highest precesion.

– The detection results of the vector-based approach with threshold=0.5 and
CCFinder are highest recall.

– Since the precision of CCFinder is extremely low, the vector-based approach
with threshold=0.5 is more suitable for the development of a high-reliability
software system.

Acknowledgments. This work was supported by JSPS KAKENHI Grant
Numbers 25220003, 26730036, 15H06344 and 16K16034.

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. CACM 51(1), 117–122 (2008)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts
and Technology behind Search (2nd Edition) (ACM Press Books). Addison-Wesley
Professional (2011)

8 On the Effectiveness of Vector-based Approach

3. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Measuring
clone based reengineering opportunities. In: Proc. of METRICS ’99. pp. 292–303
(1999)

4. Deissenboeck, F., Heinemann, L., Hummel, B., Wagner, S.: Challenges of the dy-
namic detection of functionally similar code fragments. In: Proc. of CSMR ’12. pp.
299–308 (2012)

5. Higo, Y., Kusumoto, S., Inoue, K.: A metric-based approach to identifying refac-
toring opportunities for merging code clones in a java software system. Journal of
Software Maintenance and Evolution 20(6), 435–461 (2008)

6. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proc. of STOC ’98. pp. 604–613 (1998)

7. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: scalable and accurate
tree-based detection of code clones. In: Proc. of ICSE ’07. pp. 96–105 (2007)

8. Jiang, L., Su, Z.: Automatic mining of functionally equivalent code fragments via
random testing. In: Proc. of ISSTA ’09. pp. 81–92 (2009)

9. Jiang, L., Su, Z., Chiu, E.: Context-based detection of clone-related bugs. In: Proc.
of ESEC-FSE ’07. pp. 55–64 (2007)

10. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Softw. Eng.
28(7), 654–670 (2002)

11. Kim, H., Jung, Y., Kim, S., Yi, K.: MeCC: memory comparison-based clone de-
tector. In: Proc. of ICSE ’11. pp. 301–310 (2011)

12. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code.
In: Proc. of SAS ’01. pp. 40–56 (2001)

13. Krinke, J.: Identifying Similar Code with Program Dependence Graphs. In: Proc.
of WCRE ’01. pp. 301–307 (2001)

14. Li, J., Ernst, M.D.: CBCD: Cloned buggy code detector. Tech. Rep. UW-CSE-11-
05-02, University of Washington Department of Computer Science and Engineering
(2011)

15. Li, J., Ernst, M.D.: CBCD: Cloned buggy code detector. In: Proc. of ICSE ’12. pp.
310–320 (2012)

16. Marcus, A., Maletic, J.I.: Identification of high-level concept clones in source code.
In: Proc. of ASE ’01. pp. 107–114 (2001)

17. Uramoto, N., Takeda, K.: A method for relating multiple newspaper articles by
using graphs, and its application to webcasting. In: Proc. of ACL ’98. pp. 1307–
1313 (1998)

18. Yamanaka, Y., Choi, E., Yoshida, N., Inoue, K.: A high speed function clone de-
tection based on information retrieval technique. IPSJ Journal 55(10), 2245–2255
(2014), in Japanese

19. Yoshida, N., Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: On refactoring support
based on code clone dependency relation. In: Proc. of METRICS ’05. pp. 16:1–16:10
(2005)

	numata
	profes2016 (1)

