
Empir Software Eng
DOI 10.1007/s10664-017-9521-5

Do developers update their library dependencies?
An empirical study on the impact of security advisories
on library migration

Raula Gaikovina Kula3 ·Daniel M. German2 ·
Ali Ouni1,4 ·Takashi Ishio3 ·Katsuro Inoue1

© Springer Science+Business Media New York 2017

Abstract Third-party library reuse has become common practice in contemporary software
development, as it includes several benefits for developers. Library dependencies are con-
stantly evolving, with newly added features and patches that fix bugs in older versions.
To take full advantage of third-party reuse, developers should always keep up to date with
the latest versions of their library dependencies. In this paper, we investigate the extent of
which developers update their library dependencies. Specifically, we conducted an empir-
ical study on library migration that covers over 4,600 GitHub software projects and 2,700
library dependencies. Results show that although many of these systems rely heavily on
dependencies, 81.5% of the studied systems still keep their outdated dependencies. In the
case of updating a vulnerable dependency, the study reveals that affected developers are not
likely to respond to a security advisory. Surveying these developers, we find that 69% of the

Communicated by: Martin Robillard

� Raula Gaikovina Kula
raula-k@is.naist.jp

Daniel M. German
dmg@uvic.ca

Ali Ouni
aliouni@gmail.com

Takashi Ishio
ishio@is.naist.jp

Katsuro Inoue
inoue@ist.osaka-u.ac.jp

1 Osaka University, Suita, Japan

2 University of Victoria, Victoria, BC, Canada

3 Nara Institute of Science and Technology, Osaka University, Takayama, Ikoma, Japan

4 UAE University, Sheikh Khalifa Bin Zayed Street, Al Ain, Abu Dhabi, UAE

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9521-5&domain=pdf
mailto:raula-k@is.naist.jp
mailto:dmg@uvic.ca
mailto:aliouni@gmail.com
mailto:ishio@is.naist.jp
mailto:inoue@ist.osaka-u.ac.jp

Empir Software Eng

interviewees claimed to be unaware of their vulnerable dependencies. Moreover, developers
are not likely to prioritize a library update, as it is perceived to be extra workload and
responsibility. This study concludes that even though third-party reuse is common practice,
updating a dependency is not as common for many developers.

Keywords Software reuse · Software maintenance · Security vulnerabilities

1 Introduction

In contemporary software development, developers often rely on third-party libraries to
provide a specific functionality in their applications. In 2010, Sonatype reported that Maven
Central1 contained over 260,000 maven libraries.2 As of November 2016, this collection of
libraries rose to 1,669,639 unique Maven libraries,3 which is almost six times more than it
was in 2010 and making it one of the largest hosting repositories of Open Source Software
(OSS) libraries. Libraries aim to save both time and resources and reduce redundancy by
taking advantage of existing quality implementations.

Many libraries are in constant evolution, releasing newer versions that fix defects, patch
vulnerabilities and enhance features. In fact, Lehman (1996) states that software either
‘undergoes continual changes or becomes progressively less useful’. As software devel-
opment transitions into the maintenance phase, a developer later becomes the maintainer
and faces the following software maintenance dilemma: ‘When should I update my current
library dependencies?’We define this dilemma of updating libraries as the library migration
process, where there is movement from a specific library version towards a newer version
of the same library, or to a different library altogether.

The decision to migrate a library can range from being rather trivial to extremely dif-
ficult. Typically, a developer evaluates the overall quality of the new release version,
taking into account: (i) new features, (ii) compatibility compared to the current ver-
sion, (iii) popular usage by other systems and (iv) documentation, support and longevity
provided by the library. Conversely, a vulnerable dependency requires an immediate
response from the developer. To mitigate any potential malicious attacks, developers are
strongly recommended to migrate any vulnerable dependencies in their applications. In
response to these vulnerable dependencies, awareness mechanisms such as the Common
Vulnerabilities and Exposures (CVE)4 advisories have emerged to raise devel-
oper awareness and trigger the migration from a vulnerable dependency to a safer
replacement.

In this paper, we investigate the extent of how library migration is practiced in the real-
world. Our goals are to investigate (1) whether or not library dependencies are being updated
and (2) the level of developer awareness to library migration opportunities. Specifically, we
performed a large-scale empirical study to track library migrations between an application
client (defined as a system) and their dependent library provider (defined as a library).
The study encompasses 4,659 projects, 8 case studies and a developer survey to draw the
following conclusions:

1One of the largest library hosting repositories at http://search.maven.org/.
2Link at http://goo.gl/SV9d68.
3Statistics accessed Nov-26th-2016 at https://search.maven.org/#stats.
4http://cve.mitre.org/cve/index.html.

http://search.maven.org/
http://goo.gl/SV9d68
https://search.maven.org/#stats
http://cve.mitre.org/cve/index.html

Empir Software Eng

(1) Library Migration in Practice: Although systems depend heavily on libraries, find-
ings show that many of these systems rarely update their library dependencies. Developers
are less likely to migrate their library dependencies, with up to 81.5% of systems keeping
outdated dependencies.

(2) Developer Responsiveness to Awareness Mechanisms:
Our findings indicates different patterns of library migration. We find many cases where

developers prefer an older and popular dependency over a newer replacement. Impor-
tantly, the study depicts developers as being non responsive to security advisories. In a
follow-up survey of affected developers, 69% of the interviewees claimed to be unaware
of the vulnerability and who then promptly migrated away from the vulnerable depen-
dency. Furthermore, developers cite (i) a lack of awareness in regard to library migration
opportunities, (ii) the impact and priority of the dependency, and (iii) the assigned roles
and responsibilities as deciding factors on whether or not they should migrate a library
dependency.

Our main contributions are three-fold. Our first contribution is a study on library migra-
tion pertaining to developer responsiveness to existing awareness mechanisms (i.e., security
advisories). Our second contribution is the modeling of library migration from system and
library dimensions, with different metrics and visualizations such as the Library Migration
Plot (LMP). Finally, we make available our dataset of 852,322 library dependency migra-
tions. All our tools and data are publicly available from the paper’s replication package at
https://raux.github.io/Impact-of-Security-Advisories-on-Library-Migrations/.

1.1 Paper Organization

The rest of the paper is organized as follows. Section 2 describes the basic concepts of
library migrations and awareness mechanisms. Section 3 motivates our research questions,
while Section 4 describes our research methods to address them. The results and case studies
of the empirical study are presented in Section 5 and Section 6. We then discuss implications
of our results and the validity threats in Section 7, with Section 8 surveying related works.
Finally, Section 9 concludes our paper.

2 Basic Concepts & Definitions

In this section, we introduce the library migration process and the related terminologies
that will be used in the paper. Building on our previous work of trusting the latest versions
of libraries (Kula et al. 2015) and visualizing the evolution of libraries (Kula et al. 2014),
this paper is concerned with empirically tracking library migration and understanding the
awareness mechanisms that trigger the migration process. We first present the library migra-
tion process in Section 2.1. Then later in Section 2.2, we introduce two common awareness
mechanisms that are designed to trigger a library migration.

2.1 The Library Migration Process

We identify three generic steps performed by a developer during the library migration
process:

– Step 1: Awareness of a Library Migration Opportunity. Step 1 is triggered when a
developer becomes aware of an opportunity to migrate a specific dependency. The

https://raux.github.io/Impact-of-Security-Advisories-on-Library-Migrations/

Empir Software Eng

awareness mechanism may be in the form of either a new release announcement by
authors of the library or a security advisory. In order for a successful migration, a devel-
oper must also identify a suitable replacement for the current dependency. In the case
of a vulnerable dependency, a developer must identify a safe (patched) library version
as a viable replacement candidate.

– Step 2: Migration Effort to Facilitate the Replacement Dependency. Step 2 involves
the efforts of a developer to ensure that the replacement dependency is successfully
integrated into the system. Specifically, we define this migration effort as the amount
of work and testing needed to facilitate the replacement dependency. This step may
involve writing additional integration code and testing to make sure that the replacement
library does not break current functionality, or affect other dependencies that co-exist
within the system.

– Step 3: Performing the Library Migration. Step 3 ends the library migration process.
Once the migration effort in Step 2 is completed, the prior dependency is abandoned
and the replacement library successfully migrated into the system.

2.2 Library Migration Awareness Mechanisms

To trigger the library migration process, developers must first become aware of the necessity
to migrate any of their dependencies. In this section, we discuss the two most common
types of awareness mechanisms: (1) a new version release announcement and (2) a security
advisory. Additionally, we present sources that may infer the migration effort required to
migrate these dependencies.

(1) A new release announcement The traditional method to raise awareness of a new
release is through an announcement from the official homepage of the library. In detail, we
can infer the migration effort required from the following two documented sources:

(i) Change logs of releases - The developer change logs provide hints on the migration
effort needed to perform the migration. For instance, a new release to support the state-
of-the-art environments (i.e., such as the Java Development Kit (JDK)) is more likely
to require more migration effort, especially if the new version breaks many of Appli-
cation Programming Interfaces (APIs). The change logs contains useful information,
such as any API changes between releases, new features and fixes to bugs that exist in
older versions.

(ii) Semantic versioning of releases - The semantic versioning naming convention5 pro-
vides hints on the estimated migration effort needed to migrate a dependency. For
instance, a major released version may require more migration effort than a minor
released version of that library.

(2) A security advisory A security advisory is an official public announcement of a
verified vulnerable dependency. Security advisories are circulated through various mail
forums, special mailing lists and security forums, with the key objective of raising devel-
oper awareness to these vulnerabilities. Figure 1 is an example of a mail announcement

5http://semver.org/.

http://semver.org/

Empir Software Eng

Fig. 1 Example of a security advisory related to CVE-2014-0050 that was posted in the Apache common
developers mailing list

of the CVE-2014-0050 vulnerability sent to Apache Open Source developers mailing
list. Vendors and researchers keep track of each vulnerability through a tagged CVE Iden-
tifier (i.e., CVE-xxx-xxxx). Generally, the advisory contains the following information:
(i) a description of the vulnerability, (ii) a list of affected dependencies and (iii) a set of
mitigation steps, that usually includes a viable (patched) replacement dependency.

We conjecture that for developers, the awareness of the security advisory is more impor-
tant than the migration effort needed to migrate the vulnerable dependency. Therefore, we
now introduce the role played by a security advisory in the life-cycle of a vulnerability. As
defined by CVE, a vulnerability undergoes the following four phases:

(i) Threat detection - this is the phase where the vulnerability threat is first discovered
by security analysts.

(ii) CVE assessment - this is the phase where the threat is assessed and assigned a rating
by the CVE.

Empir Software Eng

(iii) Security advisory - this is the phase where the threat is publicly disclosed to aware-
ness mechanisms such as the US National Vulnerability Database (NVD)6 to gain the
attention of maintainers and developers.

(iv) Patch release - this is the phase where authors of the vulnerable library provide mit-
igation options, such as a viable dependency that mitigates the threat. Once a viable
replacement dependency (i.e., patch release) becomes available, developers can then
proceed to complete the library migration process.

There are some cases were developers may have migrated their vulnerable dependency
before the security advisory. We find that in these cases the vulnerability life-cycle does
not synchronize with the migration process, causing the patch release to become available
before the security advisory has been disclosed to the general public.

3 Research Questions

Our motivation stems from reports of outdated and vulnerable libraries being widespread in
the software industry. In 2014, Heartbleed,7 Poodle,8 Shellshock,9 –all high profile library
vulnerabilities were found to have affected a significant portion of the software industry. In
that same year, Sonatype determined that over 6% of the download requests from the Maven
Central repository were for component versions that included known vulnerabilities. The
company reported that in review of over 1,500 applications, each of them had an average of
24 severe or critical flaws inherited from their components.10

Our main goals involve (1) investigation of whether or not library migration is prac-
ticed in real-world projects and (2) evaluation of developer awareness and the migration
effort needed for a library migration. As a result, we designed three research questions
that involves a rigorous empirical study and a follow-up survey on reasons why develop-
ers do not update their dependencies. Hence, we first formulate (RQ1) to investigate library
migration in practice:

Library migration in practice

– (RQ1) To what extent are developers updating their library dependencies? Prior stud-
ies have shown that a developer response to a library update opportunity is slow and
lagging. Overall, related studies analyzed library migration at the API level of abstrac-
tion. A study by Robbes et al. (2012) shows how projects from the Smalltalk ecosystem
exhibited a slower reaction to API updates. Similar results were observed in studies
performed for the Pharo (Hora et al. 2015) and Java (Sawant et al. 2016) programming
language domains. Furthermore, Bavota et al. (2015) found the same results for projects
that exist within the ecosystem of Apache products.

We use (RQ1) to study library migration at a higher abstraction than the API level
to better understand (i) the extent to which developers use third-party libraries and (ii)
the migration trends of these libraries.

6https://web.nvd.nist.gov/.
7https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160.
8https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3566.
9https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271.
10Report published January 02, 2015 at http://goo.gl/i8J1Zq.

https://web.nvd.nist.gov/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3566
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271
http://goo.gl/i8J1Zq

Empir Software Eng

In addition to (RQ1), we are particularly interested in factors such as the effect of current
awareyness mechanisms and migration effort that affect library migration. Henceforth, we
formulate (RQ2) and (RQ3) to investigate how developers respond to existing awareness
mechanisms:

Developer responsiveness to awareness mechanisms

– (RQ2) What is the response to important awareness mechanisms such as a new
release announcement and a security advisory on library updates? To fully utilize
the benefits of a library, developers are strongly recommended to keep the latest and
patched releases of their library dependencies. Therefore, in (RQ2) we study devel-
oper responsiveness to the awareness mechanisms of (i) new releases and (ii) security
advisories.

– (RQ3) Why are developers non responsive to a security advisory? Studies have con-
cluded that developers often ‘struggle’ with change. They show that influencing factors
such as personal opinions, organizational structure or technical constraints (Bogart et al.
2015; Plate et al. 2015) determine whether or not a developer is likely to migrate a
dependency. However, we conjecture that a vulnerable dependency warrants immediate
action by developers. Therefore in (RQ3), we seek developer feedback to understand
the reasons why developers do not migrate a vulnerable dependency. These reasons may
include the awareness of the migration opportunity and the migration effort needed to
facilitate the replacement dependency.

4 Research Methods

In this section, we present the research methods used to address each of the three research
questions. To answer (RQ1), we conducted an empirical study by mining and reconstructing
historic library migrations for a set of real-world projects. To answer (RQ2), we then study
8 library migration cases to understand how developers respond to the awareness mecha-
nisms of new releases and security advisories. Finally, to answer (RQ3), we interviewed
developers belonging to projects with vulnerable dependencies.

4.1 (RQ1) To What Extent are Developers Updating Their Library Dependencies?

Our research method to answer (RQ1) is through a vigorous statistical analysis of library
migration for real-world projects. Our method is comprised of three steps: (1) tracking sys-
tems and dependency updates, (2) analysis of our proposed metrics and (3) data collection.
The results of (RQ1) are presented in Section 5.

(1) Tracking system and library updates To accurately track library migrations, we
define a model of system and library dependency relations. Hence, we formally use the
following notations. We distinguish and define S for a system, and L for a library. The
notation L(lib,v) denotes version v of the library lib, while the notation S(sys,w) refers
to version w of the system sys. When a system version S(sys,w) migrates to library
version L(lib,v), it creates a dependency relation between them.

Figure 2 illustrates how we use the notation to represent dependency relations between
systems and libraries over time. The example in this figure consists of the following system
and library versions:

– Library A which has 1 version L(A,1).

Empir Software Eng

Fig. 2 Library migration between systems and libraries. The orange arrow depicts dependency relations
between them

– System B which has 2 versions S(B,1) and S(B,2).
– Library C which has 2 versions L(C,1) and L(C,2).
– System D which has 3 versions S(D,1), S(D,2) and S(D,3).
Figure 2 then depicts the following library dependency relationships as an orange dotted
line. We list below all dependency relations changes that are because of a library migration:

– System B (i.e., S(B,2)) migrates to the library dependency L(A,1).
– System B (i.e., S(B,1) and System D (i.e., S(D,1)) both migrate to the library

dependency L(C,1).
– System D(i.e., S(D,3)) migrates to the library dependency L(C,2).

From a system dimension, our model can track how often developers migrate their
libraries. Since the release of a system version may contain multiple migrations, the model
allows us to track the number of migrations that have occurred during one system version
update, which is denoted as DU.

Dependency Update (DU) is the count of library migrations in a system version
update.

Figure 2 depicts an example of a DU update (i.e., DU=1). We can see in the figure that
for the S(B,2) release, the system migrates to a new dependency (i.e., L(A,1)) while still
keeping the same version of its other dependency (i.e., L(C,1)).

From the alternative library dimension, our model is able to track library usage trends
over time. Our model can track the number of migrations that have occurred within the
universe of known systems to determine the usage of a library, which is denoted as
LU.

Empir Software Eng

Library Usage (LU) is the total population count of user systems having a dependency
relation to a library dependency at a specific point in time.

Figure 2 shows an example of the LU metrics. The figure shows that at point x in time,
the LU of the L(C,1) dependency is two (i.e., systems B and D). However at point y in
time, since the S(D,3) system release has migrated to the L(C,2) dependency, updating
the LU counts of the L(C,1) and L(C,2) library versions to one dependent system each.
Furthermore, a system can use older versions of a library. This is modeled and shown in the
figure, as a line branching out from the original line of library versions. For instance, library
C separates into two different branches because the older L(C,1) dependency still has an
active dependency relation to one system (i.e., system B).

(2) Analysis method Table 1 provides a summary of the metrics provided by our model.
To fully understand the migration phenomena and address (RQ1), we use our model to
propose metrics that can analyze library migrations from both the system and library
dimensions.

From the system dimension, we analyze our system metrics to investigate the distribu-
tion of dependencies per system (m1) and the frequency of library migrations per library
(m2). First, we utilize boxplots and descriptive statistics to report the median (x̄) and mean
(μ) for each metric. We then test the hypothesis that ‘systems with more dependencies
tend to have more frequent updates’. This is done by employing the Spearman and Pear-
son correlation tests (Edgell and Noon 1984) to test and determine any correlation relation
between metrics m1 and m2. A high correlation score confirms the assumption that a more
complex systems will tend to have more updates, while a low correlation will confirm the
hypothesis that ‘the number of library dependencies does not influence the frequency of
updates’.

From the library dimension, we investigate how the migration away from a specific
library dependency spreads over time, which is defined as the LU trend. This work is
inspired by the Diffusion of Innovation curves (Rogers 2003), which seeks to explain how,
why, and at what rate new ideas and technology spreads. Figure 3 is a visual example of the
LU metrics from Table 1. We utilize the LU metrics to study the LU trends of (i) whether
or not a library dependency is gaining or losing system users) and (ii) the rate of decline

Table 1 Summary of our proposed migration metrics defined for (RQ1)

Alias Dimension Metric Brief Description

m1 System Dep. Per System (#Dep.) # of Dependencies

m2 Dep. Update Per System (DU) # of Dependencies migrated

m3 Library Library Usage(LU) # of systems

m4 Peak LU max. # of systems

m5 Current LU current # of systems

m6 Pre-Peak time to reach Peak LU

m7 Post-Peak time after Peak LU

m8 Library Residue % remaining systems after Peak LU

We use Dep. = Dependencies

Empir Software Eng

Fig. 3 Simple example of the
LU-based metrics. We show the
Peak LU at time t1, current LU at
time t2 and Library Residue
(Peak LU / Current LU)

after system users begin to migrate away from that dependency. We use Fig. 3 to introduce
a simple example of how we characterize a LU trend:

– LU counts - The Peak LU (m4) metric describes the maximum population count of
user systems reached by a dependency. The Current LU (m5) is a related metric that
describes the latest population count of user systems that actively use this dependency
in their systems.

– LU over time - The Pre-Peak (m6) metric refers to the time taken for a dependency to
reach a peak LU (days). Conversely, Post-Peak (m7) metric refers to the time passed
since the peak LU was reached (i.e., measured in days).

– LU rate after Peak LU - The Library Residue (m8) metric describes the percentage of
user systems (%) remaining after Peak LU (m4) has been reached for a dependency
(i.e., Current LU (m5) / Peak LU (m4)).

In Fig. 3, we show the LU metrics as a LMP curve. In detail, we find that the Peak LU is
5 users at t1, with the current LU at 2 users. At the starting point t0, Pre-Peak is the period
from t0 to t1 and Post-Peak being the time from t1 to t2. Quantitatively, we conjecture
that a low Library Residue (i.e., 40% (2/5)) indicates that any affected developers using this
dependency should consider migration towards a replacement dependency.

We present four statistical analysis to report the LU trends of our study. First, we
use a cumulative frequency distribution graph to understand the distribution of popu-
lar library versions (m4 and m5). We then use a cumulative distribution to measure
the average time for libraries to reach their peak usages (m6 and m7). Third, we use
boxplots to measure the distribution of the Library Residue metric (m8). The final anal-
ysis is to plot and analyze the number of system dependencies along with their Library
Residue.

(3) Data collection It is important that we test our approach from a quality set of
real-world projects to improve the confidence on our results. Therefore, we conducted a
large-scale empirical evaluation of software systems and library migrations that focuses on
popular Java projects that use Maven libraries as their third-party dependencies. In detail,
we collected projects that reside in GitHub11 as the source of our dataset. To ensure that

11https://github.com/.

https://github.com/

Empir Software Eng

Listing 1 Code snippet of the pom.xml metafile for the GitWalker system showing the dependency
relationship to between two Maven dependencies, javaparser and gitective-core

our dataset is a quality representation of real-world applications, we enforced the following
pre-processing data quality filters:

– Projects that are mature and well-maintained - The first quality filter is to ensure that
migrations are indicative of active and large-scale projects that are hosted on GitHub
(i.e., removing toy projects). Hence, we selected projects that had more than 100
commits and had at least a recent commit between January 2015 and November 2015.

– Projects that are unique and not duplicates - The second quality filter is to ensure
that no duplicates exist within the collected dataset. Hence, we semi-automatically
inspected repository names to validate that none of the projects are forks from other
projects (i.e., same project name in different repository).

– Projects that use a dependency management tool - We conjecture that projects managed
by a dependency management tool is more likely to perform library migrations. There-
fore, the third filter distinguishes projects that implement a dependency management
tool such as the Maven dependency management tool. Every Maven project includes
a Project Object Model file (i.e., pom.xml) that describes the project’s configuration
meta-data —including its compile and run time library dependencies.

Listing 1 shows a pom.xml, which lists dependency relationships between a par-
ticular system version with any valid Maven library version. In this example, we
extract the dependency relation for system S(Gitwalker,0.0.1-SNAPSHOT) that
uses the L(javaparser,1.0.8) and L(gitective-core,0.9.9) dependencies. To
automatically extract the history of dependency migrations for a project, we analyze
historic changes of the pom.xml. We package this extraction method in a tool called
PomWalker.12

– Popular and latest dependency versions - LU trends require sufficient usage by sys-
tems. As a result, we focus on the more popular libraries for a higher quality result.

12https://github.com/raux/PomWalker.

https://github.com/raux/PomWalker

Empir Software Eng

Moreover, to capture migrations away from a library dependency, we filter out the latest
versions of any library in the dataset.

Table 2 presents a summary of the filtered 4,659 projects after pre-processing from
an original collection of 10,523 GitHub projects. Our study tracks dependency migration
between a Maven library and each unique system within each project (i.e., a project may
contain multiple systems). We then mine 48,495 systems from the 4,659 software projects
to extract 852,322 dependency migrations. For the LU trend analysis, we filter out rarely
used libraries (i.e., dependencies with less than 4 user systems are defined as unpopu-
lar) and the latest library versions (i.e., we assume that the 213 latest versions are less
likely to experience any migrations), which leaves 2,736 library versions available for our
study.

4.2 (RQ2)What is the Response to Important Awareness Mechanisms such
as a New Release Announcement and a Security Advisory on Library Updates?

Our method to answer the second research question (RQ2) is through a case study analy-
sis of developer responsiveness to existing awareness mechanisms. It is comprised of three
steps: (1) tracking library migration in response to awareness mechanisms (2) analysis
method and (3) data collection. The selected case studies for the new release announce-
ment are presented in Section 6.1, with cases for the security advisory presented in
Section 6.2.

(1) Tracking migration in response to awareness mechanisms Figure 4 presents the
Library Migration Plot (LMP) used to track LU trends over time. Together with the change
log and semantic versioning documentation, we use LMPs to infer library migration pat-
terns and trends. The LMP shows LU changes in the library (y-axis) with respect to time
(x-axis). It is important to note that the LMP curve itself should not be taken at face
value, as the smoothing algorithm is generated by a predictive model and it is not a true
reflection of all data points. We observe in Fig. 4 that the commons-beanutils library
L(commons-beanutils,1.9.1) (red line) had 19 user systems using it as a dependency
in April 2014. By January 2015, its LU had decreased to 11 user systems. In particular, we

Table 2 Summary of the
collected dataset Dataset statistics

Projects creation dates 2004-Oct to 2009-Jan

Projects last update 2015-Jan to 2015-Nov

unique systems (projects) 48,495 (4,659)

unique library versions 2,736

Total size of projects 630 GB

commits related to pom.xml 4,892,770

library dependency migrations 852,322

Empir Software Eng

0

10

20

2
0
1
4
-
0
1

2
0
1
4
-
0
7

2
0
1
5
-
0
1

2
0
1
5
-
0
7

2
0
1
6
-
0
1

 Time t

commons-beanutils 1.9.1

commons-beanutils 1.9.2
C
V
E
-2
01

4-
01

14

Library
versions

peak LU

current LU

affected version

A
pr

il
20

14

Java 5+

Java 5+

Java Environment

LU

Figure 4 A Library Migration Plot for libraries L(beanutils,1.9.1) and L(beanutils,1.9.2). In this
example, the release of a related security advisory CVE-2014-0114 (black dashed line) that affects
L(beanutils,1.9.1) (marked with crossbones). We also show which JDK (5+) version in which the version
supports

annotate the following events onto the LMP to depict the effect of awareness mechanisms
on the LMP curve:

– Official Release Announcement - Figure 4 depicts an example of two versions:
L(commons-beanutils,1.9.1) and L(commons-beanutils,1.9.2). Hence, we
can use the LMP to compare the migration patterns between versions of a library. For
instance, the LMP presents the effect of the new release ofL(commons-beanutils,
1.9.2), illustrated by the declining LU curve atL(commons-beanutils, 1.9.1).

– Security Advisory Disclosure - Figure 4 annotates when the security advisory
CVE-2014-0114 was disclosed to the public (i.e., April 2014). In detail, the LMP
presents evidence of how a security vulnerability triggers the library migration from
L(commons-beanutils, 1.9.1), illustrated by its declining LU curve.

Table 3 Top 20 LU library
versions Library Versions

* junit (4.11), (4.10), (4.8.2), (3.8.1), (4.8.1)

javax.servlet-servlet-api (2.5)

commons-io-commons-io (2.4), (2.6)

* log4j-log4j (1.2.16), (1.2.17)

commons-lang (2.6)

commons-logging (1.1.1)

commons-lang (3-3.1)

commons-collections (3.2.1)

javax.servlet-jstl (1.2)

org.mockito-mockito-all (1.9.5)

commons-httpclient (3.1)

* guava (14.0.1), (18.0)

commons-dbcp (1.4)

Empir Software Eng

Table 4 New Release case studies from three popular libraries

Alias Library ver.1 ver.2 ver.3

NR1 google-guava 16.0.1 (2014-02-03) 17.0 (2014-04-22) 18.0 (2014-08-25)

NR2 junit 3.8.1 (2002-08-24) 4.10 (2011-09-29) 4.11 (2012-11-15)

NR3 log4j 1.2.15 (2007-08-24) 1.2.16 (2010-04-06) 1.2.17 (2012-05-06)

For each library, we look at the LU trends of three libraries

(2) Analysis method Our approach to answer (RQ2) involves a manual case study anal-
ysis to understand developer responsiveness to a new release announcement and a security
advisory. For more useful and practical scenarios, selection of our case studies included (i)
new releases from the more popular libraries (i.e., as they tend to impact more developers)
and (ii) more severe security advisories (i.e., warrants immediate developer attention).

At the quantitative level, we first visually analyze the LMP curve response towards the
awareness mechanism. We then manually consult online documentation such as the release
logs, and its semantic versioning schema to estimate the effort needed to migrate towards
a newer replacement dependency. For the vulnerable dependencies, we consult information
from the security advisory and the life-cycle of a vulnerability (See Section 2.2) to estimate
the needed migration effort. For example, in Fig. 4, we infer from the release notes that
L(commons-beanutils,1.9.1) to L(commons-beanutils,1.9.2) update is a com-
patible minor update with 2 bug fixes and 1 new feature. Since both are supported by the
latest JDK (Java 5 and higher), we assume that the migration effort required is much lower
when compared to a dependency that supports a different JDK environment.

(3) Data collection Since our research method to answer (RQ2) is through the use of
case studies, we systematically select a subset of eligible projects from the dataset collected
in (RQ1). Selection of a new release candidate is comprised of three steps. First, since
our objective is to find common LU trends popular libraries, we select the top 20 library
versions out of the 2,736 available from our dataset. The top 20 libraries are shown in
Table 3. For each of the 20 library versions, we then generate and categorize them based on
LMP curve patterns. In the final step, we select three case studies that depict distinctive LU
trends. Table 4 shows the nine popular library versions of google-guava,13 junit14

and log4j15 that met our selection criteria.
Table 5 shows the five security advisory cases that were analyzed in our study. The case

study selection process involved choosing security advisories that (i) affect our collected
dataset (i.e., in (RQ1)) and would (ii) require the immediate response of the developers. All
cases were selected from a pool of CVE security advisories between 2009-2014. Particu-
larly, we found 686 associated security advisories16 that affected the 123 Apache Software
Foundation (ASF) products. We then found that 15 out of the 123 ASF products are third-
party libraries. Out of the remaining 15 libraries, we then chose five associated security

13https://code.google.com/p/guava-libraries/.
14http://junit.org/.
15http://logging.apache.org/log4j/1.2/.
16An updated listing is available online at http://www.cvedetails.com/product-list/vendor id-45/apache.html.

https://code.google.com/p/guava-libraries/
http://junit.org/
http://logging.apache.org/log4j/1.2/
http://www.cvedetails.com/product-list/vendor_id-45/apache.html

Empir Software Eng

Table 5 Security Advisory case studies from the Apache Software Foundation of Maven libraries

Alias CVE Id Library Release Affected ver. Vulnerability(CVSS)

V1 CVE-2014-0114 commons-beautils 2014-04-30 1.9.1 Denial of Service (7.5)

V2 CVE-2014-0050 commons-fileupload 2014-01-04 1.3 man–in–the–middle(5.8)

V3 CVE-2012-5783 commons-httpclient 2012-04-11 3.x man–in–the–middle(4.3)

V4 CVE-2012-6153 httpcomponents 2014-09-04 4.2.2 man–in–the–middle(7.5)

V5 CVE-2012-2098 commons-compress 2012-06-29 1.4 man–in–the–middle(5.0)

Note that the affected versions include all prior versions. Likewise safe versions also include all superseding
versions

advisories that are malicious enough to warrant a developer response. Specifically, the secu-
rity advisory should have a medium to high Common Vulnerability Score (CVSS)17 (i.e., 4
or higher). Table 5 also describes the malicious exposures of each security advisory: V1
causes aDenial of Service (DoS)with a high CVSS score. The remaining four security advi-
sory cases all describe web application exposure to a remote ‘man in the middle’ web attack
and has a medium-to-high CVSS severity rating.

4.3 (RQ3) Why are Developers Non Responsive to a Security Advisory?

Our research method to answer (RQ3) is through a survey of affected developers that were
non responsive to a severe security advisory (i.e., identified in (RQ2)). Our method makes
use of a qualitative survey interview form and comprises of two steps: (1) survey design and
(2) data collection. Results to (RQ3) are presented in Section 6.3.

(1) Survey design Listing 2 shows the template of our survey form18 sent to developers
of the contactable projects. We targeted projects that allowed public communication, either
through an issue management system or a mailing list. The survey form is designed with
two parts. First, we customized the survey form to include project specifics, such as the
exact location of the pom.xml file where the dependency is being relied upon. The second
part of the survey then asked developer opinions on the following two questions: (i)Were
you aware of the vulnerability? If so, then how long ago and (ii)What are some factors that
influence you not to update?

For the analysis, we first tally the survey responses according to whether or not the devel-
oper was aware of vulnerable dependency in their systems. We then analyze the responses
through a systematic method of (i) reading of each response, (ii) checking and summariz-
ing text by consistency, omissions and (iii) looking for similarities or differences between
interviewee responses. In detail, we perform analysis of the responses in three steps. First,
the main author categorizes all responses based on the systematic method. Another author is
then tasked to verify and criticize each category of responses. In the final step, the categories
are then presented to rest of the authors for a group consensus.

17It is officially known as the CVSS v2 base score. The calculation is shown at https://www.first.org/cvss/
v2/guide.
18The complete form is available at http://sel.ist.osaka-u.ac.jp/people/raula-k/librarymigrations/questionaire.
html.

https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
http://sel.ist.osaka-u.ac.jp/people/raula-k/librarymigrations/questionaire.html
http://sel.ist.osaka-u.ac.jp/people/raula-k/librarymigrations/questionaire.html

Empir Software Eng

Listing 2 ail snippet of the survey form sent to developers of the selected projects that were non responsive
to a security vulnerability

(2) Data collection For (RQ3), we use the five case studies in (RQ2) to identify and sur-
vey all projects that did not respond to each of the security advisory. From the LMP analysis
in (RQ2), we are able to identify the candidate projects that were found to be non respon-
sive to the security advisory announcement. Out of all candidate projects, we collected 16
developer responses. Due this amount of responses, the analysis method was managed by
one author and then later criticized and verified by other authors for the final consensus.
All results of the collected dataset, including the tally of listed and contactable projects are
presented in Section 6.3.

5 Library Migration in Practice

In this section, we present the results for (RQ1) To what extent are developers updating
their library dependencies? In detail, we present the statistical results from both a system
(Section 5.1) and a library dimension (Section 5.2), before finally answering (RQ1).

0
5

0
0

1
5
0
0

2
5
0
0

Studied Systems

#
 L

ib
r
a

r
y
 D

e
p

e
n

d
e

n
c
ie

s

0
1
0

3
0

5
0

7
0

Studied Systems

#
 D

U
s

0 10 30 50 70

0
5

0
0

1
5
0
0

2
5
0
0

DUs

#
 L

ib
r
a

r
y
 D

e
p

e
n

d
e

n
c
ie

s

Figure 5 Updates from a System dimension depicts (a) # of dependencies per system. (x̄=147, μ=267.2,
σ=311.56) (b) frequency of DU s per system (x̄=1, μ=2.4, σ=4.2) and (c) relationship between # of
dependencies vs. # of DU s (log-scale)

Empir Software Eng

5.1 System Dimension

Figure 5 shows the results on howmaintainers manage and update their dependencies from a
system viewpoint. Specifically, the distribution of library dependencies per system in Fig. 5a
confirms that systems show heavy dependence on libraries (x̄=147, μ=267.2, σ=311.56).
A reason for this heavy reliance on libraries is because many of the analyzed projects are
comprised of multiple subsystems that together form a complex set of dependencies. Fur-
thermore, Fig. 5b suggests that systems rarely update library dependencies, statistically we
find low frequency of DU per system (i.e., x̄=1,μ=2.4), and each DU containing at least two
library dependencies (i.e., x̄=2, μ=4.1, σ=14.9). According to Fig. 5c, the findings do not
show a strong correlation between the number of library dependencies and the frequency
of DU, with statistical tests reporting weak correlations (pearson = 0.05, spearman = 0.07).

0

25%

50%

75%

100%

1000 10

Library Usage (LU)

C
u
m

u
la

ti
v
e
 F

r
e
q
u
e
n
c
y
 D

is
tr

ib
u
ti
o
n

Peak LU Current LU

12

(
S

tu
d
ie

d
 L

ib
r
a
r
ie

s
)

0

25%

50%

75%

100%

0 1000 2000 3000 4000

Time (days)

C
u
m

u
la

ti
v
e
 F

r
e
q
u
e
n
c
y
 D

is
tr

ib
u
ti
o
n

Pre−Peak Post−Peak

450 770

(
S

tu
d
ie

d
 L

ib
r
a
r
ie

s
)

2
0

4
0

6
0

8
0

1
0
0

Studied Libraries

L
ib

r
a
r
y
 R

e
s
id

u
e

(
%

)

Figure 6 Updates from a Library dimension depicts the cumulative frequency distribution (a) of Peak LU
and Current LU (Log scale), (b) time-frame metric distributions and the boxplot of (c) Library Residue (%)
for 2,736 dependencies

Empir Software Eng

This result confirms the hypothesis that the number of library dependencies in a system
does not influence the frequency of updates.

5.2 Library Perspective

Figures 6 and 7 both present the LU trend analysis of our studied systems. Figure 6a shows
that LU for 75% of the popular libraries is 12 (i.e., peak LU). Interestingly, we found
that 596 libraries exhibited no library migration movement, which is indicated by the peak
library usage being also the current library usage (i.e., peak LU = current LU). Figure 6b
also shows that reaching the peak library usage is slow for most dependencies. Furthermore,
the figure shows that 25% of dependencies took less than a day to reach their peak LU.
Afterwards the rate slows down (depicted by curve), showing 75% of dependencies took
less than 770 days to reach their peak LU (i.e., Pre-Peak). Upon closer inspection, we found
that these dependencies were specialized libraries that were used by a smaller number of
systems (i.e., low LU).

After reaching peak usage, most dependent systems tend to slowly migrate away. As
shown in Figure, we find that 75% of library dependencies experience some migration of
its users over the next 450 days (ie., Post-Peak). Importantly, Fig. 6c suggests that many
systems remain with an outdated dependency, even after some library migration away from
the dependency has begun. The figure also shows that most of the 2,736 studied dependen-
cies exhibit high Library Residue (i.e., x̄=85.7%, μ=81.5%, σ=22.2%). An example is the
popular but older log4j logging library L(log4j,1.2.15) which has a Library Residue of
98%. Finally, Fig. 7 shows that the system are more likely to remain with the more popu-
lar libraries, with higher peaking libraries exhibiting more Library Residue. Based on our
results, we now return to answer (RQ1):

6 Developer Responsiveness to Awareness Mechanisms

We present results in Sections 6.1 and 6.2 for (RQ2) What is the response to important
awareness mechanisms such as a new release announcement and a security advisory on

Figure 7 A correlation of
Library Residue against Peak
LU, showing that popular library
dependencies (with higher peaks)
also tend to exhibit higher
Library Residue

0 200 400 600 800

2
0

6
0

1
0
0

Peak LU

 L
ib

r
a
r
y
 R

e
s
id

u
e
 (

%
)

Empir Software Eng

Table 6 Alias names for our (RQ2) selected case studies

Alias Awareness Mechanism Library Analyzed versions

NR1 New Release google-guava (16.0.1), (17.0), (18.0)

NR2 junit (3.8.1), (4.10), (4.11)

NR3 log4j (1.2.15), (1.2.16), (1.2.17)

V1 Security Advisory commons-beautils (1.9.1), (1.9.2)

V2 commons-fileupload (1.2.2), (1.3), (1.3.1)

V3 commons-httpclient (3.1), (4.2.2)

V4 httpcomponents (4.2.2), (4.2.3), (4.2.5)

V5 commons-compress (1.4), (1.4.1)

library updates? while our results for (RQ3) Why are developers non responsive to a secu-
rity advisory? are presented in Section 6.3. Table 6 shows the aliases (i.e., NR1, ..., NR3,
V1, ..., V5) used as a reference to each of the case studies.

6.1 A New Release Announcement

Figure 8 depicts our case studies (NR1, NR2, NR3) related to responsiveness of a new
release, with (A) consistent and (B) non responsive library migration trends.

(A) Cases of an active developer response to a new release Figure 8a shows an
example of library that have a consistent library migration trend. Specifically, the LMP
of google-guava (NR1) L(NR1,16.0.1) and L(NR1,17.0) depict a consistent pattern of
migration with 48 and 49 peak LU. This pattern is consistent, despite the libraries having a
relatively high Library Residue of 60.4% and 85% for all studied versions.

We find that the reasons for consistent migration trends are mainly related to the esti-
mated migration effort required to complete the migration process. Through inspection of
the online documentation, we find that migration from L(NR1,16.0.1) to L(NR1,17.0) con-
tains 10 changed packages.19 Similarly, migration from L(NR1,17.0) to L(NR1,18.0) also
contained 7 changed packages. Yet, all three library versions require the same Java 5 envi-
ronment which indicates no significant changes to the overall architectural design of the
library. From the documentation, we deduce that popular use of L(NR1,18.0) is due to the
prolonged period between the next release of L(NR1,19.0), which is more that a year after
the release of L(NR1,18.0) in December 10, 2015. In fact, previous versions had shorter
release times, around 2-3 months of L(NR1,16.0.1) in February 03 2014, L(NR1,17.0) in
April 22 2014, and L(NR1,18.0) in August 25 2014. The prolonged released cycles of the
library could be related to the relatively higher peak LU of L(NR1,18.0) at 100 LU com-
pared to the lower peaks LU of L(NR1,16.0.1) at 48 LU and 49 LU for the L(NR1,17.0)
dependency.

(B) Cases of a developer non response to a new release Figure 8b depicts ‘lack of
developer response’ reaction to a dependency migration opportunity. The LMP curve from
figure depicts the older popular versions as exhibiting no migration movement (i.e., peak

19Details at http://google.github.io/guava/releases/17.0/api/diffs/.

http://google.github.io/guava/releases/17.0/api/diffs/

Empir Software Eng

Figure 8 Library Migration Plots (LMP) of three libraries depicting successive library version releases
without vulnerability alerts

LU= current LU). Specifically for the junit (NR2) library, the dependency L(NR2,3.8.1)
does not follow the typical migration pattern of the L(NR2,4.10) and L(NR2,4.11)
dependencies.

Empir Software Eng

Figure 9 LMP for vulnerability V1, related to the COMMONS-BEANUTILS library dependency versions
V11.9.1 and V11.9.2

Similar to the consistent migration to a new release, we find that the reason for a non
response to a migration opportunity is related to the estimated migration effort. For instance,
as shown in Fig. 8b, the newer Junit version 4 series libraries requires a change of plat-
form to Java 5 or higher (L(NR2,4.10) and L(NR2,4.11)), inferring significant changes to
the architectural design of the library. Intuitively, we see that even though L(NR2,3.8.1) is
older, it still maintains its maximum library usage (i.e., current LU and peak LU=342). This
LMP curve pattern is also apparent in the log4j (NR3) library shown in Fig. 8c, with the
L(NR3,1.2.15) dependency being older, but still active library version (i.e., with over 100
current LU). We visually observe that as L(NR3,1.2.17) dependency reaches its peak LU
the L(NR3,1.2.16) dependency remains more popular, with a higher LU than superseding
library release. This result complements the findings in (RQ1) that popular library depen-
dencies tend to retain most of their users, even if a possible migration to a new release
opportunity is available.

Figure 10 LMP for vulnerability V2, related to the commons-fileupload library dependency versions

Empir Software Eng

6.2 Security Advisory Disclosure

Figures 9, 10, 11 and 12 all depict the LMP of our case studies related to the responsiveness
of affected developers towards a security advisory disclosed to the general public. In our
analysis, we group and discuss the case studies according to (C) an active response, (D) a
lack of response and (E) a latent disclosure of the security advisory.

(C) Cases of an active developer response to a security advisory disclosure
Figure 9 depicts a typical case of where migration is in response to a vulnerability. As shown,
the LMP curve clearly depicts a peak and decline in the usage after the V1 vulnerability
security advisory was disclosed to the public. We conjecture that the timely release of the
patched L(V1,1.9.1) dependency shortly after the security advisory was disclosed, provided
a migration opportunity for developers.

In contrast to the reported case in V1, Fig. 10 depicts a case for V2, where the security
for the V1 vulnerability security disclosure that affects the L(V2,1.3) dependency does not

Figure 11 Vulnerability alerts for the commons-httpclient (V3) and related httpcomponents
(V4) library. In detail, Fig. 11b is a zoomed in look at Fig. 11a, which is the vulenerable L(V4,4.2.2)
dependency, and safe L(V4,4.2.3) and L(V4,4.2.5) dependencies

Empir Software Eng

Figure 12 LMP for vulnerability V5, related to the commons-compress library

affect the LMP curve of the older L(V2,1.2.2) dependency. In detail, the LMP curve is evi-
dent by the rise of theL(V2,1.2.2) dependency from 110 LU to 140 LU, during the period in
which the L(V2,1.3.1) dependency is released. Nevertheless, during this period L(V2,1.3)
having also increased from 1 to 48 LU during this period, inferring that during this period,
maintainers preferred to adopt the older dependency rather than the newer release. The
LMP curves in Fig. 10 depict how the disclosure of the V2 security advisory does not
trigger much migrating away from both the L(V2,1.2.2) and L(V2,1.3) vulnerable depen-
dencies. We observe from the LMP that the Library Residue of these two libraries indeed
high, with L(V2,1.2.2) showing 98% Library Residue, while L(V2,1.3) having 86% of
Library Residue. The LMP infers that even though the security advisory has been disclosed
to the public, many of these affected developers still continue to rely on these vulnerable
dependencies in their projects.

As in the case of new release announcements, one reason why a developer may not
respond to a security advisory is due to the estimated migration effort required. In the V2
vulnerability case, inspection of the release logs indicate a relatively high migration effort,
as the newer L(V2,1.3) dependency would require an upgrade towards the JDK platform
of Java 5 or higher platform. Moreover, we conjecture that users of the newer L(V2,1.3)
dependency are more likely from developers that have not used prior versions of the affected
commons-fileupload library.

(D) Cases of an incomplete patch release in response to a security advisory disclo-
sure Figure 11 shows a case where the lack of a replacement dependency may contribute
to affected developers showing no response to the disclosure of a security advisory. In
this case, the initial vulnerability V3 is related to the Amazon Flexible Payments Ser-
vice (FPS), which is a man-in-the-middle attacker to spoof SSL servers via an arbitrary
valid certificate. V3 is the original vulnerable L(V3,3.1) dependency that affects users of
the commons-httpclient library. As seen in Fig. 11a rising LMP curve, the secu-
rity advisory does not trigger any migration among its users. In fact, there is an increase
from 165 to 209 LU after the security alert was disclosed. Related to V3, V4 is the same
man-in-the-middle attach with a ‘NOTE: this issue exists because of an incomplete fix for
CVE-2012-5783’ in its description.20

20https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-6153.

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-6153

Empir Software Eng

The estimated migration effort and the lack of a viable replacement dependency are some
of the possible reasons why affected maintainers show no response to the security advisory.
This is shown in the case of the Httpcomponents library,21 which is the successor and
replacement for commons-httpclient library. As documented, Httpcomponents
is a major upgrade with many architectural design modifications compared to the older
commons-httpclient dependency versions. However, after the first release of the
Httpcomponents library, the LMP curve in Fig. 11a indicates that many systems still
actively use the older commons-httpclient (V3) version. Shown in this figure, after
the V4 security advisory disclosure, the affected L(V4,3.1) showed signs of develop-
ers migrating away from the vulnerable dependency. The LMP curve of the L(V4,3.1)
dependency moves from a peak LU of 215 to a decreased 212 LU.

(E) Cases of a latent security advisory disclosure Figure 11b shows a case where
some affected developers had already migrated away from the vulnerable dependency, even
before the security advisory was disclosed to the public. In the case of httpcomponents
library, its LMP curve indicates that developers whomaintain the vulnerable V4L(V4,4.2.2)
dependency shows no response to the security advisory disclosure. One reason is that a prior
migration of the library had already been triggered by the releases of newer versions of
L(V4,4.2.3) and L(V4,4.2.5). By the time V3 is disclosed, L(V4,4.2.2) is already in decline
with a 60% Library Residue.

Figure 12 depicts a case where the reason for developer responsiveness to a security
advisory disclosure cannot be simply explained using the LMP curve. In the figure, the LMP
curve shows that developers that maintain the vulnerable commons-compressL(V5,1.4)
dependency responded to the V5 security advisory disclosure. However, this was not the case
of all versions of the library. The LMP curve shows developers that use the older L(V5,1.3)
dependency did not show any signs of migrating away from this vulnerable dependency.
In fact, although minor, the LMP curve for the vulnerable L(V5,1.4) dependency rises in
LU after the security advisory was disclosed to the public. Based on these results, we now
return to answer (RQ2):

6.3 Developer Feedback on Updating a Vulnerable Dependency

Table 7 shows a summary of affected projects that show negligence in responding to any
of the five (i.e., V1, V2, V3, V4, V5) security advisories analyzed in (RQ2). From the
120 projects that were detected by the LMP curve, we found 64 of the projects provided a

21https://hc.apache.org/.

https://hc.apache.org/

Empir Software Eng

Table 7 Summary of the survey
collected from projects with a
known security vulnerability

Alias # Listed # Contactable # Feedback Unaware Updated

V1 42 23 5 4 4

V2 40 26 6 6 5

V3 20 5 1 0 1

V4 10 7 3 1 0

V5 8 3 1 0 1

Totals 120 64 16 11 11

feedback mechanism such as a mailing list or issue management system. As shown, out of
the 64 projects, 16 projects (25%) of the projects provided us feedback. In this section, we
discuss the results pertaining to: (F) developer awareness on the vulnerability affecting their
projects and (G) developer opinion regarding the practice of updating dependencies.

(F) Developer awareness of vulnerabilities in their projects Table 7 shows that many
of the affected projects were unaware of the vulnerability to their software. Through the
feedback, we find that out of the 16 responses, 11 (69%) immediately thanked us for the
notification and proceeded to update their dependencies to the safer dependency versions.

(G) Developer opinion on library updates Developers cite the threat of the impact of
the exposure as well as the function of the dependency as a factor to influence the decision
in responding to a security advisory. A developer from a project responded that ‘our project
has been inactive and production has been halted for indefinite time’. Developers from
another two projects noted that the vulnerable dependency did not have a critical effect on
the project:

‘I knew about it because I happen to work on another project where we had to fix this
very problem, but I didn’t connect two dots. In this case, it’s a test dependency, so the
vulnerability doesn’t really apply.’ and that ‘It’s only a test scoped dependency which
means that it’s not a transitive dependency for users of XXX so there is no harm done.
XXX has no external compile scoped dependencies thus there is no real need to update
dependencies.’

Finally, the remaining two projects stated that the update was unnecessary as the affected
component had little impact on the project objectives or part of their responsibilities. A
developer from the first project stated that ‘When it comes to this specific vulnerability
org.apache.commons.httpclient is only used by XXX by the automatic update, and there’s
no SSL or encryption involved.’ while another developer from the latter project deferred the
responsibility to another project ‘ We don’t maintain XXX, but have passed this on to XXX.
Not our decision, this is a slightly revised fork.’

Similar to the results for (RQ2), all developers from the 16 projects cite the required
migration effort as an influencing factor to whether or not a vulnerable library should be
updated. For instance, one developer discusses how security updates are not a priority, as
they do not align with the goals and objectives of their software customers:

‘I subscribed to the CVE RSS recently and I don’t check it regularly, so even if I
might have heard of the current vulnerability, I simply forgot to address it. We also
had some emergencies recently (developing features for our customers), that makes

Empir Software Eng

the security issues less prio than releasing the ordered features :-/ ... Anyway, our
security approach is far from perfect, I am aware of it, and I’m willing to improve this,
but sometimes it is difficult to explain our customers that it is a main point to consider
in the development process.’

In other developer feedback, we find developers perceive the practice of updating their
dependencies as added effort and responsibilities that should be performed in their ‘spare
time’. Moreover, developers suggest that availability of the manpower and assigned roles
are influencing factors for deciding whether or not a developer will migrate a dependency:

– ‘Just that it’s not very easy to keep track of it. As there’s no downside in upgrading
in this case, we would have done so if for example there’s a build time warning about
such dependency.... Thank you very much for bringing this to our attention! We don’t
maintain XXX, but have passed this on to XXX. Not our decision, this is a slightly
revised fork.’

– ‘I suppose we weren’t aware of this issue.’ and that they have issues with the ‘amount
of people currently working on the project with spare time to verify it works correctly
with new version’.

– ‘I can’t answer for the group, but generally there are so many security vulnerabilities
that it’s a full time job just to keep up with them all. In most cases they don’t apply.’

– ‘As mentioned above, we are no longer maintaining this particular version. Yes, but only
“decentralized and informal one”: whoever introduced the dependency is supposed to
keep track of it and update it in the part(s) he is maintaining.’

Based on these results, we return to answer (RQ3):

7 Discussion

In this section, we discuss the implications of our results and the validity of our study.

7.1 Implications of Results

To understand implications of the study, in this section, we first discuss results of the
research questions and speculate some factors that influences a developer to migrate a
dependency. We then show how our work is relevant in the context of existing litera-
ture. Results for (RQ1) show that the heavy reliance on libraries in contemporary projects
often results in the formation of complex inter-dependency relationships inside that project.
Furthermore, responses in (RQ3) also provide evidence that the complex nature of these
inter-dependencies (colloquially termed as ‘dependency hell’) is an influencing factor on
whether or not a dependency will be migrated. When addressing (RQ2) and (RQ3), we
find that migrating dependencies is a cost–benefit trade-off decision between estimating

Empir Software Eng

the amount of migration effort needed and evaluating the benefits of the replacement
dependency. Finally, we speculate that developer workloads, responsibilities and a lack of
motivation are important factors that influence whether or not a developer will migrate a
dependency. Specifically, evidence from (RQ3) supports the notion that library migrations
are perceived by developers as ‘low priority’ and ‘extra work to be done in their spare time’.

We find our results to be consistent with existing literature that analyzed migrations at
the API level of abstraction. At the fine-grained API level, related work defines migration
effort as the effort needed to accommodate any changes in the API calls between a library
and client system. Our study complements this migration effort from more coarse-grained
level of abstraction, defining migration effort as the additional rework, testing and com-
patibility with other inter-dependencies when migrating a dependency. We speculate that
developers are more likely to migrate a dependency if (i) they are aware of a migration
opportunity, (ii) they have the time and responsibility to perform the migration effort, and
(iii) they decide the migration aligns with the goals and objectives of their project. Our
findings complement results in related work. For instance, Robbes et al. (2012) states that:
“A minority of reactions to API changes can remain undiscovered long after the original
change is introduced”. Furthermore, McDonnell et al. (2013) states that: “Android APIs
are evolving fast and client adoption is not catching up with the pace of API evolution”.
This result is further strengthened by the findings of Hora et al. (2015), who says that:
“...53% of the analyzed API changes caused reaction in 5% of the systems and affected 4.7%
of developers”. Our result complements these findings further by providing evidence that
developers are more likely to be unaware of migration opportunities. A study by Bavota et al.
(2015) comprehensively investigated API and library updates within the Apache ecosystem,
with the goal of understanding what different product and process factors lead to devel-
opers updating their libraries. The study shows that at the API level, developers tend to
upgrade a dependency when substantial changes such as bug-fixing activities are included
in the replacement dependency. At a higher level of abstraction, we speculate that devel-
oper awareness of these bug-fixes and ease of integration determines whether or not the
developer will migrate this dependency. Finally, to complement the findings of Bogart et al.
(2015), our results reveal that non-technical organization factors (i.e., developer workload
and responsibilities) play an important role in whether or not a developer will migrate their
dependencies.

7.2 Threats to Validity

We now present construct, internal and external threats to our study.

Construct validity refers to the concern between the theory and achieved results of the
study. We find three threats that relate to the tools and mechanisms used to obtain our
results. The first is source of our datasets. In reality, there are other forms of awareness
mechanism such as social media alerts or the word–of–mouth medium, to raise developer
awareness to a migration opportunity. However, we believe that new releases and security
advisories are more traditional and recognized forms of announcements. For future work,
we plan to investigate other forms of awareness mechanisms that lead to a library migra-
tion. The second threat is the related to the tools used to extract our dependency migration
information. In this study, we use the configuration file of the Maven dependency manager
to assume the third-party dependencies. There may be cases were a third-party library is
not declared in such configuration, and is instead embedded manually into the system. Our
tool PomWalker cannot capture these dependencies as it specifically detects documented

Empir Software Eng

dependency declarations (i.e., implicit version references and managed dependencies). Our
method also does not count dependencies that have copied the source code of the library into
their own source code. However, since our collected dependencies under-estimate actual
reuse, we do not believe this threat affects our main result. We also assume that explicit
stated versioning is used by projects that are more likely to manage their dependencies. The
final threat is the selection criteria used to select the case studies for (RQ2). The threat is that
the criteria was performed manually (matching CVE to libraries) which could be error-prone
and might have missed other case studies. However, we believe that our systematic research
methods ensure a quality dataset and case studies that validate our drawn conclusions.

Internal validity refers to the concerns that are internal to the study. In this study, we
found two main internal threats that could affect our results. First is the accuracy of our
dataset and generalization of our results to represent the real world. This has an impact to
both (RQ1) and (RQ2). For instance, a dataset containing obsolete projects or inactive forks
of systems would cause false positives on the Library Migration Plot (LMP) trend curve. To
mitigate this, we took particular care to filter out projects that were not regularly maintained
by their developers. The second threat is related to the research method and actual response
rate of the developers for RQ3. We understand that these little responses cannot be a true
representation of all developers. However, we believe that the response rate of 25% from
the smaller set of contactable projects is indeed adequate when targeting a specific interest
group.

External validity refers to the generalization concerns of the study results. We have two
main threats to the results of the study. First is the conclusions of the case studies to general-
ize the trend patterns for all Java projects. Due to dataset quality pre-processing, we analyze
projects that do use third-party libraries, hence, results may not be applicable to the other
types of Java projects that do not use a dependency management tool. Also, there is a threat
to the case studies not being representative of all projects. For new releases, we found that
the three libraries depicted the typical pattern of either system users consistently migrating
or where an older library version is the popular version. There may be other interesting pat-
terns, but theoretically for new releases, these are two typical patterns for popular libraries.
The second threat is the generalization to other library ecosystems such as JavaScript npm,
Ruby RubyGems. We are careful to restrict these findings to Java projects as other ecosys-
tems may depict a different set of library migration patterns and tendencies. This would be
an interesting future avenues for research. We envision that different lessons learnt from
other ecosystems in terms of responsiveness to library updates may provide insights on how
to encourage library maintenance within the Maven ecosystem.

8 Related Work

Complementary to the related work of Robbes et al. (2012), Hora et al. (2015), McDonnell
et al. (2013) and Bavota et al. (2015) already presented in the paper, there has been other
work that have studies library migrations, both at the API and library component level. In
this section, we cover the body of literature on library popularity, API library migrations
and studies on software ecosystems.

API library updates Teyton et al. (2014) studied library migrations of Java open source
libraries from a set of client with a focus on library migration patterns. The main result

Empir Software Eng

of that study was that recommendations of libraries could be inferred from the analysis of
the migration trends. In this work, we have a different motivation to how much migration
occurs and especially in relation to vulnerabilities. Another work was by Xia et al. (2013),
that studied the reuse of out-dated project written in the c-based programming language.
Kabinna et al. (2016) and colleagues especially focused on the migration of specific logging
libraries and not related to vulnerabilities.

Recently, large-scale empirical studies have been conducted on library updates. Rae-
maekers et al. (2012) performed several empirical studies on the Maven repositories about
the relation between usage popularity and system properties such as size, stability and
encapsulation. Raemaekers et al. (2014) also studied the relationship between semantic ver-
sioning and breakages. Other related empirical studies were conducted by Jezek et al. (2015)
and Cox et al. (2015). They studied in-depth how libraries that reside in the Maven Cen-
tral super repository evolve. The motivation of our work differs from those work, as we are
more focused on the migration process itself and its triggers rather than the migration effort
needed to migrate a dependency.

Library usage as popularity measures The LU metrics and the LMPs are forms of
popularity measure by the crowd. Popularity is not a new concept, with several research on
usage trends of libraries. There has been work that has analyzed different dimensions on
library usage by clients. For example, work such as De Roover et al. (2013) exploited library
usage at the API level to understand popularity and usage patterns of clients. Similarly, they
also looked at both the system and library dimensions of API usage for the Qualitas dataset
of projects. The main differences to our work is that although overlapping, De Roover and
colleagues analyzed at the API level, where we look at the higher abstraction of the library
level. Moreover, instead of a simple popularity count, we define a model and metrics to
quantify different metrics of LU.

Much like the LMP, related studies have used library usage visually to measure stability
(McDonnell et al. 2013) or popularity (Mileva et al. 2009). In this context, our previouswork
(Kula et al. 2014), among work leveraged popularity to recommend when libraries are
deemed safe to use by the masses. Popularity has also been leveraged in IDEs. For instance,
Eisenberg et al. (2010) improved navigation through a library’s structure using the popu-
larity of its elements to scale their depiction. Recently, Hora and Valente (2015) introduced
their tool called apiwave, that visualizes popularity trends of a library at the API level.

Library migration support There has been much research related to the transformation
of client code to support library migration, particularly pertaining to the migration effort
required. Work by Chow and Notkin (1996) and Balaban et al. (2005) used a change specifi-
cation language. Wu et al. (2015b) showed in an empirical study that imperfect change rules
can be used by developers upgrading their code, especially when documentation is lack-
ing. There is work that provides the client automatic tool support to accommodate changes
made to a library. For instance, SemDiff by Dagenais and Robillard (2009) recommended
replacements for framework methods that were accessed by clients. Other similar tools were
proposed by Xing and Stroulia (2007) and Schäfer et al. (2008). In this work, we propose
to view the migration from a higher level of abstraction at the library component level.

These tools also do not consider the other aspects of the migration process. Closely
related to our work, Plate et al. (2015) stated that impact assessment, migration effort, and
the customer are issues faced by the pragmatic developers wanting to update their vulnerable
libraries. This study shows that these are indeed some of the reasons why maintainers are
not updating, even in cases where they expose the software to outside malicious attacks.

Empir Software Eng

Other work on reuse support is through code analysis. This area of work considers code
clone detection techniques by Kamiya et al. (2002) to support which library version is most
appropriate candidate for migration. Godfrey and Zou (2005) proposed origin analysis to
recover context of code changes. Our previous work by Kawamitsu et al. (2014) tracked
how code is reused across different code repositories. Also, work such as Cossette and
Walker (2012) depict the complexities of the migration effort needed for library changes
and transformations at the API level.

Software systems as ecosystems Lungu (2008) best termed ecosystems as a ‘collection
of software projects which are developed and evolved together in the same environment’.
The discussed work of Robbes et al. (2012), McDonnell et al. (2013) and Bavota et al.
(2015) involved the analysis of API usage within a software ecosystem. Related, Wu et al.
(2015a) explored the API changes and usages on Apache and Eclipse ecosystems. In this
work, we also look at the Maven Java ecosystem of libraries, however, our clients are indeed
from ‘wild’ real-world projects that reside in the much more diverse GitHub repository
of repositories. More recent work has been by done by Wittern et al. (2016), who studied
dynamics of the npm JavaScript library ecosystem.

Mens et al. (2014) performed ecological studies of the R CRAN open source software
ecosystems. Haenni et al. (2013) performed a survey to identify the information that devel-
opers lack to make decisions about the selection, adoption and co-evolution of upstream
and downstream projects in a software ecosystem. Similar works were performed by
German et al. (2013) for the R software ecosystem. The external library dependencies could
be considered as part of the ecosystem. Therefore, the larger ecosystem of library depen-
dencies may also trigger migrations. However, in this study, we focused on the trigger effect
of vulnerabilities and updates within the same library.

9 Conclusion

Many software projects today advocate the use of third-party libraries because of its many
benefits for software developers. However, results of this study show that updates of
third-party library dependencies are not regularly practiced, especially to fix vulnerabili-
ties that exploit a system to attackers. Surprisingly, we found that 81.5% of our studied
systems still remain with an outdated dependency. The study shows many factors that
influence the decision whether or not to update a library. Migration effort such as rework
required prepare a system to work on a new platform (i.e., Java 4 to Java 5) and address
the API changes plays an important role in the update decision. Developer awareness
also influences the migration process and they do not prioritize updates by questioning
the migration cost, citing it as added responsibility and effort to be performed in their
‘spare time’. We speculate other issues including developer responsibilities and a lack
of motivation play a role in the decision on whether a dependency will be migrated or
not.

The study provides motivation for our community develop strategies to improve a devel-
oper personal perception of third-party updates, especially in cases when effort must be
allocated to mitigate a severe vulnerability risk. Visual aids such as the Library Migration
Plots (LMP) provide a rich visual analysis, which proves to be a useful awareness and moti-
vation for developers to identify dependency migration opportunities. We envision this work
as a contribution toward developing strategies and support tools that aid the management of
third-party dependencies.

Empir Software Eng

Acknowledgements This work is supported by JSPS KANENHI (Grant Numbers JP25220003 and
JP26280021) and the “Osaka University Program for Promoting International Joint Research.” Ali Ouni is
supported by the ‘Research Start-up (2) 2016 Grant G00002211’ funded by UAE University.

References

Balaban I, Tip F, Fuhrer R (2005) Refactoring support for class library migration. In: Proceedings of the
20th Annual ACM SIGPLAN conference on object-oriented programming, systems, languages, and
applications, OOPSLA ’05. ACM, New York, pp 265–279. ISBN 1-59593-031-0

Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2015) How the apache community upgrades
dependencies: an evolutionary study. Empirical Softw Eng 20(5):1275–1317. ISSN 1382–3256

Bogart C, Kästner C, Herbsleb J (2015) When it breaks, it breaks: how ecosystem developers reason about
the stability of dependencies. In: Proceedings of the ASE workshop on software support for collaborative
and global software engineering (SCGSE), pp 11

Chow K, Notkin D (1996) Semi-automatic update of applications in response to library changes. In: Proceed-
ings of the 1996 international conference on software maintenance, ICSM ’96. IEEE Computer Society,
Washington, DC

Cossette BE, Walker RJ (2012) Seeking the ground truth. In: Proc. of the ACM SIGSOFT intrn. symp on the
foundations of software engineering - FSE ’12

Cox J, Bouwers E, van Eekelen M, Visser J (2015) Measuring dependency freshness in software systems. In:
2015 IEEE/ACM 37th IEEE International conference on software engineering (ICSE), vol 2, pp 109–118

Dagenais B, Robillard MP (2009) Semdiff: analysis and recommendation support for api evolution. In:
Proceedings of the 31st international conference on software engineering, ICSE ’09. IEEE Computer
Society, Washington, DC, pp 599–602. ISBN 978-1-4244-3453-4

De Roover C, Lammel R, Pek E (2013) Multi-dimensional exploration of API usage. In: IEEE International
conference on program comprehension, pp 152–161

Edgell S, Noon S (1984) Effect of violation of normality on the t test of the correlation coefficient. In:
Psychological bulletin, pp 576–583

Eisenberg DS, Stylos J, Faulring A, Myers BA (2010) Using association metrics to help users navigate API
documentation. In: VL/HCC2010, pp 23–30

German DM, Adams B, Hassan AE (2013) The evolution of the r software ecosystem. In: Proc. of European
conf. on soft. main. and reeng. (CSMR2013), pp 243–252

Godfrey MW, Zou L (2005) Using origin analysis to detect merging and splitting of source code entities.
IEEE Trans Softw Eng 31(2):166–181

Haenni N, Lungu M, Schwarz N, Nierstrasz O (2013) Categorizing developer information needs in software
ecosystems. In: Proc. of int. work. on soft. eco. arch. (WEA13), pp 1–5

Hora A, Valente MT (2015) Apiwave: keeping track of api popularity and migration. In: International
conference on software maintenance and evolution

Hora A, Robbes R, Anquetil N, Etien A, Ducasse S, Valente MT (2015) How do developers react to api
evolution? The pharo ecosystem case. In: Proceedings of the 2015 IEEE international conference on
software maintenance and evolution (ICSME), ICSME ’15. IEEE Computer Society, Washington, DC,
pp 251–260, doi:10.1109/ICSM.2015.7332471. ISBN 978-1-4673-7532-0

Jezek K, Dietrich J, Brada P (2015) How Java APIs break - an empirical study. Inf Softw Technol, 129–146.
ISSN 09505849. doi:10.1016/j.infsof.2015.02.014

Kabinna S, Bezemer C-P, Shang W, Hassan AE (2016) Logging library migrations: a case study for the
apache software foundation projects. In: Proceedings of the 13th International workshop on mining
software repositories, MSR ’16. New York, pp 154–164

Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans Softw Eng 28(7):654–670. doi:10.1109/TSE.2002.1019480.
ISSN 0098-5589

Kawamitsu N, Ishio T, Kanda T, Kula RG, De Roover C, Inoue K (2014) Identifying source code reuse
across repositories using lcs-based source code similarity. In Proc. of SCAM

Kula RG, Roover CD, German DM, Ishio T, Inoue K (2014) Visualizing the evolution of systems and their
library dependencies. In: Proc. of IEEE Work. conf. on soft. viz. (VISSOFT), ICSME ’15

Kula RG, German DM, Ishio T, Inoue K (2015) Trusting a library: a study of the latency to adopt the
latest maven release. In: 22nd IEEE International conference on software analysis, evolution, and
reengineering, SANER 2015. Montreal

Lehman MM (1996) Laws of software evolution revisited. In: Proceedings of the 5th European workshop on
software process technology, EWSPT ’96. Springer-Verlag, London, pp 108–124. ISBN 3-540-61771-X

http://dx.doi.org/10.1109/ICSM.2015.7332471
http://dx.doi.org/10.1016/j.infsof.2015.02.014
http://dx.doi.org/10.1109/TSE.2002.1019480

Empir Software Eng

LunguM (2008) Towards reverse engineeringsoftware ecosystems. In: Intl. conf. on soft. maint. and evo. (ICSME)
McDonnell T, Ray B, Kim M (2013) An empirical study of API stability and adoption in the android ecosys-

tem. In: IEEE International conference on software maintenance. ICSM, pp 70–79. ISSN 1063-6773.
doi:10.1109/ICSM.2013.18

Mens T, Claes Mk, Ecos PG (2014) Ecological studies of open source software ecosystems. In: Soft. main.
reeng. and rev. eng. (CSMR-WCRE), pp 403–406

Mileva YM, Dallmeier V, Burger M, Zeller A (2009) Mining trends of library usage. In: Proc. Intl and
ERCIM principles of soft. evol. (IWPSE) and soft. evol. (Evol) workshops, IWPSE-Evol ’09. ACM,
New York, pp 57–62

Plate H, Ponta SA, Elisa S (2015) Impact assessment for vulnerabilities in open-source software libraries. In:
Proceedings of the 31st international conference on software maintenance and evolution, ICSME ’15.
IEEE Computer Society, Breman

Raemaekers S, van Deursen A, Visser J (2012) Measuring software library stability through historical version
analysis. In: Proc. of intl. comf. soft. main. (ICSM), pp 378–387

Raemaekers S, van Deursen A, Visser J (2014) Semantic versioning versus breaking changes: a study of the
maven repository. In: 2014 IEEE 14th international working conference on source code analysis and
manipulation (SCAM), pp 215–224

Robbes R, Lungu M, Röthlisberger D (2012) How do developers react to api deprecation? The case of a
smalltalk ecosystem. In: Proceedings of the ACM SIGSOFT 20th international symposium on the foun-
dations of software engineering, FSE ’12. ACM, New York, pp 56:1–56:11. ISBN 978-1-4503-1614-9

Rogers EM (2003) Diffusion of innovations, 5, 08. Free Press, NY. ISBN 0-7432-2209-1, 978-0-7432-2209-9
Sawant AA, Robbes R, Bacchelli A (2016)Onthe reaction to deprecation of 25,357 clients of 4+1 popular java

apis. In: Proceedings of the 32th IEEE international conference on software maintenance and evolution
Schäfer T, Jonas J, Mezini M (2008) Mining framework usage changes from instantiation code. In: Pro-

ceedings of the 30th international conference on software engineering, ICSE ’08. ACM, New York,
pp 471–480. ISBN 978-1-60558-079-1

Teyton C, Falleri J-R, Palyart M, Blanc X (2014) Astudyof librarymigrationsin java. JSoftwEvolProcess, 26, 11
Wittern E, Suter P, Rajagopalan S (2016) A look at the dynamics of the javascript package ecosystem. In:

Proc. of work. conf. on mining soft. repo. (MSR2016)
Wu W, Khomh F, Adams B, Guéhéneuc Y-G, Antoniol G (2015a) An exploratory study of api changes and

usages based on apache and eclipse ecosystems. Empirical Softw Eng, p.1–47. ISSN 1573-7616
Wu W, Serveaux A, Guéhéneuc Y-G, Antoniol G (2015b) The impact of imperfect change rules on

framework api evolution identification: an empirical study. Empirical Softw Engg 20(4):1126–1158.
doi:10.1007/s10664-014-9317-9

Xia P, Matsushita M, Yoshida N, Inoue K (2013) Studying reuse of out-dated third-party code in open source
projects. Jpn Soc Softw Sci Technol Comput Softw 30(4):98–104

Xing Z, Stroulia E (2007) API-evolution support with diff-catchup. IEEE Trans Softw Eng 33:818–836.
doi:10.1109/TSE.2007.70747

Raula Gaikovina Kula is a research assistant professor at Nara Institute of Science and Technology. He
received the Ph.D degree from Nara Institute of Science and Technology in 2013. He was a Research Assis-
tant Professor at Osaka University from Sept. 2013 til April 2017. His current research interests include
software ecosystems, software reuse, code reviews and software process.

http://dx.doi.org/10.1109/ICSM.2013.18
http://dx.doi.org/10.1007/s10664-014-9317-9
http://dx.doi.org/10.1109/TSE.2007.70747

Empir Software Eng

Daniel M. German is a professor at the Department of Computer Science, University of Victoria, where he
does research in the areas of mining software repositories, open source software engineering, and intellectual
property.

Ali Ouni is an assistant professor at UAE University. He received his Ph.D. degree in computer science
from the University of Montreal in November 2014. For his exceptional PhD research productivity, he was
awarded the Excellence Award from the University of Montreal. His research work focus on the use of com-
putational search, machine learning and evolutionary algorithms to address different software engineering
problems including software quality, software maintenance and evolution, refactoring of software systems,
and service-oriented computing. He is the founder of the first International Workshop on Software Refactor-
ing (IWoR 2016). He has served as program committee member in several major conferences, a reviewer in
several software engineering journals, a PC co-chair and an organization member of many conferences and
workshops.

Empir Software Eng

Takashi Ishio received the Ph.D degree in information science and technology from Osaka University in
2006. He was a JSPS Research Fellow from 2006-2007. He was an assistant professor at Osaka University
from 2007-2017. He is now an associate professor of Nara Institute of Science and Technology. His research
interests include program analysis, program comprehension, and software reuse.

Katsuro Inoue is a professor of Department of Computer Science, Graduate School of Information Sci-
ence and Technology, Osaka University. His current research interest includes software ecosystem modeling,
software provenance analysis, and code clone detection.

	Do developers update their library dependencies?
	Abstract
	Introduction
	Paper Organization

	Basic Concepts & Definitions
	The Library Migration Process
	Library Migration Awareness Mechanisms
	(1) A new release announcement
	(2) A security advisory

	Research Questions
	Library migration in practice
	Developer responsiveness to awareness mechanisms

	Research Methods
	(RQ1) To What Extent are Developers Updating Their Library Dependencies?
	(1) Tracking system and library updates
	(2) Analysis method
	(3) Data collection

	(RQ2) What is the Response to Important Awareness Mechanisms such as a New Release Announcement and a Security Advisory on Library Updates?
	(1) Tracking migration in response to awareness mechanisms
	(2) Analysis method
	(3) Data collection

	(RQ3) Why are Developers Non Responsive to a Security Advisory?
	(1) Survey design
	(2) Data collection

	Library Migration in Practice
	System Dimension
	Library Perspective

	Developer Responsiveness to Awareness Mechanisms
	A New Release Announcement
	(A) Cases of an active developer response to a new release
	(B) Cases of a developer non response to a new release

	Security Advisory Disclosure
	(C) C a s e s o f a n a c t i v e d e v e l o p e r r e s p onse to a security advisory disclosure
	(D) Cases of an incomplete patch release in response to a security advisory disclosure
	(E) Cases of a latent security advisory disclosure

	Developer Feedback on Updating a Vulnerable Dependency
	(F) Developer awareness of vulnerabilities in their projects
	(G) Developer opinion on library updates

	Discussion
	Implications of Results
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Related Work
	API library updates
	Library usage as popularity measures
	Library migration support
	Software systems as ecosystems

	Conclusion
	Acknowledgements
	References

